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ABSTRACT

The majority of prior research in the field of shock wave reflections has fo-
cused on pseudo-steady reflections which are fundamentally different from the
most common case of explosively-driven unsteady shock waves. The present
work combines prior pseudo-steady reflection theory with new models, method-
ologies, and scaling to better predict and understand unsteady shock waves and
their reflections from solid surfaces. Analytical models developed here allow the
prediction of shock wave reflection type and characteristics, including pressure
and impulse, for explosively-driven shock waves. The models include an update
for estimation of the pressure pulse duration of free air shocks, a methodology
for calculating duration of reflected shocks, and a new scaling approach for the
Friedlander decay coefficient alpha. Using these new models, methodologies,
and scaling the overpressure, decay coefficient, and impulse from a shock wave
reflection can be analytically predicted for any charge size, height of burst, or
distance from the charge.

Experiments were performed using gram-scale charges of pentaerythritol
tetranitrate (PETN) and kilogram-scale charges of PBXN-110 to generate data for
comparison to the developed models. The experiments used refractive imaging
techniques to visualize and quantify the shock wave propagation and reflection
characteristics. Pressure gages were used to measure overpressures, pulse dura-
tion, and explosive impulse. Using the shock Mach number determined from the
imaging systems and the height of burst, the type of shock reflection was pre-
dicted using the developed analytical model and shown to agree with the mea-
surements to within the expected uncertainty. Using the reflection type, Mach
number and height of burst the overpressure of the shock wave reflection was es-
timated through the analytical models and shown to agree with the experimental
results. The analytical process was then used to determine the peak pressure and
impulse over a wide range of heights of burst and distances from the charge to
visualize the effect of charge height on impulse.

A methodology for calculating reflected pulse duration was proposed and
shown to match the experimental data better than previous models. The method-
ology updated previous approaches where a release wave is propagated outward
through the post-shock field. The new approach places the origin of this release
wave at the point of zero overpressure on the fireball surface rather than the ex-
plosive center. The pressure decay process was predicted using this new method-
ology and the decay coefficient evolution with distance was explored. The decay
coefficient was found to vary for non-reflected and reflected shock waves and to
vary with explosive composition. By comparing the decay coefficient between
the gram and kilogram charges a novel scaling approach for Friedlander decay



coefficient was proposed to account for differences between explosive type. The
scaling uses the heat of reaction of the explosive material as a scaling parameter
to collapse data between PETN and PBXN-110.

Keywords: Explosively-driven Shock Reflections, Regular Reflections, Irregular
Reflection, Impulse, Overpressure, Pulse Duration, Pressure Decay Coefficient,
Friedlander, Refractive Imaging, Shadowgraph, Schlieren, Background Oriented
Schlieren, BOS, PETN, PBXN-110
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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

Frequently in explosive applications, an explosive charge is detonated at
some height above the ground or a reflecting surface, resulting in a shock wave
reflection from a surface. The manner in which the shock wave reflects from the
surface affects the overpressure and impulse generated on the reflecting surface.
Ernst Mach first described irregular reflections and identified that they generate
higher overpressures than regular reflections [1]. Since then, experimental and
numerical studies have focused on defining shock wave reflections in supersonic
wind tunnels and for planar shock waves. Prior work has developed a physical
basis for the transition between regular and irregular reflections for steady and
pseudo-steady shock wave applications. The majority of prior research on shock
wave reflections, however, has not explored the common case of unsteady, i.e.
explosively-driven, shock wave reflections. Applying current shock wave reflec-
tion theory to unsteady shock waves and experimentally validating the analytical
theory are the primary goals of this research.

1.2 Literature Review

1.2.1 Overview and History of Shock Wave Reflections

In 1878, Ernst Mach used spark gaps to generate two shock waves simultane-
ously over a soot covered plate and, for the first time, recorded an irregular shock
wave reflection [1]. Through his study of how shock waves disturb soot covered
plates, he established that these irregular reflections generated higher pressures
than regular reflections and provided an early description of the transition pa-
rameters between regular and irregular reflections [1]. In 1943 von Neumann
proposed the main structural elements for both regular reflections and Mach re-
flections: zero net deflection across the regular reflection, and a slipstream sepa-
rating two flow fields behind the Mach reflection [2]. He also suggested transition
criteria between regular and irregular reflections [3]. This theoretical work was
expanded by Kawamura and Saito in 1956 by plotting the possible states for the
shock waves in a reflection as a function of total deflection angle and pressure
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[4]. This technique, known as shock polar analysis, simplifies the analysis of the
formation of shock wave reflections [3]. These early advancements developed
the most important tools and ideas used in the current study of shock wave re-
flections. Detailed reviews of the development of shock wave reflection theory
can be found in works published by Griffith [3], Pack [5], and Ben Dor [6].

The present work focuses on four kinds of shock wave reflections: regular,
single Mach, transitional Mach, and double Mach reflections. The basic shock
diagrams of each type of reflection are shown in Figure 1.1. In Figure 1.1 the inci-
dent and reflected shocks are shown as straight for simplicity but are curved for
explosively driven shocks. The regular reflection, Figure 1.1a, can be identified
as two oblique shocks, the incident and reflected shocks, that meet at the reflec-
tion surface. The single Mach reflection, Figure 1.1b, is comprised of 3 shocks:
the incident and reflected shocks, and the shock that connects the two shocks
to the surface, a Mach stem. The slip line that originates at the point where the
three shocks meet, the triple point, may be visible in refractive images and is
not required for identification. The transitional Mach reflection, Figure 1.1c, is
very similar to a Mach reflection except that a portion of the reflected shock has
straightened out into what is referred to as the kink. A transitional Mach reflec-
tion can be identified by the sharp transition from the kink to the reflected shock.
The double Mach reflection, Figure 1.1d, can be identified by a second Mach stem
originating at the kink and pointing towards the reflection surface. The second
Mach stem terminates at the slip line originating from the first triple point. The
termination point of the second Mach stem may occur at the reflection surface.

Figure 1.1: Wave diagram of the 4 types of reflections for an oblique shock wave
traveling from left to right interacting with a solid reflecting surface. a) Regu-
lar reflection which has two waves. b) Mach reflection which can be identified
by a single Mach stem. c) Transitional Mach reflection which has a ”kink” in
the reflected shock. d) Double Mach reflection which has two Mach stems. The
incident (I) and reflected (R) shocks in each reflection is indicated

1.2.2 Shock Reflection Types

The regular shock wave reflection was named based on its similar behavior
to reflections of acoustic waves. Like an acoustic wave, the shock wave impacts a
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reflecting surface at some angle. The shock wave is then reflected from the point
of impact at a similar angle. For this and other reasons, prior to the contribu-
tions of Mach and Sommer, it was believed that shock waves were just stronger
acoustic waves [1, 7]. Through his study of shock wave traces, Mach was able to
determine the general shape of regular reflections (RR) [1]. The boundary con-
ditions used to define regular reflections proposed by von Neumann, completed
the modern understanding of regular reflections [8]. Figure 1.2a schematically
shows a regular reflection. In a steady frame of reference, like a wind tunnel, the
incident shock (I) deflects the flow towards the reflecting surface with the exact
angle of the deflection dictated by the flow Mach number and angle of the shock
relative to the flow. The reflected shock (R) then deflects the flow back to parallel
with the initial flow. The exact angle of the reflected shock can be determined
using shock polar analysis or by solving the two-dimensional compressible flow
equations [4, 9].

Figure 1.2: Schematic representation of (a) regular and (b) singular Mach reflec-
tions. In a regular reflection, the initial (I) and reflected (R) shock meet at the
reflecting surface, resulting in a new zero deflection of the flow. Single Mach
reflections include a third shock wave, the Mach stem (m), which connects the re-
flecting surface to the intersection of the initial and reflected shock waves. Here
the shock is assumed to be steady and the flow propagates toward the shock from
right to left.

The term irregular reflection (IR) is used to describe all shock wave reflec-
tions other than the regular reflection. The simplest irregular reflection, referred
to as a Mach reflection or single Mach reflection since at least 1944 [10], is com-
prised of a initial shock and reflected shock connected to the reflecting plane via
a third shock, the Mach stem (m), and a slip line (S) separating the flow processed
by the reflected shock and Mach stem. This structure was first predicted by von
Neumann in 1943 and first recorded with schlieren and shadowgraph photogra-
phy in 1945 [8, 11]. The Mach reflection was believed to be the only other reflec-
tion type until the recording of a transitional-Mach reflection (TMR) by Smith in
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1945 [11]. A transitional-Mach reflection, shown in Figure 1.3a, is differentiated
from a Mach reflection by two key features: a kink (k) in the reflected shock and
a slip line (S) that points towards reflection surface and curls into a recirculation
zone [6]. In 1952 the double Mach reflection (DMR) was first described by White
[12]. The double Mach reflection, which is shown in Figure 1.3b, is distinguished
by its second Mach stem which intersects with the first slip line. These three
shock wave reflections, Mach, transitional-Mach, and double Mach reflections,
along with the weak shock reflections, discussed later, comprise the main divi-
sions of irregular reflections that have been observed. A review in 1979 compiled
experimental data to map irregular reflections type as a function of Mach number
and angle for pseudo-steady planar shock waves [13].

Figure 1.3: a) Transitional Mach reflection where the initial shock wave is con-
nected to the Mach stem but the reflected shock is connected to the Mach stem
via a smaller shock referred to as the kink. b) Double Mach reflection where a sec-
ond Mach stem connects the second triple point to the end of the first slip stream.
The shock wave is in the steady frame of reference with flow propagating from
right to left.

1.2.3 Transition Between Shock Reflections

In the early 1940’s von Neumann proposed two transition criteria from reg-
ular to irregular reflections based on pressure matching or maximum deflection
[2, 8, 14]. The criterion he proposed for strong shocks, what is today called the
mechanical equilibrium criterion, stated that the reflection type will transition
when the pressure behind a regular reflection is equal to the pressure of a normal
shock in same flow [3, 6]. This criterion only occurs for shock reflections with a
initial Mach number greater than 2.2 so a second criterion was proposed for weak
shocks. The transition point for low Mach numbers, later named the detachment
criterion, was proposed to be the point of maximum deflection after which the
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shock wave would become detached [3, 6]. Early investigations by Bleakney and
Taub in 1949 used schlieren and shadowgraphy to study the transition condi-
tions and found discrepancies at low Mach numbers. This study found that at
low Mach numbers regular reflections persisted beyond what was expected by
von Neumanns transition criteria and what they believed to be Mach reflections
occurred in conditions not allowed by three shock theory [15]. This apparent de-
viation from two and three shock theory was given the name ”the von Neumann
paradox” [16].

