# Optimizing automated earthquake detection methods in Delaware basin, southeastern New Mexico







Urbi Basu<sup>1,2</sup>, Susan Bilek<sup>1</sup>, Mairi Litherland<sup>2</sup>

<sup>1</sup>New Mexico Institute of Mining and Technology <sup>2</sup>New Mexico Bureau of Geology and Mineral Resources



## **EARTHQUAKES IN NEW MEXICO**

- Tectonic activity from Rio Grande Rift, E-W extending rift that extends from Colorado to northern Mexico
- Socorro magma body
  - Shallow, thin sill of magma at ~19 km depth
  - 1906 ~M6.2 earthquake in Socorro
  - Socorro Seismic Anomaly Region with ~50% of state's tectonic seismic activity
- <u>Recent activity from induced seismicity</u>









# **INDUCED SEISMICITY**

- Human activities such as oil and gas production, mining, geothermal extraction, and carbon sequestration can produce earthquakes
- Oil and gas production in New Mexico has increased significantly in recent years, which has led to an increase in induced earthquakes
- Existing seismic network





from the USGS and NMTSO catalog from 1962-2021 (Litherland, 2023)



NEW MEXICO

SCIENCE • ENGINEERING • RESE

## BACKGROUND



- South eastern New Mexico Part of the Delaware basin with significant oil and gas extraction activities since the 1960's
- Substantial increase in seismicity since 2010 associated with an increase in oil and gas production and wastewater disposal



## **PROJECT OBJECTIVE**

- **Southeastiple templates matching and imagination of the second second**
- Broader region including a portion of west Texas and southeast Networkscop, a hibities for the south sensitive New Mexico genian 3317 earthquakes in the USGS catalog larger than M1
- Recommend automated earthquake detection workflow for real time
- Maximum of 64 seismic stations monitoring at the New Mexico Tech Seismological Observatory
- The NMTSO catalog will serve as the baseline for comparison (With The new automated catalogs.
- Reduce manual review effort for earthquake detection and location at

the NMTSO

Study region showing earthquake activity for the year 2021 and seismic stations used in the study (*Basu et al.*, 2024 in prep)





## **DATASET AND METHODOLOGY**

• Automated earthquake detection workflow divided into three sections:

Phase auto picking  $\rightarrow$  Event association  $\rightarrow$  Initial earthquake location



#### **Template matching**

- Cross-correlation based scanning algorithm to identify events of similar signature (Aster and Rowe, 2000; Rowe et al., 2002, Stankova et al., 2008)
- Comparison of a previously identified earthquake (master event) to a continuous time series at the same station
- 33 event templates with magnitude > 2.0
- Correlation coefficient thresholds ranging from 0.5 -0.3 tested to minimize the number of false positive and false negatives



Illustration of template matching method (Goertz-Allmann et al., 2014)



## **DATASET AND METHODOLOGY**

• Automated earthquake detection workflow divided into three sections:

Phase auto picking  $\rightarrow$  Event association  $\rightarrow$  Initial earthquake location

## P and S phase auto picking

#### Template matching

#### **EQTransformer**

- Machine learning tool designed for automated phase picking that utilizes neural network approach for automated earthquake detection
- Uses a globally trained dataset for detecting earthquakes from continuous waveform data



Training and test dataset for EQTransformer (Mousavi et al., 2020)



- Machine learning based seismic phase auto picker
- Model trained by manually labelled P and S arrival times from the Northern California Earthquake Data Center
- No existing earthquake information from study region needed



Training dataset (Zhu and Beroza, 2018)



## **DATASET AND METHODOLOGY**



• Automated earthquake detection workflow divided into three sections:

<u>Phase auto picking  $\rightarrow$  Event association  $\rightarrow$  Initial earthquake location</u>



## **RESULTS**



## TEMPLATE MATCHING RESULTS

 Each of the automated detection methods produced an increase in the number of detected events during 2021, both within only southeast
New Mexico as well a broader region extending into west Texas

| Detection tool       | Total<br>events | False<br>positive (%) | Number of<br>missed<br>events ( $\geq$<br>5 stations) | Number of<br>missed<br>events ( $\geq$<br>3 stations) |
|----------------------|-----------------|-----------------------|-------------------------------------------------------|-------------------------------------------------------|
| Template<br>matching | 1044            | 15                    | 168                                                   | 307                                                   |
| EQTransformer        | 19540           | 13                    | 64                                                    | 188                                                   |
| PhaseNet             | 63378           | 30                    | 33                                                    | 110                                                   |

Comparison of the automated detections from the three automated catalogs



Earthquakes detected from Template matching – REAL – VELEST workflow. The black stars indicate the earthquake templates used as master events in the study (*Basu et al., 2024 in prep*)

### **RESULTS** MACHINE LEARNING BASED AUTO DETECTOR RESULTS







Initial locations of earthquakes detected from EQTransformer - REAL - VELEST workflow (*Basu et al., 2024 in prep*)

## **RESULTS**

*in prep*)



- Evaluation of the earthquake count of the different catalogs
- The overall monthly seismicity trend is similar between the NMTSO and three automated detection catalogs
- Increase of monthly trends in the EQTransformer and PhaseNet catalogs is positively correlated with high magnitude earthquakes (M > 2.5) in the later half of 2021



## **RESULTS**



- Evaluation of the earthquake count of the different catalogs
- The overall monthly seismicity trend is similar between the NMTSO and three automated detection catalogs
- Increase of monthly trends in the EQTransformer and PhaseNet catalogs is positively correlated with high magnitude earthquakes (M > 2.5) in the later half of 2021



Comparison of the monthly earthquake count from machine learning automated catalogs (*Basu et al., 2024 in prep*)



Daily earthquake count from EQTransformer and PhaseNet catalogs (*Basu et al., 2024 in prep*)

## CONCLUSION



| Performance criteria               | Template matching                              | EQTransformer                                                                 | PhaseNet                                                                        |
|------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Missed detections                  | 168                                            | 64                                                                            | 33                                                                              |
| Overall detection<br>number        | ~ Two times as<br>compared to NMTSO<br>catalog | ~ Four times as<br>compared to (NMTSO+<br>TexNet) catalog for study<br>region | ~ Twelve times as<br>compared to (NMTSO+<br>TexNet) catalog for study<br>region |
| False positive rate                | 15%                                            | 13%                                                                           | 30%                                                                             |
| Requirements of existing templates | Yes                                            | No                                                                            | No                                                                              |
| Ease of implementation             | Difficult                                      | Moderate                                                                      | Easy                                                                            |

## **NEXT STEPS**

- ✓ Implementing the automated tools in real time earthquake monitoring workflow
- Earthquake relocations
- Use machine learning tools to detect more earthquakes from previous years <u>AND</u> in other parts of New Mexico
- Improving the seismic velocity model for better earthquake locations

