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Figure: Ion channels
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Two most relevant biological properties of ion channels: permeation
and selectivity.

How to characterize these two properties?

By current-voltage (I-V) relations measured experimentally under
different ionic conditions
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Properties of ionic flows through ion channels rely further on

External driving forces: boundary potentials and
concentrations;
Specific structural characteristics: the shape of its pore and
the distribution of permanent charge along its interior wall.
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Figure: A type of potassium channel
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Why we care?

Channels are responsible for the initiation and continuation of
the electric signals in the nervous system;

In muscle cells, a group of channels is responsible for the timely
delivery of the Ca++ ions that initiate a contraction;

Malfunctioning channels cause cystic fibrosis, cholera, and
many other diseases. Neuronal disorders (such as Alzheimer’s
disease and Parkinson’s disease) may result from dysfunction of
voltage-gated sodium, potassium and calcium channels;

A large number of drugs (including valium and PCP) act directly
or indirectly on channels.
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3D Poisson-Nernst-Planck model

For ionic solutions with n ion species, the PNP system reads

∇ ·
(
εr (r)ε0∇Φ

)
= −e

( n∑
s=1

zsCs +Q(r)
)
,

∇ · Jk = 0, −Jk =
1

kBT
Dk (r)Ck∇µk , k = 1, 2, · · · , n,

(1)

where r ∈ Ω with Ω being a three-dimensional cylindrical-like domain
representing the channel, Q(r) is the permanent charge density, ε(r) is the
relative dielectric coefficient, ε0 is the vacuum permittivity, e is the elementary
charge, kB is the Boltzmann constant, T is the absolute temperature; Φ is the
electric potential. Also, for the k th ion species, Ck is the concentration, zk is
the valence (the number of charges per particle), µk is the electrochemical
potential depending on Φ and {Cj}, Jk is the flux density, and Dk (r) is the
diffusion coefficient.
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1D PNP model

First proposed by R. S. Eisenberg and W. Nonner

1
A(X )

d
dX

(
εr (X )ε0A(X )

dΦ
dX

)
= −e

( n∑
j=1

zjCj(X ) + Q(X )

)
,

dJi

dX
= 0, −Ji =

1
kBT

Di(X )A(X )Ci(X )
dµi

dX
, i = 1, 2, · · · , n,

(2)

and the boundary conditions are, for i = 1, 2, · · · , n,

Φ(0) = V, Ci(0) = Li > 0; Φ(l) = 0, Ci(l) = Ri > 0. (3)
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Figure: A singular orbit connecting two boundaries: three transversal
intersections
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The study of ion channels in general consists of two related major
topics: structure of ion channels and ionic flow properties.

Thanks to the advances of the cryo-electron microscopy recognized in
2017 Nobel Prize, which makes it possible to obtain the structure of a
given ion channel.

However, the present experimental techniques allow measurements of
mainly the I-V relation− far away from measurements of internal
dynamics of ionic flows. Not knowing internal dynamics in any detail
adds another level of difficulty for an understanding of ion channel
properties.

Generally speaking, the best hope is to first understand key features
and robust phenomena of ion channel problems for a certain extremal
parameter values in simple biological setups. That is where
mathematical analysis steps in.
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Cubic-like feature of I-V relations

Expand the I-V relation along ε = 0

I(V ) = I0(V ) + εI1(V ) + ε2I2(V ) + ε3I3(V ) + · · ·

and obtain

Theorem

If L ̸= R, for ε > 0 small, then, up to the order of ε3, the I-V relation I = I(V )
is a cubic function with three distinct real roots.

Our result is consistent with the cubic-like features of the I-V relation adopted
in the FitzHugh-Nagumo simplification of the famous Hodgkin-Huxley
systems which describe the propagation of action potential of an ensemble of
channels in a biological membrane.

Mingji Zhang Mathematical understanding of ionic flows through membrane channels via Poisson-Nernst-Planck models



Outline
Ion channels

Mathematical modelings
Dynamical system framework: Geometric singular perturbation theory

Why mathematics important
Some interesting observations

Effects from finite ion sizes

In our study of ionic flows with finite size, we focus on, taking the individual
flux for example,

Jk (V ; d) = Jk0(V ) + dJk1(V ) + o(d).

Jk1(V ) is the leading term that contains finite ion size effects, and is our main
interest term. For it, we find out that

under electroneutrality boundary conditions, one always has

∂Jk1

∂V
> 0,

Critical potential Vkc such that Jk1(Vkc) = 0 that balance the finite ion
size effects on the individual fluxes;

Scaling laws, for any s > 0,

Jk0(V ; sLk , sRk ) = sJk0(V ; Lk ,Rk ) and Jk1(V ; sLk , sRk ) = s2Jk1(V ; Lk ,Rk ).
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Effects from small permanent charges

For small positive Q, we consider

Jk (V ;Q) = Jk0(V ) + QJk1(V ) + o(Q).

It turns out that

the channel filter to which the permanent charge is distributed should be short
and narrow. This is consistent with the typical structure of an ion channel.

for the PNP system with two oppositely charged ion species or three ion species
having two cations with the same valence

can reduce the flux of cation and enhance that of anion;
can enhance the fluxes of both cation and anion;
can reduce the fluxes of both cation and anion;
but cannot enhance the flux of cation while reduce that of anion.
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Thank You for Your Attention!
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