Since the discovery of the von Neumann paradox in 1949, substantial re-
search was devoted to finding an accurate transition criteria between regular and
irregular reflections. The first breakthrough was in 1990 when Colella and Hen-
derson used high resolution numerical simulations to show a new reflection type,
which they named the von Neumann reflection, that could be easily mistaken for
a Mach reflection [17]. In this new reflection type the initial shock and Mach stem
were not two distinct shock waves but blurred together at the apparent triple
point. The reflected shock of the von Neumann reflection did not meet at the
apparent triple point but was connected by a series of compression waves. The
next advancement in solving the paradox was in 1999 when Vasilev et. al. used
numerical simulations to demonstrate a four-shock structure reflection, first pro-
posed in 1947 [18, 19]. This reflection was experimentally demonstrated in 2005
and named the Guderley reflection after the scientist that originally predicted it
[20]. Vasilev’s 1999 paper also suggested a third region of weak reflection be-
tween von Neumann and Guderely reflection, which is referred to as Vasilev re-
flection. The discovery of the three additional types of shock reflections: the von
Neumann reflection, Guderley reflection, and Vasilev reflection, showed that the
von Neumann paradox, rather than being a problem within three shock theory’s
description of Mach reflections, was a separate domain of irregular reflections,
now known as weak-shock wave reflections [6].

Variations of the transition criteria between reflections types have been con-
tinuously studied since discrepancies were discovered between von Neumann’s
criteria and experimental results in 1949 [15]. Over time, the two-stage transition
criteria proposed by von Neumann was replaced with only applying the detach-
ment criteria. Under which, the transition to irregular reflections occurs at the
point of maximum deflection of a regular reflection [21]. Further experimental
shock tube investigations showed the detachment criteria to not accurately pre-
dict the regular to irregular transition at low Mach numbers [15]. This led to
further examination and the suggestion by Henderson and Lozzi in 1975 that the
criteria was non-physical [22]. At the transition point predicted by the detach-
ment criteria, there is a pressure difference between a regular and Mach reflec-
tion. They argued that if this criteria were physical, then upon transitioning, a
compression or rarefaction wave would be propagated through the flow, which
was not found in experimental data [4]. This led Henderson and Lozzi to suggest
the mechanical equilibrium was the correct transition criteria [22]. Their conclu-
sion was accepted for steady cases but not for pseudo-steady [3]. A modification
to the detachment criteria was the sonic criterion, which stated that transition
occurred when the velocity behind the reflections exceeded the speed of sound.
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The transition angle between the sonic and detachment criteria was within a few
degrees, which was below the uncertainty of most experiments [23]. Lock and
Dewey were able to remove this limitation by precisely measuring the speed of
sound behind the shock wave, and were able to show that in low Mach num-
ber pseudo-steady cases, the regular to irregular transition occurred at the sonic
condition [24].

In 1979 the mechanical equilibrium and sonic conditions were combined into
the length scale criterion [25]. This theory was based on the fact that a regular re-
flection does not have a finite length scale, the initial and reflected shock can
extend indefinitely while being self similar, whereas the Mach stem of a Mach
reflection has a finite length that is dependent on the physical system causing
the reflection. Because the Mach stem has a fixed height for a Mach reflection to
form, a signal must be transmitted between the point defining the length scale
and the reflection. For a psuedo-steady reflection, this can only occur when the
Mach number behind the shock is at or below the speed of sound. For reflections
in steady flow, the length scale signal can be transmitted at all Mach numbers
so a Mach reflection will occur whenever possible. Thus using the length scale
criterion, regular to Mach reflection transition in pseudo-steady flows will form
according to the sonic condition, whereas in steady flows, reflections will transi-
tion according to the mechanical equilibrium condition[6].

The length scale criterion was able to accurately describe transition between
regular and Mach reflection but was unable to describe the transition between, or
growth of, transitional-Mach and double Mach reflections. It was observed in the
mid 1990’s that complex irregular reflections, specifically transitional-Mach and
double Mach reflections, can have a delay in formation, resulting in misidentifi-
cation of the final reflection type for experiments in shock tubes with short test
sections [26, 27]. The misidentification of reflection type resulted in the theoretical
transition point for transitional-Mach and double Mach reflections not matching
experimental results. The resolution was found in work initiated 20 years prior
by treating the reflection process as the combination of two sub processes: the
shock-reflection process and the flow-deflection process [28, 29]. The new pro-
cess, referred to as the ”Shock-Diffraction Process”, examines the flow around
the reflection as well as the flow down-stream from the reflection to determine
the exact reflection type that will form and is the current state of the art for de-
termining which shock wave type will occur in a strong shock wave reflection
[6].

1.2.4 Galilean Frame of Reference Transformation

In the steady frame of reference, the deflection of flow can be simply pre-
dicted as it moves through the shocks in a regular reflection. In the case of a
moving planar shock wave, the path of the gas through the shock reflection is
difficult to calculate. To simplify the calculations, the frame of reference is shifted
from a laboratory (Lagrangian) frame of reference, where the shock is moving
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into stagnant gas, to a fixed shock frame (Eulerian) of reference, where the shock
wave is fixed and the gas moves into the shock. The reference frame transfor-
mation, which is shown in Figure 1.4, was proposed by von Neumann and is
referred to as a Galilean transformation [6, 8, 30].

Figure 1.4 show two equivalent regular shock wave reflections. In Figure
1.4a, the laboratory reference frame, a normal shock wave that is propagating hor-
izontally encounters a ”wedge” up which the normal shock wave travels creating
a reflected shock wave. In Figure 1.4b, the pseudo-steady frame of reference, the
flow is parallel with the wedge/reflecting surface. For a regular reflection in the
laboratory frame of reference, the direction of the flow relative to the initial shock
is given by:

φ1 = 90◦ − θW (1.1)

where φ1 is the angle between the direction of flow and the initial shock and
θW is the wedge angle. The effective Mach number of the shock wave in the
laboratory frame of reference is given by:

MS = M1sin(φ1) (1.2)

where MS is the initial Mach number of the shock wave before the transfor-
mation and after the transformation M1 is the Mach number of the flow before
the shock, in region 1. For irregular reflections, the flow relative to the initial
shock is given by:

φ1 = 90◦ − (θW + χ) (1.3)

φ3 = 90◦ − χ (1.4)

where χ is the trajectory of the triple point, which is the junction of the initial,
reflecting, and Mach stem shock waves, and φ3 is the wave angle of the Mach
stem.

For a planar shock moving over constant angled surfaces, the transformed
frame of reference is referred to as pseudo-steady, because the flow immediately
around the intersection can be treated as steady [31]. For many other geometries
such as a planar shock over a changing angle or a curved shock over a constant
angle, this coordinate transformation simplifies analysis but does not result in a
pseudo-steady flow. In these cases no frame of reference can be used to describe
the flow as steady or pseudosteady, thus they are referred to as unsteady [32].

1.2.5 Multiple Reflections and Complex Geometries

The majority of shock wave reflection studies have focused on a planar shock
wave over a single wedge, but recently significant work has studied the reflection
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Figure 1.4: Diagram of Galilean transformation of regular reflection from the (a)
laboratory to the (b) pseudo-steady frame of reference.

of planar shock waves over increasingly complex geometries. The first study of
this kind was of the reflection of a shock wave over a cylinder in 1969 [33]. The
continually varying angle of the cylinder resulted in an unsteady reflection pro-
cess and an interesting progression of reflections types. Later work simplified this
problem by focusing on the reflection of a planar shock over a double-wedge sys-
tem [34]. This allowed for an analytical model for regular and Mach reflections
to be developed for the double-wedge system [35]. This model used the transi-
tion criteria for a shock over a single wedge to predict the reflection structure that
would form at the point of inflection and in the far field away from the inflection
point. It was also shown that a pressure spike or dip would occur at the inflection
point, depending on whether the second wedge had a larger or smaller angle re-
spectively [23]. Increasing the complexity of the system by inclusion of complex
irregular reflection, more complex geometries, or both, generates ever-more com-
plex reflections which require more complex models to describe [36, 37, 38]. As
of present, no single theory has been able to fully describe these systems.

When a shock wave impinges on another shock wave, it generates a reflec-
tion similar to if a rigid reflecting surface was placed at the symmetry plane be-
tween the shock waves. This phenomenon was how Mach first visualized irreg-
ular reflections over his soot covered plates[1]. Reflections of equivalent shock
waves were first shown to be equivalent to a reflecting surface in 1959[39]. How
this redistributes the energy of explosive blasts has been studied in large scale
experiments and computational simulations[40, 41]. Recent computational stud-
ies have investigated using shock-shock reflections as a way to focus explosive
effects [42, 43, 44].

1.2.6 Refractive Imaging Techniques

Refractive imaging systems are used to image differences in the refractive
index of a material located within a test section. Schlieren and shadowgraph are
two common refractive imaging techniques and were first described in the 17th
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century by Robert Hooke. Schlieren was rediscovered in the 1900s by August
Toepler and has since been used widely for high-speed wind tunnel testing and
laboratory investigations of explosives [45].

A traditional lens-type schlieren imaging system, shown schematically in
Figure 1.5, uses a simple parabolic lens to collimate light from a point source.
The parallel light passes through the test section and enters a second lens, which
focuses the light to a point. A knife edge is placed at the focal point and a camera
is placed behind the knife edge. When a refractive object enters the test section,
it bends the collimated light causing more or less interaction with the knife edge.
The camera records the refractive index gradient as a gradient of bright to dark
areas in the image. A schlieren image of a lighter is shown in Figure 1.6. The fig-
ure demonstrates the sensitivity and resolution with which a schlieren system can
capture a refractive object. This system is also capable of quantitatively measur-
ing the refractive-index distributions within the test section yielding the density
of the flow with some limiting assumptions [46]. The diameter of the test section
is limited to the diameter of optics used. Lens schlieren systems are generally
limited to 15 cm diameter due to cost of the lenses [47].

Figure 1.5: Diagram of typical lens schlieren system with light ray paths shown.

A practical method to assemble a larger scale schlieren imaging system is
to use mirrors. In a Z-type schlieren system, which is shown schematically in
Figure 1.7a, parabolic mirrors replace the lenses for collimating the point source
illumination and refocusing the light [45]. A similar system can be produced with
only a single spherical mirror using a double pass arrangement, which is shown
in Figure 1.7b. In this system the point light is passed through a beam splitter and
onto the mirror. The light is then returned to the beam splitter where it is directed
on a different path to a camera. The double-pass, diverging nature of the system
makes quantitative measurements difficult or impossible but these systems have
been shown to be very sensitive and useful for visualizing shock waves [48].

Shadowgraph systems are capable of imaging much larger areas than
schlieren because no collimating optics are required, but shadowgraphy lacks the
sensitivity and ability for quantitative density measurements that are possible
with schlieren [47]. The difference between the two visualization approaches can
be observed in Figure 1.6: schlieren visualizes refractive index gradients and thus
has a smooth variation from light to dark areas, whereas shadowgraph visualizes
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Figure 1.6: (a) Schlieren image of a lighter utilizing a vertical knife edge. (b)
Retro-reflective shadowgraph of a candle.
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Figure 1.7: a) Diagram of Z type schlieren system made with two parabolic mir-
rors. b) Diagram of coincident schlieren system using only one spherical mirror

11



the second derivative of refractive index field and thus has sharp variations from
light to dark at edges of the candle plume.

