Snow melt enhancement by deposition of black carbon and dust: Insight from a new global-scale land surface model

Enrico Zorzetto^{1,2}, Paul Ginoux³, Sergey Malyshev³, Elena Shevliakova³

(1) New Mexico Tech, EES & Hantush-Deju Center for Hydrologic Innovation
(2) Princeton University, Oceanic and Atmospheric Science program
(3) NOAA Geophysical Fluid Dynamics Laboratory

NASA's High Mountain Asia Team 2 Collaborative research to study water and cryosphere changes in High Mountain Asia.

NOAA AOR GFDL 3D land-energy exchanges

Cryosphere plays a primary role in climate and hydrology

Figure source: IPCC AR6 special report on High Mountain Areas

Snow is uniquely reflective and insulating

Images from NASA SVS:MODIS Snow Cover over North America and Europe (https://svs.gsfc.nasa.gov)

Snow and land processes in climate models

New Global Land Snow Scheme (GLASS) for the GFDL ESM

- Prognostic size and shape of snow grain
- Detailed vertical structure aware of each layer's properties (trade-off)
- Fully coupled to soil, multi-layer canopy, atmosphere
- Implicit numeric solver -> Nonlinear solution for melt/freeze

Overview of GLASS in GFDL ESM framework

Typical model resolution: 1-100 km, 3 – 30 min Implicit time stepping -> Nonlinearity due to melt/freeze

Effect of light-absorbing particles on snow

Image credit: NASA

New LM-GLASS snow model:

- Dynamic snowpack layers
- Metamorphism:

Brun et al. (1992) + Flanner (2006)

 δ_k

- Deposition of impurities (LAPs): Ginoux et al., (2015)
- **Optical effects of impurities:** Dang (2015) + He et al., (2018)

Effect of light-absorbing particles on snow

Fig. 2 | Variation in snow albedo across the range of snow reflectance for changing LAP content and snow grain size. **a**, Modelled snow albedo showing the decrease in visible albedo as LAP content increases. **b**, Modelled clean snow albedo showing decreasing snow albedo in the longer wavelengths as snow grain size increases. **c**, Daily time series of snow albedo decline during snowmelt, showing the combined impacts LAP surface darkening and snow grain growth. Panel **c** adapted with permission from ref. ⁵, IGS.

From Skiles et al., 2018

Figure from Morin et al., 2012

		swa	snb	sap	wfj	sod	rme	cdp	
CLEAN - LAPS	μ_t	25.3	19.4	7.9	24.3	4.9	8.4	10.7	Number of
	σ_t	5.4	3.3	3.9	5.8	1.5	3.3	5.0	snow days lost
CLEAN - DUST	$\mu_t \ \sigma_t$	$\begin{array}{c} 20.2\\ 4.6\end{array}$	$\begin{array}{c} 15.3\\ 3.5\end{array}$	$\begin{array}{c} 4.2\\ 3.0\end{array}$	$\begin{array}{c} 16.9\\ 6.1 \end{array}$	$\begin{array}{c} 3.0\\ 1.1 \end{array}$	$\begin{array}{c} 4.8\\ 2.3\end{array}$	$5.8\\3.4$	due to all LAPs

ALL LAPs vs DUST ONLY vs CLEAN SNOW

Effect of LAPs on snow high mountain Asia

LAP - CLEAN, snow difference [Kg/m2]

Effect on new snow scheme on snow albedo feedback estimates

Take away message and future directions

Existing limitations of global coupled climate models in representing snow / cryosphere due to simplified physics.

- 1. We presented a new snow model (LM-GLASS) includes snow microphysics, improved snow layering structure and light absorbing particles (dust, black carbon)
- 2. We found the model has good performance and can be used to quantify the effect of LAPs on snow melt and their implication for the surface albedo feedback.