The modern retro-reflective shadowgraph system used for high speed imag-
ing was developed in 1958 by H. E. Edgerton [49]. The system consists of a high
intensity light source that is projected onto a retro-reflective screen. When a re-
fractive object is placed between the light and screen, it distorts the path of the
light rays, casting a shadow of the object on the screen. This effect is shown in
Figure 1.8. A camera placed near the light source is then able to record the image
on the screen. The first documented use of this system was the imaging of the
shock wave from a ”dynomite cap” [49]. This technique has been revived in re-
cent works to be used again for explosive testing [50, 51]. The main advantage of
the system is that it can be economically scaled up to a 2.5m by 2.5m test section.
The larger test section allows for the study of refractive objects too large to be
imaged with a traditional schlieren system, such as explosively driven fragments
and firearms [47]. Increasing the size of the test section beyond this becomes tech-
nically challenging due to the need for a point light source in excess of 1 kilowatt
and a retroreflective screen to provide the background. Larger systems have been
demonstrated up to about 5 m by 5 m [52], but this can be challenging to illumi-
nate with microsecond exposures. In general, the components of the retroreflec-
tive shadowgraph system can be easily damaged by explosive fragments. This
fragility and the limited test section size, limit the explosive articles that can be
imaged within a shadowgraph system without damaging components.

Figure 1.8: Diagram of rod mirror retro-reflective shadowgraph system with light
ray paths shown.

Background oriented schlieren (BOS) is a modern refractive imaging tech-
nique that visualizes refractive objects via their distortion of a distant background
[53]. BOS typically has a lower resolution and sensitivity than schlieren or shad-
owgraph but has no limitation on the area it can image. The phenomenon that
BOS utilizes was first noticed by Schardin in 1942, but it was not until 60 years
later that the digital imaging and image processing technology ideal for the mod-
ern technique was commonly available [47, 54]. The modern BOS technique was
simultaneously developed by Dalziel et al. [55] and Meier [56] in 1998-1999 and
was recently reviewed by Raffel [53].

An advantage of BOS systems is their simplicity in setup. The two require-
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ments for a BOS system are a camera at a fixed location and a background oppo-
site the camera. BOS systems typically utilize a speckled background to provide
the high contrast and spatial frequency needed. The speckle pattern is typically
applied with dye or paint or projected with a laser system [53]. It was shown by
Raffel et al. [57], Kindler et al. [58], and Hargather et al. [59] that many naturally
occurring landscapes contain sufficient spatial frequency to be used as a back-
ground for BOS images. The camera is used to record a reference image of the
background. A refractive object is then placed in the field of view of the camera,
as is shown in Figure 1.9, and the camera records a second image. The density
variation within the field of view will cause the apparent location of features in
the background to shift. The location of the object is an important factor in the
sensitivity of the BOS system. The sensitivity of the system is defined as the min-
imum angle ε, in Figure 1.9, or the smallest density gradient the camera is able to
detect [59, 60]. The exact sensitivity can be calculated using:

ε = d/(L− τ) (1.5)

in which ε is the sensitivity or smallest angle of refraction the system can
detect, d is the apparent feature shift, L is the distance from the background to
camera and τ is the distance from the refractive object to the camera [46, 61]. The
sensitivity of a BOS system can be generally improved by minimizing the ratio
τ/L while keeping the object and background in clear focus [46]. In practice it
has been found that a τ/L = 0.5 gives the optimum sensitivity and performance
[60].

Figure 1.9: Diagram of typical BOS system with light ray paths shown.

There are multiple methods that can be used to detect and quantify the back-
ground shift between the two images and generate BOS images. The first method
used to process BOS images uses cross correlation algorithms to detect and quan-
tify the movement of background patterns between images. This processing is
similar to the algorithms used in particle image velocimetry (PIV) or digital im-
age correlation (DIC) softwares, and many commercial softwares can be used
directly to perform BOS analysis [62]. This method produces BOS images that
show the shape and structure of the refractive object as well as quantify the di-
rection and magnitude of the pixel displacement and is optically equivalent to a
schlieren image [58]. The cross correlation method does have inherent drawbacks
such as a reduction in resolution and high computational time.
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Another method for BOS processing is image subtraction. Image subtrac-
tion compares the pixel intensities between the two images to detect refractive
disturbances [59]. This method has higher resolution and lower computational
time than the cross correlation method because it is performed on a pixel-by-
pixel basis, but it is unable to determine the magnitude or direction of the pixel
displacement. BOS image subtraction was first used to study explosive shock
waves in 2008 by Sommersel et al. [63]. The BOS image subtraction process was
then improved for shock wave detection by Mizukaki et al. [64], and Hargather
et al. [59]. This technique has been used to study explosive shock waves from
charges ranging from 10−3 kg to 103 kg [59].

1.2.7 Shock Wave Propagation in Air

The scaled time-radius curve of a shock wave progagating through air is a
fundamental property of an explosive material, an idea first proposed in 1915 by
Hopkinson [65]. Thirty years later in 1944, this idea was expanded by Sachs to
include effects of atmospheric conditions [66]. The Sachs’ scaling equations are
defined as:

Rs =
R
S

(1.6)

ts =
ct
S

(1.7)

S = (
W
W0

)
1
3 (

101.325
Patm

)
1
3 (1.8)

c = (
T

288.16
)

1
2 (1.9)

where T is the atmospheric temperature in Kelvin, Patm is atmospheric pres-
sure in kPa, W is the mass of an explosive article and W0 is the reference mass.
These are used to determine scaling factors S and c [67]. These scaling factors can
be used to estimate an explosive’s effects, such as the shock radius Rs and time ts,
across different explosive weights. Sachs’ scaling has been shown to hold over a
wide range of explosive masses ranging from 10−6 kg to 106 kg [67]. This scaling
also allows the influence of atmospheric conditions to be removed so tests can be
reported at standard temperature and pressure (STP, Patm = 1 atm, T = 298 K).

Historically the shock wave time-radius curve has been reported graphically
or as a large table. In 1971 Dewey proposed using the least squares method to fit
the radius of a shock wave to a parametric equation [68]. This empirically derived
equation was written so that the shock wave would have a defined initial radius
A and its velocity would decay to a defined velocity B at infinite time t:

14



Rs = A + Ba0ts + Cln(1 + a0ts) + D
√

ln(1 + a0ts) (1.10)

with additional C, D, and ambient sound speed a0 [69]. In practice the coef-
ficient B is typically set to 1 to force the wave speed to decay to the local sound
speed. The parameters A, C, D are determined by fitting the shock radius time
data to the equation using a non-linear regression [67]. When reporting these
parameters, it is important to also report the range over which they were deter-
mined. This is done to prevent extrapolating the data into areas where it may not
be valid, as with this multi-parameter curve fit, non-physical results are easily
found outside the range of data. An advantage of this method is that the Dewey
equation can be differentiated, with respect to time:

dRs

dts
= Ba0 +

Ca0

1 + a0ts
+

Da0

2(1 + a0ts)
√

ln(1 + a0ts)
(1.11)

which yields velocity as a function of time. This equation can be used to plot
Mach number as a function of radius by parametrically varying time in the two
equations. Mach number M is given by:

M = v/a0 (1.12)

where v is velocity.
The Mach number of a shock wave can be used to calculate the pressure ratio

across the shock wave, which is given by:

Pb
Pa

=
2γ(M2 − 1)

γ + 1
(1.13)

where γ is the ratio of the specific heats for the gas in which the shock is
propagating, Pa is the absolute pressure before the shock, Pb is the absolute pres-
sure after the shock wave, and M is the Mach number of the shock wave [70].

Immediately after the shock, the pressure begins to decay back to atmo-
spheric pressure. The integral of pressure from the peak pressure at the shock
to when the overpressure reaches zero is impulse.

The pressure across a expanding or explosively-driven shock wave is fre-
quently measured experimentally using piezoelectric gauges. The peak over-
pressure value is often taken as the highest value in the pressure trace. Due to
the limited response time of pressure transducers, this value is often greater than
the true peak pressure [70]. This results in a signal that oscillates around the
true value and in a larger uncertainty in the peak pressure value than the error
reported by the manufacturer for a given pressure transducer. One method to
improve the accuracy of the pressure trace from a shock wave is to use regression
analysis to fit the pressure trace to the Friedlander Equation:
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P(t) = Pse
−αt
td (1− t

td
) (1.14)

where P(t) is the pressure at time t, Ps is the peak pressure, td is the time at
which the pressure first crosses the horizontal axis and α is a curve fitting param-
eter [71]. This equation can integrated from the time of arrival to the pulse width
with respect to time to give impulse per unit area [70].

I/A =
∫ td

0
P(t)dt = Pstd[

1
α
− 1− e−α

α2 ] (1.15)

1.3 Objectives of the Present Research

The literature review shows a lack of research on shock wave reflections of
unsteady, explosively-driven shock waves. The majority of previous research has
focused on pseudo-steady cases where a planar shock wave impinges on a sin-
gle wedge. The present research seeks to apply modern shock wave diffraction
theory to unsteady, explosively-driven shock wave cases to accurately predict
the reflection type, overpressure, and impulse as a function of charge height and
Mach number. An analytical approach will be developed and applied to predict
the state of a shock wave reflection as it transitions from regular reflection to ir-
regular reflection for the case of a spherical explosively-driven shock wave. The
analytical methodology will be applied to understand explosively-driven shock
waves impinging on a flat plate from various heights of burst. This will be com-
pared with experimental results from gram-scale explosive tests.

The secondary goal of this work is to predict the impulse from unsteady
explosively-driven shock wave reflections. An hybrid analytical, computational,
and experimental approach will be developed and applied to predict the pulse
duration and decay coefficient of a shock wave reflection. The peak overpres-
sure, found through the analytical reflection methodology, will be combined with
the pulse duration and a decay term within the Friedlander equation to predict
impulse. This will be compared with experimental results from gram-scale ex-
plosive tests.

The final goal of this work is to evaluate how the developed methodologies
work for different explosive materials and explosive masses. The methodologies
will be compared with experimental results from kilogram-scale explosive tests.
An assessment of the scaling between gram and kilogram tests will be conducted.
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CHAPTER 2

ANALYTICAL APPROACH TO SHOCK WAVE REFLECTIONS

The analytical approach to shock wave reflections developed here uses infor-
mation from the experimental setup to define the shock reflection type that will
occur. The analytical approach uses two parameters to fully define a shock wave
reflection in air: the Mach number of the shock wave and the angle between the
shock wave and the reflection surface. Both of these parameters can be deter-
mined at any point in an experimental setup for a well characterized explosive
and known geometry. From these two values the reflection type, Mach number
of the reflected waves, pressure ratio across the shock waves and Mach number
behind the reflection can be determined. This process can be repeated through-
out the length of a shock wave path to identify points of transition and inflection
of different characteristics.

2.1 Determining Mach number and Reflection Angle

The first step in applying the analytical process at a reflection location is to
establish the Mach number and the effective wedge angle at the location. For
a characterized explosive the Mach number at any time can be determined us-
ing Equation 1.11 or for any radius by using both Equations 1.10 and 1.11. An
explosive can be characterized by measuring the shock wave radius as a func-
tion of time and fitting that data to the Dewey curve fit, given in Equation 1.10.
This characteristic profile can be scaled for different explosive weights and atmo-
spheric conditions using Equations 1.6 through 1.9. For a spherical shock wave,
the effective wedge angle, θW , can be calculated using the shock wave radius,
height of burst, horizontal distance and simple geometry as shown schematically
in Figure 2.1.
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Figure 2.1: Diagram defining the wedge angle, θw, for a explosive detonated at
some height of burst (HOB) from a reflecting surface. Trigonometry is used to
calculate the wedge angle for a given HOB and shock wave radius (r) at any
given time t.
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2.2 Regular Reflection

The simplest application of the analytical method is to solve for a regular
shock wave reflection. For clarity on the discussion of this analytical approach, a
numerical example is solved here to accompany the theoretical discussion. The
example uses a shock wave with a Mach number of 3.46 and effective wedge
angle of 30◦.

The first step is to perform a Galilean coordinate transformation to describe
the shock as pseudo-steady. For a regular reflection the Galilean transformation
is given by Equations 1.1 and 1.2 which describes the Mach number and wave
angle of flow moving into the shock, state 1 in Figure 2.2. The Mach number of
the flow after the Galilean transformation, M1, is 3.00 with a wave angle, φ1, of
60◦.

Figure 2.2: Labeled diagram for a regular reflection. With I indicating the incident
shock, and R the reflected shock. The number of the state is listed in the oval. The
deflection, δ, and wave angle, φ, is listed for each shock. The boundary condition
of equivalent deflection angle is listed at the bottom of the figure.

After the transformation the details of the regular reflection can be found
by applying boundary conditions which can be done numerically or graphically.
The defining boundary condition for a regular reflection is no net deflection across
the reflection, i.e. δ1 = δ2.
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2.2.1 Numerical Solution

This boundary condition can be solved numerically by determining the de-
flection caused by the first shock and then determining the wave angle of the
second shock required to generate the same deflection. The deflection of the flow
by an oblique shock wave is given by:

cot(δ) =
(

(γ + 1)M2
a

2(M2
asin2φ− 1)

− 1
)

tanφ (2.1)

where δ is the deflection of the flow, γ is the ratio of specific heats, Ma is
the Mach number of the flow before the shock and φ is the wave angle between
the flow and the shock [72]. Using the above flow conditions of M1 = 3.00 and
φ1 = 60.◦ the deflection across the incident shock wave, δ1, is 12.8◦. The Mach
number of the flow changes across the shock wave, given by:

M2
b =

(γ + 1)2M4
asin2φ− 4(M2

asin2φ− 1)(γM2
asin2φ + 1)

[2γM2
asin2φ− (γ− 1)][(γ− 1)M2

asin2φ + 2]
(2.2)

where Mb is the Mach number after the oblique shock [72].Using the flow
conditions, the Mach number after the incident shock, M2, is 2.37. The wave
angle of the reflected shock, φ2, can then be solved by applying Equation 2.1 to the
reflected shock and varying φ2 until the deflection caused by the reflected shock,
δ2, is equal to the deflection caused by the incident shock, δ1. Solving for the
given shock reflection problem, the reflected shock has a wave angle φ2 = 36.2◦.

The pressure ratio across the reflection can be determined by applying stan-
dard compressible flow equations. The pressure ratio across an oblique shock is
given by:

Pb
Pa

=
2γM2

asin2φ− (γ− 1)
γ + 1

(2.3)

where Pb is the absolute static pressure behind the oblique shock and Pa is the
absolute pressure before the shock [72]. Applying this equation to the example
incident shock gives a pressure ratio of 2.46, and across the reflected shock a value
of 2.12. The pressure ratio across the entire reflection process is:

P3

P1
=

P2

P1

P3

P2
(2.4)

where P1 is the pressure in front of the incident shock, P2 is the pressure
behind of the incident shock, P3 is the pressure after the reflection. Applying
Equation 2.4 gives the pressure ratio across the regular reflection of 5.22.
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2.2.2 Shock Polar Analysis

Shock polar analysis is a graphical method that plots the locus of the shock
wave reflection on axes of deflection angle and the logarithm of the pressure ra-
tio. This method starts by defining the flow Mach number, M1, and then plotting
all solutions to Equations 2.1 and 2.3 for that Mach number. Using the regular
reflection example, the locus of a oblique shock in a Mach 3 flow is shown as the
solid line in Figure 2.3. Next the wave angle of the shock and Equation 2.2 is
used to determine the Mach number of the flow behind the first shock and the
deflection angle δ for the flow through this oblique shock wave, this is shown as
the red dot in Figure 2.3. Using the second Mach number, M2, and Equations
2.1 and 2.3 all possible reflected shocks are plotted as a function of net pressure
and net deflection. This locus of points can be translated and reflected within the
shock polar diagram to graphically solve for the reflection [25]. In this case, the
reflected shock polar is first mirrored horizontally, because the reflected wave is
propagating in the opposite direction from the incident wave. The shock polar is
then translated to the location on the first shock polar representing the actual in-
cident shock wave. This is shown as the dotted line in Figure 2.3 for the example
problem.

Figure 2.3: Shock polar diagram of the regular reflection of a Mach 3 flow with a
60◦ wave angle.

The boundary condition for a regular reflection is no net deflection across
the reflection which occurs where the reflected shock locus crosses the Y-axis. In
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Figure 2.3 there are two points where the reflected shock locus crosses the Y-axis,
at approximately ln(P2/P1) of 1.5 , which relates to the weak shock solution, and
at approximately 2.75, which is the strong shock solution. Here the weak shock
wave solution is taken as the resulting shock because the strong shock wave is
unlikely to form [25]. The pressure ratio across the reflection can be determined
directly from the shock polar diagram but to determine other details of the reflec-
tion requires using the above analytical equations.

2.3 Mach Reflection

A single Mach reflection can also be solved either numerically or graphically
but the numerical solution must be solved simultaneously. To solve using either
method, first the Galilean coordinate transformation is used to shift the reflec-
tion from unsteady to fixed frame of reference. For an irregular reflection, the
triple point is used as the fixed point so the transformation is given by Equations
1.2 through 1.4. The main boundary conditions for a Mach reflection is that the
pressure is equal across the slip line, shown as s in Figure 2.4:

P4 = P3 (2.5)

where P4 is the pressure after the Mach stem, and P3 is the pressure after
the reflected shock. By taking these pressures as a ratio to the pressure before
the shock, reduces the number of variables required to solve the reflection by
eliminating the pre-shock pressure. The modified boundary condition is given
by:

P4

P1
=

P3

P1
(2.6)

where P1 is the pressure before the reflected shock. The other two boundary
conditions for a Mach reflection are that the Mach stem is perpendicular to the
reflection surface at the reflection surface and at the triple point the flow is par-
allel on either side of the slip line. These boundary conditions can be expressed
as:

δ3 = δ1 − δ2 (2.7)

dx
dy
∣∣
mG

= 0 (2.8)

where δ1 is the deflection caused by the incident shock, δ2 is the deflection
caused by the reflected shock, δ3 is the deflection caused by the Mach stem and
dx
dy

∣∣
mG

is the slope of the Mach stem evaluated at the ground level.
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Figure 2.4: Labeled diagram of a single Mach reflection. With I indicating the
incident shock, R the reflected shock, m the Mach stem, and S the slip line. The
number of the state is listed in the oval. The deflection, δ, and wave angle, φ,
is listed for each shock. The boundary conditions are listed at the bottom of the
figure. The Mach stem is shown to have two distinct angles, φ3 at the triple point
and perpendicular to the reflection plane at the reflection plane. In the diagram
there is a sharp transition between the two angles but in experiments this has
been shown to be a smooth transition between the two angles.
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The reason the equations defining a Mach reflection must be solved simulta-
neously is it that the triple point trajectory, χ, is a function of Mach number and
angle but is not solved for explicitly. A method to simplify this analysis is to use
published tables or graphs to determine χ for a given Mach number and wedge
angle.

To help clarify this discussion the triple point trajectory, χ, is determined
using multiple methods for a moving shock in air with a Mach number of 4.24
impacting a reflecting surface with an effective wedge angle of 41◦. Using the
graph of triple point trajectories in [6] the triple point trajectory is determined to
be 4◦. After the Galilean transformation this gives a Mach number of the flow
of 3 and a wave angle, φ1, of 45◦. The pressure ratio across the Mach stem can
then be solved for directly which is 10.3. Simultaneously solving the governing
equations for the example gives a χ of 4.15 and a pressure behind the Mach stem
of 10.2. This example shows that there is less than a 1% difference between using
the published values for χ and directly calculating them.
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2.3.1 Numerical Solution

The remaining equations required to define the reflection numerically are the
oblique shock equations, Equations 2.1 through 2.3, applied to the Mach stem,
incident shock and reflected shock. These nine equations, three for each shock
wave, equations can be expressed as:

M2 = f (γ, M1, φ1) (2.9)

δ1 = f (γ, M1, φ1) (2.10)

P2

P1
= f (γ, M1, φ1) (2.11)

M3 = f (γ, M2, φ2) (2.12)

δ2 = f (γ, M2, φ2) (2.13)

P3

P2
= f (γ, M2, φ2) (2.14)

M4 = f (γ, M1, φ3) (2.15)

δ3 = f (γ, M1, φ3) (2.16)

P4

P1
= f (γ, M1, φ3) (2.17)

where Mi is the Mach number in state i, Pi the absolute pressure in state i,
δ1 and φ1 is the deflection and wave angle of the incident shock, δ2 and φ2, is the
deflection and wave angle of the reflected shock, and δ3 and φ3 are the deflection
and wave angle of the Mach stem.

Fourteen equations fully define a single Mach reflection: Equations 1.2 and
1.4 for the Galilean coordinate transformation, Equations 2.6 and 1.4 provide the
boundary conditions and Equations 2.9 through 2.17 detail each feature of the
reflection. While these 14 equations fully define the Mach reflection, the Mach
number after the reflected shock and Mach stem are not required to solve the
system. Removing these two equations, leaves 12 equations with 15 variables
which can be solved simultaneously by providing input values of γ, the Mach
number of the shock, Ms, and the effective wedge angle, θw.
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2.3.2 Shock Polar Analysis

Shock polar analysis can be used to solve the Mach reflection system of equa-
tions graphically. The shock polar graph for a Mach reflection is performed iden-
tical to a regular reflection. To help clarify this discussion a numerical example
is solved for a Mach shock reflection in a Mach 3 flow with a 45◦wave angle. In
Figure 2.5, the locus of shocks in a Mach 3 flow is plotted as the solid line. The
Mach number, pressure ratio and deflection after an oblique shock with a wave
angle of 45◦ is calculated and shown as the red dot in Figure 2.5. The locus of all
shocks in that flow is plotted as the dotted line. Examination of Figure 2.5 shows
that at no point does the reflected shock cross the Y-axis, which indicates a regu-
lar reflection is not possible. There is one point where the reflected shock crosses
the strong shock portion of the incident shock. At this intersection the pressure
behind the reflected shock is equal to a strong shock with the same net deflec-
tion. At this point the two boundary conditions, no pressure difference across
the slip line and Equation 2.7, are satisfied. From this point the wave angle of
the reflected shock and Mach stem at the triple point can be determined. This
analysis shows that, at the triple point, the Mach stem is not a normal shock but a
strong oblique shock. Because the Mach stem must be perpendicular to the flow
at the reflection surface this causes the Mach stem to have some curvature. The
pressure ratio behind the triple point can be determined directly from the shock
polar diagrams as this intersection on the strong shock branch of the initial shock
wave. The pressure across the Mach stem is very close to the pressure across a
normal shock. For this reason the pressure across the Mach stem is approximated
as the pressure across a normal shock.
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Figure 2.5: Shock polar diagram of the reflection of a Mach 3 flow with a 45◦ wave
angle. The formation conditions of the Mach reflection are indicated.
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2.4 Formation Conditions of Regular and Mach Reflections

In the above analysis either a regular or irregular reflection was possible for
the given Mach number and wedge angle but there is a range of Mach number
and wedge angle combinations where both reflection types are mathematically
possible. In shock diffraction theory the transition point between the formation
of a regular and Mach reflection is given by the length scale criterion [6]. For a
reflection in a steady flow the length scale criterion dictates that a Mach reflec-
tion will occur whenever possible. For a reflection in pseudo-steady or unsteady
flow the length scale criterion states that a Mach reflection can only occur if the
flow behind the reflection is sub-sonic relative to the reflection point [6]. This
condition, which is referred to as the sonic condition, is equivalent to the flow
behind the reflected shock, state 3, of a regular reflection being subsonic after the
Galilean transformation.

The sonic condition can be determined either analytically or with shock polar
analysis. Both methods rely on iteratively solving for the same condition which
is a regular reflection with a Mach number of unity behind the reflection. The
analytical method, using the method laid out in Section 2.2, iteratively solves the
reflection until sonic flow behind the reflected shock is determined to the desired
level of accuracy. This transition condition can be found in shock polar analysis
by plotting, on the reflected shock locus, the point where the flow behind the
reflected shock is sonic, this point is shown as the blue dot in Figures 2.3, 2.5, and
2.6. The transition condition can be determined by locating the conditions when
the sonic point meets the Y axis, which defines a regular reflection that has sonic
flow behind the reflection, which is shown in Figure 2.6.
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Figure 2.6: Shock polar diagram of the sonic condition which is the transition
criteria for pseudo-steady shock waves. This diagram show the reflection of a
shock wave in a Mach 2 flow with an angle of 42.7◦ between the flow and the
shock.
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The sonic condition, the transition line between a regular and irregular shock
reflection, should be a continuous function of Mach number and wedge angle.
Based on this assumption the angle corresponding to the sonic condition was
calculated for a range of Mach numbers between 1 and 6 and is shown as the
dashed line in Figure 2.7.

Figure 2.7: Domain diagram showing which pseudo-steady shock wave reflec-
tion will occur for a given wedge angle and Mach Number. The sonic condition
was calculated analytically using the method in Section 2.2 but the transition con-
ditions to transitional-Mach reflection and double Mach reflection are taken from
[6].

Similar to the transition between a regular and Mach reflection, the transition
condition between different types of irregular reflections is given by sonic flow
in different sections of the reflection. As the Mach number of the flow before a
Mach reflection is increased, the Mach number behind the reflected shock, state
3 in Figure 2.4, also increases. Once the flow in state 3 is equal to Mach 1, in the
reference frame attached to the triple point, the Mach reflection transitions into
a transitional-Mach reflection. The transition point between a transitional-Mach
and Mach reflection is plotted in Figure 2.7.

The transitional-Mach reflection is similar to a Mach reflection with the ad-
dition of the feature referred to as the kink. The kink, labeled k in Figure 2.8, is a
straight shock wave section attached to the triple point, which through a sudden
change of angle becomes the main curved reflected shock. The analytical flow
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description of a transitional-Mach reflection is identical to a Mach reflection with
the added boundary condition that the flow in state 3, shown in Figure 2.8, is
Mach 1 in a reference frame attached to the kink. Stated differently, in the refer-
ence frame attached to the triple point the transition point between the flat and
curved section of the reflected shock moves away from the triple point with a
velocity equal to the Mach number of the flow in state 3 minus Mach 1.

Figure 2.8: Labeled diagram of a transitional-Mach reflection. With I indicating
the incident shock, R the reflected shock, m the Mach stem, s the slip line and
the new feature of the kink, K. The number of the state is listed in the oval. The
deflection, δ, and wave angle, φ, is listed for each shock.

The transition condition between a transitional-Mach reflection and double
Mach reflection is solved for based on flow conditions within the double Mach
reflection. A double Mach reflection will occur if the flow in state 3, shown in Fig-
ure 2.9, is greater than Mach 1 in a reference frame attached to the second triple
point, T’. The transition point between a transitional-Mach and double Mach re-
flection is plotted in Figure 2.7.

The double Mach reflection is similar to a transitional-Mach reflection except
that a shock wave now extends down from what was previously referred to as
the kink, now referred to as the second triple point, and the first slip stream now
ends at this new shock. A full analytical solution does not currently exist for
the double Mach reflection and can only be solved by solving the full Navier-
Stokes equations [6]. Two simplified analytical models have been developed but
are outside the scope of this work. The proposed experiments are not expected
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to produce a reflection at a high enough Mach number to cause a double Mach
reflection so they are only covered here for completeness.

Figure 2.9: Labeled diagram of a double Mach reflection. With I indicating the
incident shock, R the reflected shock, m the Mach stem, and s the slip line. The
number of the state is listed in the oval. The deflection, δ, and wave angle, φ, are
listed for each shock. θ is used to denote the angle between shock waves. The ’ is
on features, such as Mach stem, to denote the second feature and the ’ is used on
values to indicate it is taken in reference to the second triple point.

2.5 Pressure Across a Shock Reflection

To determine the overpressure across a reflection the type of reflection must
first be determined by shock diffraction theory. Then, depending on the type
of reflection, the flow conditions of the reflection can be solved and the pressure
ratio across the reflection determined numerically, or simplifications can be made
so the pressure ratio can be determined without solving for each detail of the
reflection.

The analytical solution for regular reflections is trivial so simplification is
unnecessary. Double and transitional-Mach reflections are complicated enough
that a true analytical solution is impractical but through simplification a pressure
across the reflection can be estimated. The pressure across a Mach reflection can
be determined by either simultaneously solving all the governing equations or
through simplification.

In the above discussion it was shown that the boundary conditions necessi-
tate that the Mach stem has a slight curve. To study the effect Mach stem curva-
ture has on overpressure, the test case of a Mach 2 shock wave over a 30◦ wedge
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is examined. These conditions were compared to experimental results from [6]
to determine the trajectory of the first triple point, which was estimated to be
approximately 8◦. This value was used with Equations 1.2 and 1.3 to determine
the wave angles for the incident shock, φ1 = 54◦, and the Mach stem, φ3 = 82◦.
This result shows that at the triple point the Mach stem has an angle relative to
the flow of 82◦ while the lower boundary condition, given by Equation 2.8, dic-
tates that the foot of the Mach stem must be perpendicular to the flow. Prior ex-
perimental observations show that the Mach stem is expected to smoothly vary
between these two conditions [11]. Given the small angle difference, the Mach
stem has minimal curvature and the pressure ratio across the Mach stem varies
by only 2% along its length. This difference is expected to increase as the Mach
stem grows and the curvature becomes more pronounced.

Do to the growth of the Mach stem over time, the Mach stem has a higher
Mach number than the incident shock wave. The Mach number of the Mach stem
is given by

Mm = Ms
cos(χ)

cos(θ1 + χ)
(2.18)

where Mm is the Mach number of the Mach stem [73].
The pressure ratio across a Mach reflection can be estimated using triple

point trajectory, χ, and the assumption of a perpendicular Mach stem. χ is a
function of the Mach number of the shock and the effective wedge angle. The
value of χ can either be calculated using the system of equations in Section 2.3.1
or found in published tables and plots, such as [6]. These three parameters can
then be used with Equation 2.18 to determine the Mach number of the Mach
stem in a laboratory frame of reference. Since the Mach stem can be assumed
to be a normal shock Equation 1.13 can be used to determine the pressure ratio
across the Mach stem which is equivalent to the pressure ratio across the Mach
or transitional-Mach reflection.

2.6 Unsteady Shock Reflection

As a spherical shock wave expands from an elevated point source its Mach
number and reflection angle continuously change. The process by which the un-
steady shock wave reflection changes over time can be predicted by discretizing
the reflection path and applying shock diffraction theory to each step and eval-
uating the finite changes between steps [73]. Large changes between steps or
increasing effective wedge angle can result in complex and interesting reflections
that are outside the scope of this work. Further information on these complex
cases can be found in [73] and [35]. In the current work, all reflections started
at high Mach number and high effective wedge angle and both continuously de-
creased. When discretized each step on the reflection paths should resemble the
pseudo-steady case with the same Mach number and wedge angle.
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CHAPTER 3

EXPERIMENTAL METHODS OF GRAM-SCALE TEST SERIES

To investigate the reflection of explosively driven shock waves experiments
were conducted at the Energetic Materials Research and Testing Center (EMRTC)
at the New Mexico Institute of Mining and Technology. The test series stud-
ied the reflection of the shock waves generated from gram-scale charges. The
primary test series was designed to allow the shock wave reflection type to be
tracked as the shock wave expanded using refractive imaging and reflected pres-
sure recorded as a one-dimensional function of distance. A secondary test se-
ries was a designed as a control, to study shock wave expansion using refractive
imaging and overpressure without reflections.

The reflection test series conducted at EMRTC consisted of the detonation of
gram-scale charges over an instrumented reflection plate with the resulting shock
wave and reflection visualized with focused shadowgraph and schlieren. The
refractive imaging mirrors and the reflection system are shown to scale in Figure
3.1. The explosive charge was suspended above a steel reflection plate which
had an array of pressure probes flush-mounted at set distances along the plate.
The reflection plate was placed within the shadowgraph and schlieren systems
to visualize the reflection type as it passes over the pressure gauges. Table 3.1 list
the details of each test.
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Table 3.1: Summary of the gram-scale reflection tests series.

Test ID Pellet Mass (g) Charge Ambient Ambient
Height (m) Temperature (C) Pressure (kpa)

R1 0.9680 0.100 10.6 84.77
R2 0.9655 0.103 11.6 84.76
R3 0.9739 0.085 11.4 84.74
R4 0.9650 0.085 11.8 84.68
R5 0.9647 0.088 12.0 84.62
R6 0.9606 0.123 12.3 84.58
R7 0.9718 0.123 12.4 84.52
R8 0.9751 0.122 12.6 84.50
R9 0.9476 0.155 12.9 84.45

R10 0.9513 0.154 13.2 84.42
R11 0.9754 0.154 13.4 84.39
R12 0.9720 0.155 13.9 84.35
R13 0.9663 0.091 14.4 84.27
R14 0.9523 0.088 14.5 84.27
R15 0.9658 0.089 14.6 84.22

Figure 3.1: Diagram of mirrors and reflection plate setup for the reflection gram
scale test series.
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The no reflection test series consisted of the detonation of gram-scale charges
in line with an instrumented reflection plate with the shock wave visualized with
shadowgraph. The charge placement, pressure plate system and wave cutoff are
shown to scale in Figure 3.2. The explosive charge was suspended in line with
the steel reflection plate which had an array of pressure probes flush-mounted at
set distances along the plate. To minimize distortions and reflections of the shock
wave, a cutoff wedge was placed between the charge and pressure plate to ensure
the shock wave propagated normally across the pressure plate. The reflection
plate was placed within the shadowgraph system to visualize the reflection type
as it passes over the pressure gauges. Table 3.2 list the details of each test.

Table 3.2: Summary of the no reflection tests series.

Test ID Pellet Mass (g) Charge Distance Ambient Ambient
to First Probe (m) Temperature (C) Pressure (kpa)

N1 0.9732 0.15 17 84.27
N2 0.9740 0.127 13.9 85.21
N3 0.9739 0.127 14.3 85.21
N4 0.9650 0.127 14.6 85.21
N5 0.9647 0.127 15 85.19

Figure 3.2: Model of charge and reflection plate setup for the gram scale test
series. The rigid test section plate has tapped holes for pressure transducers.
The extension plates are positioned to allow the shock wave to expand without
introducing rarefaction waves. A gantry made of 80/20 aluminum framing is
used to suspend the explosive charge.
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3.1 Explosive Pellet

The explosive charges used in the small scale test series were nominally 1-
gram spheres of pentaerythritol tetranitrate (PETN) [74] which were center initi-
ated. The charges were formed by uniaxial pressing of loose PETN powder with
no binder. The pressing dies were machined from 4140 steel and the pressing
surfaces polished to a mirror finish. The importance of the surface finish of the
pressing surfaces of the dies cannot be overstated. Failure to achieve a proper
surface finish, even with ample mold release agent, resulted in the pellets tearing
in half during extraction. Engineering drawings of the dies designed are included
in Appendix A. To allow for the charges to be center-initiated, an insert was in-
cluded in the dies which is approximately the size of an RP-3 detonator, which
has a diameter of 3.3 mm (0.130 inches)[75]. The insert, which is shown in Figure
3.3, has a slight taper allowing the detonator to be easily inserted without exces-
sive movement after insertion. To press the pellets, the entire die assembly was
coated in a light layer of calcium stearate mold release agent. Then one gram of
PETN powder was placed into the lower anvil with the extractor pin, detonator
insert and alignment sleeve in place. The top anvil was then put in place. The
assembly was then pressed in a hydraulic press.

To consistently press the pellets, the maximum compression was controlled
by limiting the travel of the top anvil. When the top anvil is flush with the manual
stop then additional force will not move the top anvil or increase the compres-
sion. This will produce a 1 gram pellet with a density of 1.7 g/cm3. A limitation
of this pressing system was the low contrast camera used to remotely observe the
pressing operations. As a result it was difficult to determine when the top anvil
and manual stop were flush. To ensure pressing reached the mechanical stop,
each pellet was pressed to a higher pressure than required to achieve a density
of 1.7 g/cm3, which for PETN requires 140 MPa (20000 psi) [76]. To measure the
force applied to the die an industrial scale with a max load of 4535 kg (10,000 lb)
and resolution of 0.5 kg (1 lb.) was placed between the die and lower base of
the press. The scale, Model FSK-A manufactured by A and A Scales LLC, was
calibrated by the manufacturer and found to have a precision of 0.02% and creep
of 0.02% over 30 minutes. Each pellet was pressed to a force over 27 kN (6000 lb)
which corresponded to a pressure in the die of 280 MPa (40000 psi), which is
double the required pressure. The die was held under pressure for 3 minutes to
allow the powder to consolidate. Once pressure had been relieved from the sys-
tem, the top anvil and alignment sleeve were removed. To remove the pellet from
the die, an extractor plate, shown in Figure 3.4a, was placed under the bottom
anvil and extractor pin. This assembly was placed back in the hydraulic press.
When placed under load, the extractor plate applied pressure to the extracting
pins pushing the pellet upward while an extractor collar maintains downward
force on the anvil; this is shown in Figure 3.4b. This allowed the pellet to be
extracted from the die even if it had become stuck during pressing.

Final assembly of the explosive charge consisted of inserting an RP-3 detona-
tor into the charge cavity. The RP-3 is an exploding-bridge wire (EBW) detonator
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Figure 3.3: Cutaway diagram of pellet pressing die.
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Figure 3.4: Cutaway diagram of explosive pellet being extracted from die.

with less then 30 mg of PETN [75]. Full details of the RP-3 are included in Ap-
pendix A. The detonator was affixed to the charge with either cyanoacrylate glue
paired with a commercially available curing accelerant or electrical tape. Other
methods of affixing the detonator to the pellet were attempted but either failed
to cure or did not bind to the pellet strongly enough.

3.2 Reflection Structure

The explosive charge was suspended either above or in line with the rigid
reflection plate with flush mounted pressure transducers. The reflection structure
was fabricated from mild steel and 80/20-brand aluminum beams and fixtures,
which is shown in Figure 3.5. The engineering drawings for the reflection plate
are included in Appendix B. The reflection structure is comprised of four main
pieces: the test section plate, the extension plates, wave cutoff and an explosive
support structure. The test section plate was made from a 152 mm (6 inch) wide,
1.2 m (4 feet) long and 6.25 mm (0.25 inch) thick plate of mild steel. Down the
length of the plate, 42 holes were drilled and tapped on 25.4 mm (1 inch) centers
to accept pressure gauges. 16 gauges were used in each test with the unused holes
filled with flush-mounted set screws to prevent unwanted shock wave reflections
from the voids. For the reflection tests, the gauges were placed in the center of the
test section. For the no reflection tests, the gauges were placed at the end of the
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test section closest to the shock cut off. The pressure data was then recorded with
a Hi-Techniques Synergy Data Acquisition system at a sample rate of 2 million
samples per second.

Figure 3.5: Model of the shock wave reflection structure. The rigid test section
plate has tapped holes for pressure transducers. The extension plates are posi-
tioned to allow the shock wave to expand without introducing rarefaction waves.
A gantry made of 80/20 is used to suspend the explosive charge.

The extension plates allow the shock wave to expand past the width of the
test section plate without generating unwanted additional waves. As the shock
wave grows it will quickly expand past the sides of the test section plate. Without
a continuous surface for the shock wave to expand into, unwanted rarefactions
will be introduced behind the primary shock wave. To prevent these extra waves,
large extension plates were flush-mounted with the test section plate. Each ex-
tension plate is made of 0.5 mm (18 gauge) steel sheet that is 600 mm by 1200 mm
(2 feet by 4 feet). These plates are configured to ensure that the primary shock
from the charge can propagate the full length of the test section before rarefac-
tion waves enter the test section. The extension plate and test section plates are
elevated by a steel tube support structure. The support structure maintains the
alignment of the different plates while allowing pressure probes to extend below
the plates.

In the no reflection tests, the wave cutoff minimizes the reflections and dis-
tortions of the shock wave as it begins to propagate over the test section. The
cutoff was welded from two pieces of mild steel, a flat and ’L’ beam. The front
edge of the cutoff, which directly interacted with the shock, was ground to an
edge to minimize the reflection generated. A channel was cut into the top surface
to accept the test section plate and minimize the distance from the charge to the
first pressure probe.

A gantry system suspend the explosive charge at a variable height over the
test section plate or at variable distances from the front of the wave cutoff. The
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gantry was assembled out of wood for a frame and 80/20-brand beams and fas-
teners. The lead wires from the detonator were routed along the gantry and
secured at the end of the beam. The exact distance between the charge and re-
flection surface was controlled by lengthening or shortening the amount of wire
between the detonator and gantry. Between the end of the gantry and the explo-
sive charge, the lead wires were routed through extra long plastic drinking straws
cut to the exact distance needed. The straws increase the rigidity of the lead wires
without introducing material which would cause excessive shock distortions or
reflections.

A potential source of experimental error in this setup is the deflection of
the reflection plate by the shock wave. If the deflection of the reflection plate is
substantial then the flow direction around the shock can be changed enough to
introduce additional experimental error [77]. Since the focus of this research is
flow through the shock wave, to have a detrimental effect, the deflection would
have to be caused by the momentum transfer from the shock wave impact and
not the impulse resulting from the pressure differential after the reflection. Hugo-
niot matching was used to calculate the velocity of the steel reflection plate as a
result of the shock wave impact [74]. Hugoniot matching is the process of either
graphically or numerically finding the intersection of two shock Hugoniot curves
for two adjacent materials, for example [78, 79, 80, 81, 82, 83]. The intersection of
the curves predicts the equilibrium state after a shock wave has passed from one
material to the other. An upper limit for this test series will be a Mach 10 shock
wave impacting the reflection plate at 45 degrees, so this will be used to calculate
the worst case for deflection. The conditions immediately behind the shock wave
were calculated using standard temperature and pressure (STP) conditions for
the initial state of the air and normal shock wave relationship equations. Hugo-
niot matching was then used to impact the shocked air state into steel, using bulk
sound speeds and slope values from [74]. The resulting particle velocity after the
impact was found to be negligible relative to the velocity of the shock wave. As
a result, deflection of the plate will be assumed to have negligible effect on error
and all plates will be assumed to be rigid.
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3.3 Refractive Imaging Systems

3.3.1 One-meter-diameter Shadowgraph System

The first diagnostic for this test series was a 1-m-diameter, double-pass fo-
cused shadowgraph system. The focused shadowgraph system, is shown schemat-
ically in Figure 3.6, and has four main components: sending optics, receiving op-
tics, a 1-m-diameter parabolic mirror and a 1-m-diameter flat mirror. The sending
optics of the system were comprised of a light source and a beam splitter, which
is placed at the focal length of the parabolic mirror. The light from the source
is focused onto the beam splitter which directs the light towards the parabolic
mirror. The parabolic mirror collimates the light and reflects it towards the flat
mirror. The area between the parabolic and flat mirror is the test section of the
system. The flat mirror returns the collimated light to the parabolic mirror which
focuses the light back onto the beam splitter. The light passes through the beam
splitter and enters the high speed camera where it is recorded. The system is re-
ferred to as double pass because the light passes through the test section twice.
This imaging system is essentially the same as the z-type schlieren system com-
bined with the double-pass system to create a parallel light test section with only
one parabolic mirror.

Figure 3.6: Light ray diagram of the double pass focused shadowgraph system
that will be used in the gram scale test series.

The 1-m-diameter mirrors were supported with a translation and rotation
system that allowed fine and coarse adjustments. A photograph of the mirror
system is shown in Figure 3.7. The mirror can be precisely rotated about the Y
(tilt) and Z (pan) axis by two adjustment knobs. The fine adjustment controls
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can be detached which then allows for gross rotation by hand. The mirrors can
be precisely translated in the X and Y by use of two small adjustment knobs. To
allow coarse translations of the mirror, each mirror system rests on a platform
which allows moving the system using a pallet jack. These adjustments assist in
alignment of the shadowgraph system. The engineering drawings for the plat-
form are included in Appendix C.

Figure 3.7: Photograph of the 1-m-diameter flat mirror with the coordinate sys-
tem used to define it shown. Note that the mirror has a hole in the center of it,
which prevents imaging at that location.
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3.3.2 30 Centimeter Schlieren System

The second refractive system used for the test series was a 30-cm-diameter
mirror schlieren system. The system is shown schematically in Figure 1.7a. The
system had 4 major components: a light source, two parabolic mirrors, and re-
ceiving optics. The light source was a 400 W Si-Lux 640 laser illumination system
which was synchronized with the camera to pulse only when the digital shut-
ter was open. The laser was operated with a 10 ns pulse width. The laser light
was transmitted through a liquid light guide resulting in a source that was tem-
porally coherent but not spatially coherent. The light was collimated by the first
30-cm-diameter (12 inch) parabolic mirror. The mirrors were mounted on support
structure which allowed fine tilt adjustment, Figure 3.8. The collimated light then
passed through the test section to reach the second mirror. The second mirror was
identical to the the first and focused the collimated light into the recieving optics.
Between the lights focal point and the focusing mirror was a neutral density filter
to protect the camera sensor from overexposure due to the intense focused light.
At the focal point was placed a standard schlieren knife edge. After the focal
point was a Shimadzu Hyper Vision HPV high speed camera.

Figure 3.8: Schematic of the 30-cm-diameter parabolic mirror and mirror support.
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CHAPTER 4

RESULTS AND DISCUSSION OF THE NON-REFLECTED
GRAM-SCALE TEST SERIES

4.1 Discussion of Uniformity of Explosive Charges

The PETN pellets used for this work were not all perfectly uniform. There
were three sources of inconsistency between the pellets: pellet density, minor
pellet damage, and pellet mounting. The variation in pellet density is a result
of slight differences in the mass added to the pressing dies prior to pressing.
Imperfections in the pressing dies and other problems in pressing led to a number
of pellets suffering small chips fracturing off during extraction from the pressing
dies. The method used to attach the detonator to the pellet varied over the course
of the present work, starting with a cyanoacrylate and accelerant combination
and setting on standard electrical style tape.

Each PETN pellet was formed by pressing approximately 1 g of loose PETN
powder. The loose PETN powder was measured out to 1.0025 g± 0.0025 g with a
mean mass of 1.0027 g. The loose powder was then added to the dies and pressed.
The pellet was then extracted and the mass of the pellet measured again. The final
pellets had a mass of 0.968±0.02 g. The actual volume of the pellets were not
measured, but assuming the pellets achieved a consistent volume, the variance
in final mass results in a uncertainty in the density of 2 %.

The reason the volume of the pellet could not be directly measured was the
pellet’s irregular shape, which is shown in Figure 4.1. The pellet’s shape was
made by combining two spheres of different radii. This shape was a design choice
in the pressing dies. To avoid pinch points in the explosive pressing the dies were
designed to have one fit in the other, this is shown in Figure 3.3. A very thin
leading edge of the upper die would be very delicate and prone to rolling inward
during high loads, which would make it very likely the pellet would split in half
during extraction. To increase the durability of the upper die leading edge it was
designed to have a lip, this would result in a pellet with a step as is shown in
Figure 4.1. Since the pellets were not perfect spheres their volume could not be
easily measured. The pellet volume was calculated using the aid of CAD and
the engineering drawing shown in Appendix A. The critical dimensions of the
finished dies were measured to ensure they were within the tolerances shown in
Appendix A.
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Figure 4.1: A PETN pellet with an RP-3 detonator glued to it with cyanoacrylate.
A US penny is included for scale.
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Detonation velocity, D, is a function explosive density, ρ, as given by: [74]

D1 = D2 + b(ρ1 − ρ2) (4.1)

Where b is equal to 3 for a change in density within the range of 10-15 %
[74]. Using the theoretical maximum density for PETN as ρ1 and the estimated
minimum press density of the pellets as ρ2 gives a change in density of 9%. This
is slightly outside the ideal range of 10-15 % but will give an reasonable approxi-
mation. This equation shows that a 2 % change in density will result in approxi-
mately 2% change in detonation velocity. The effect of the change in mass for the
charge can be accounted for with Sach’s scaling but the effect of changing density
and resulting detonation velocity is difficult to account for in the far field. This
change in detonation velocity may be a factor in the variation between pellets in
Figure 4.5.

An additional problem that occurred during pressing is sections of the pellet
fracturing off during pellet extraction. Pellets where the chipped portions oc-
curred in the upper hemisphere of the pellet were noted and used. The upper
hemisphere is defined as the hemisphere where the detonator was inserted. Pel-
lets with chipped sections in the bottom hemisphere, opposite the detonator were
not used. The most common type of damage was chipping of the corners of the
detonator pin cavity. The damaged sections of the pellets may have led to in-
consistencies in the shock wave. For this reason, only pellets with damage to the
upper hemisphere, not facing the pressure probes, were used in the study. Post-
test analysis of images was not able to directly attributed any shock distortions
to damaged areas.

The amount of mold release agent on the surface of the pellet may have also
caused variation between tests. To prevent pellet fracture ample mold release was
applied to the dies. In all tests, non-reacting material is ejected in front of the pri-
mary shock. Since the material is non-reacting it is not believed to be PETN. The
mold release agent is the only other material in or on the pellets so it is believed
the ejecta must be mold release.

The largest difference between the pellets is how each pellet was adhered
to the detonator. The first series of pellets were adhered with a combination of
cyanoacrylate glue and an glue curing accelerant, one of these pellets is shown
in Figure 4.1. According to the glue curing accelerant’s Safety Data Sheet, the
curing accelerant is dimethyl-P-toluidine dissolved in naphtha solvent [84]. The
curing accelerant caused the glue to heat to the point that it caused blistering
to human skin in a number of seconds. The peak temperature of this reaction
was not measured but this temperature was estimated as being well below the
autoignition temperature for PETN [85, 74]. While it was not expected that this
temperature would cause the explosive to auto-detonate, the decision was made
to find another method to attach the detonators to the pellets. For the majority
of the pellets, electrical tape was used to secure the detonator to the pellet. A
suspended pellet attached with electrical tape is shown in Figure 4.2.
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Figure 4.2: A PETN pellet with an RP-3 detonator attached to it with electrical
tape. The pellet is suspended over the test section. The yellow tube above the
charge is a polymer straw used to provide a consistent charge height. A ruler
with cm graduations, used to determine the exact charge height, is shown to the
left of the charge.
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A major source of noise in the refractive image data was caused by fragments
that propagated faster than the primary shock wave. An example of this fragment
noise is shown in Figure 4.3. The majority of these fragments and other shock
distortions were observed in the upper half of the explosion. For this reason, it is
believed that the detonator and detonator adhesive are the main source of these
fragments and distortions. There were substantially more fragments from pellets
attached with electrical tape than those using cyanoacrylate. The disturbed areas
of the shock were omitted and only smooth areas of the shock were analyzed.

Figure 4.3: Refractive image from the 30-cm Z-schlieren system from Test R4 at
t = 30 µs where t = 0 is first light.
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4.2 Calculating Mach Radius Curve for 1g PETN

The detonation of 1 g spheres of PETN was imaged with multiple refractive
imaging systems to visualize the explosively driven shock wave. A representa-
tive image from the 30 cm system is shown in Figure 4.4. The location of the shock
wave in each refractive image was determined with an automated detection al-
gorithm detailed in [86, 87]. Only undisturbed areas of the shock wave were
tracked. Areas of the shock with oblique shocks from fragments, like the upper
left portion of Figure 4.4, were disregarded for this analysis. The step in the out-
side of the pellets also caused a discontinuity in the shock wave in the very near
field. The area immediately around this shock discontinuity was also omitted.
For purposes of studying the open-air growth of the shock wave, the Mach stem
was also considered a discontinuity and was disregarded for this analysis. The
measured shock radii were converted from pixels to meters using a calibration
value found using an image of a calibration object of known size. A ball bearing
with a diameter of 5.08 cm (2 inches) was used as a calibration object. The ex-
plosive test and calibration object were imaged in the area of parallel light within
the refractive systems so a geometric correction is not needed. Figure 4.5 shows
the found shock wave radii as a function of time. The radii and times were then
scaled to 1 g at standard temperature and pressure using Sach’s scaling (Equa-
tions 1.6-1.9).

Figure 4.4: Refractive image from the 30-cm Z-schlieren system from Test R1 at
t = 132 µs where t = 0 is first light.
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Figure 4.5: Unscaled shock wave time radius
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Figure 4.5 is composed of over 75 thousand data points. A common tool
to simplify the handling of the time-radius data is to fit the data to the Dewey
equation, Equation 1.10, repeated here for convenience:

Rs = A + Ba0ts + Cln(1 + a0ts) + D
√

ln(1 + a0ts) (4.2)

This reduces the time-radius data to 4 fitting parameters, A, B, C, and D,
which can be easily stored, handled and disseminated. The parameter a0 is the
speed of sound in the ambient medium, here taken as the speed of sound in
air at 298 Kelvin. The Dewey equation has been widely used in literature for
many different scales of explosive charges [60, 67, 68, 69, 86, 87, 88, 89, 90]. The
functional form of the Dewey equation was proposed to have the limits of: a fixed
radius at t = 0 and as t→ ∞ the shock propagation decays to a constant velocity
[68]. Examining the limit at t = 0 of Equation 1.10 results in:

Rs

∣∣∣∣
t=0

= A (4.3)

So the A term should equal the initial radius of the shock at time zero, if
explosive breakout is taken as t = 0 then A should be equal to the initial charge
radius. This limit was mentioned in the original proposal of the equation [68].
Later uses of the equation in literature have not fixed the A parameter but al-
lowed it to be fit [60, 69, 86, 87, 88, 90]. In some cases, the resulting A term is near
the initial radius [90] while in other cases the A term is negative [69, 88].

The second limit of the Dewey equation, decaying to a constant velocity,
comes by evaluating the derivative of the Dewey equation which is given in
Equation 1.11, and repeated here for convenience:

dRs

dts
= Ba0 +

Ca0

1 + a0ts
+

Da0

2(1 + a0ts)
√

ln(1 + a0ts)
(4.4)

When evaluated as t→ ∞ the result is:

dRs

dts

∣∣∣∣
t→∞

= Ba0 (4.5)

Ba0 is a velocity for which dividing by a0 gives Mach number. This is the
Mach number of the shock as time goes to infinity. Since the shock must decay
to a sound wave, B should equal 1. Many authors have found this limit to be
useful and have fixed B = 1 and fit only the remaining 3 parameters [60, 67, 86,
87, 88, 89]. In [68] it was found that by allowing all 4 parameters to be fit resulted
in B being approximately equal to 1. If the found coefficients will be used to
predict properties past the range of the data, forcing the B coefficient to 1 may
help ensure the extrapolated data expands at a realistic rate. If all analysis will be
within the bounds of the data, the fit that produces the best fit is optimal.
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A close look at the Dewey equation reveals that the equation is a dimen-
sional equation and would appear to involve taking the natural logarithm of di-
mensional quantities. Because the argument of the natural logarithm must be
dimensionless, there is an implied normalizing length scale in these function ar-
guments. It can be assumed that this length scale is implicitly chosen to have a
value of unity in whatever units are being used (e.g. 1 m). The parameters A, C,
and D all have dimensions of length and B is dimensionless.

Equation 1.10 could be recast in a dimensionless form by a characteristic
length Lc. The dimensionless equation is then:

R? =
R
Lc

= A + B
a0ts

Lc
+ Cln(1 +

a0ts

Lc
) + D

√
ln(1 +

a0ts

Lc
) (4.6)

where R? is a non-dimensional radius. The resulting coefficients in the mod-
ified equation are all dimensionless. The derivative form of Dewey equation,
Equation 1.11 can be made dimensionless using the same approach and is given
by:

dR?

dts
a0
Lc

= M = B +
C

1 + a0ts
Lc

+
D

2(1 + a0ts
Lc

)
√

ln(1 + a0ts
Lc

)
(4.7)

The choice of the characteristic length scale is important and affects the value
of the resulting parameters. Figure 4.6 shows the time-radius data from the gram
scale charges fit to all 4 parameters and Figure 4.8 shows the data fit to the A, C,
and D parameters. In both cases the fit parameter values are identical between
fitting to the traditional Dewey equation, Equation 1.10, and the dimensionless
Dewey equation, Equation 4.6 with a characteristic length scale of Lc = 1 m.
Figures 4.7 and 4.9 show the Mach number radius curves for the fits to all the
parameters and the A, C and D parameters respectively.
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Figure 4.6: The scaled shock wave time and radius data with the Dewey curve fit
found by fitting all coefficients.

Figure 4.7: Scaled shock wave Radius Mach number for the coefficients A =
0.00773, B = 2.15, C = −2.06, and D = 0.747 using units of meters and seconds.
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Figure 4.8: The scaled shock wave time and radius data with the fit Dewey curve
fit found by fitting A, C, and D coefficient.

Figure 4.9: Scaled shock wave Radius Mach number from the coefficients A =
0.0228, B = 1, C = −0.463 and D = 0.576 using units of meters and seconds.
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In Figure 4.10 the gram scale data was fit to all the parameters of the di-
mensionless Dewey equation using a characteristic length scale of Lc = 0.005 m,
which is the charge radius. In Figure 4.11 the data was fit to the A, C and D pa-
rameters of the dimensionless Dewey equation and shows that constraining the
B term to unity is useful at any length scale. In the dimensionless form of the
Dewey equation the A term should be the non-dimensional charge radius. By
setting the characteristic length scale equal to the charge radius the theoretical
value of A should be unity. Figure 4.12 shows that by fixing the A and B terms
to unity and fitting the C and D terms gives a good fit. Comparing the difference
between the fit parameters, listed in Table 4.1, show the importance of the choice
of length scale in the use of the new dimensionless Dewey equation.

Figure 4.10: The scaled shock wave time and radius data with the dimensionless
Dewey curve fit found by fitting all coefficients with a characteristic length scale
of Lc = 0.005 m.
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Figure 4.11: The scaled shock wave time and radius data with the fit Dewey curve
fit found by fitting A, C, and D coefficient with a characteristic length scale of
Lc = 0.005 m.

Figure 4.12: The scaled shock wave time and radius data with the fit Dewey
curve fit found by fitting C, and D coefficient with a characteristic length scale
of Lc = 0.005 m.
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Table 4.1: Resulting coefficients from different Dewey Curve fits. All coefficients
were determined using units of meters and seconds.

Lc (m) Fixed Terms A B C D R2 of fit
1 None 0.00773 2.15 -2.06 0.747 0.9976
1 B 0.0228 1 -0.463 0.576 0.9970

0.005 None 3.5866 .970 8.01 2.23 0.9976
0.005 B 0.803 1 5.74 7.38 0.9976
0.005 A, B 1 1 5.82 7.12 0.9976

The dimensionless Dewey equation is a useful tool for curve fitting to han-
dle data but attempting to extract physical interpretations from its parameters is
limited. For certain combinations of speed of sound a0 and characteristic length
scale Lc, which sets the units of time and radius, the A term is the initial charge
radius and the B term is the Mach number as the shock approaches infinite ra-
dius. The C and D terms do not provide any physical insights. Future work with
this equation should further explore the length scale parameter using data from
testing at multiple scales. Additional work could consider improving the func-
tional form of the equation to enhance physical interpretation of the remaining
curve fit parameters.

The fit coefficients and resulting R2 from the five fitting methods are listed in
Table 4.1. All the curve fitting approaches provided acceptable agreement with
the data. Setting the characteristic length scale equal to the charge radius allowed
the A term to be fixed at unity, but using Lc = 1 m returns the fit parameters
for the dimensional form of the Dewey equation that have been reported in the
literature. To simplify comparison with literature, the length scale equal to Lc =
1 m will be used in the remainder of this work. None of the analysis of the current
work will be done past the bounds of the experimental data, so the curve fit to all
coefficients will be used in the analysis with coefficients of A = 0.00773, B = 2.15,
C = −2.06, and D = 0.747.

4.3 Experimental Peak Pressure and Impulse

Two of the main physical properties of a shock wave that are of interest in
this work are the peak pressure and impulse. For a single location, both prop-
erties can be measured from a pressure-time history from a pressure transducer.
A representative pressure trace from the explosion of 0.9732 g of PETN at a dis-
tance of 0.1754 m without a reflected shock is shown in Figure 4.14. The peak
pressure is defined as the maximum pressure generated by the shock wave. The
shock impulse is defined as the integral of pressure starting at the time of arrival
of the shock and ending when the pressure trace returns to zero for the first time.
These data can be used as recorded, with values taken directly from the pressure
trace, but the limited response time of the pressure transducer, pressure gauge
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momentum and other real effects results in an unphysical non-uniform ringing
in the data that results in inaccuracies. One method to smooth out the ringing is
to fit the data to the Friedlander equation, Equation 1.14, which is repeated here
for reference:

P(t) = Pse
−αt
td (1− t

td
) (4.8)

Figure 4.13 is a flow diagram outlining process used to fit the pressure data
to the Friedlander equation. The first step was to crop the data from the time
of arrival to approximately the first time the pressure trace returns to zero, the
cropped data is shown in Figure 4.15. Note that the Friedlander equation form
requires that the shock wave peak pressure occurs at a time of t=0, so the cropped
pressure data is plotted versus time from shock wave arrival. A non-linear regres-
sion analysis is then used to fit the Friedlander equation to the cropped data. The
found fit and resulting parameters are shown in Figure 4.15. The analysis results
in three fitting parameters, Ps which is the peak pressure, td the pulse duration,
and α which is a wave shape parameter. The impulse can be found by integrating
the Friedlander equation from time of zero to the pulse duration.

Figure 4.13: Flow chart outlining the calculation of Friedlander parameters.
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Figure 4.14: Representative un-modified pressure trace from test N1 which is a
no shock reflection test.

Figure 4.15: The pressure trace from N1 cropped from the time of arrival to when
the pressure returned to zero. The cropped pressure trace was then fit to the
Friedlander equation
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The length of the data fit to the Friedlander equation was found to have a
major impact on how well the fit matched the data. The starting point used to
crop the pressure trace was the time of arrival of the shock for all cases. A simple
algorithm was then used to find the first time the pressure reached zero over
pressure, which was used as the end point of the crop. This point will be referred
to as the estimated pulse duration. This method worked well for most of the
pressure traces. In some cases, however, the fit gave highly unrealistic values,
such as values of td that were negative or on the order of seconds. In other less
extreme cases the fit was just visibly outside the range of the pressure data. There
was found to be multiple sources of error that led to the poor fit, including noise
in the pressure data and secondary shock waves.

This problem was fixed by manually adjusting the estimated pulse duration
to the first crossing. Figure 4.16 shows a pressure trace with large oscillations
within the pressure decay. When the data was cropped to the estimated pulse
duration and fitted, the resulting td was an order of magnitude too high. By
extending the range of data fit by 40% the fit was greatly improved. The length
of data used to fit and resulting fit is shown in Figure 4.16. Similarly, most of
the pressure trace data was extended by some amount past the estimated pulse
duration prior to fitting, with a 40% extension being the most common. Further
automation of the extension to the estimated pulse duration resulted in a large
number of unphysical fits so the extension to the estimated pulse duration was
determined manually. The manual adjustment was required because variations
in the 3 parameters of the Friedlander equation can result in very different curve
shapes with minimal difference in R2 or other metrics of curve fit ”goodness”.

Figure 4.16: Representative high noise pressure trace from test N2 pressure probe
13, which was 0.457 m from the charge, that was cropped and fit to the Friedlan-
der equation.
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Table 4.2: Summary of the data collected for each no reflection test.

Test ID Usable Pressure Traces 1 m Z shadowgraph (kfps)
N1 7 250
N2 12 200
N3 10 200
N4 9 200
N5 9 500

Using this methodology the pressure trace data from all tests was fit to the
Friedlander equation. The found Friedlander parameters for all tests are shown
as a function of radius in Figures 4.17 - 4.19. Table 4.2 lists the number of us-
able pressure traces from each test. Figure 4.17 shows the found peak pressure
term normalized by the atmospheric pressure as a function of radius. Figure 4.18
shows the found pulse duration as a function of radius. Figure 4.19 shows the
Friedlander α term as a function of radius.

Figure 4.17: Ratio of pressure across the shock wave as a function of radius for
the fit experimental data.
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Figure 4.18: Pulse duration of the shock pressure as a function of radius for the
fit experimental data.

Figure 4.19: The decay coefficient α as a function of radius for the fit experimental
data.
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4.4 Analytical Peak Pressure and Impulse

Figure 4.20 is a flow chart to summarize the process that will be detailed
in the following section to analytically calculate the peak pressure and impulse.
Inputs such as data and assumptions are shown in ovals. Calculations and fits
are shown in diamonds. There are three terms that are used to calculate impulse:
peak pressure, pulse duration and decay coefficient. The sub-process for each
term is grouped and outlined.
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Figure 4.20: Flow chart outlining the calculation of analytical impulse.
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4.4.1 Analytical Peak Pressure

The peak pressure and impulse can also be determined from the Mach num-
ber radius curve. The peak pressure from a shock wave can be calculated using
classic compressible flow equations [91]. The ratio of peak pressure over atmo-
spheric pressure is given as a function of Mach number in Equation 1.13. Using
the Dewey coefficients found in Figure 4.6 the Mach number as well as the re-
sulting over pressure ratios is shown as a function of radius in Figure 4.21. This
analytical model shown in Figure 4.21 is representative of the experimental setup
where the shock wave passes over the test section without generating a reflec-
tion. Both the analytical over pressure ratio and experimental Friedlander data
are shown in Figure 4.22. The analytical curve falls within the experimental data
but is below the mean of the data.

Figure 4.21: The Mach number and pressure ratio across the shock as a function
of radius.
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Figure 4.22: Comparison between peak pressure found from the pressure
traces and Friedlander curve fit versus the shock radius versus time and one-
dimensional gas dynamics.
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4.4.2 Analytical Pulse Duration

The current model for pulse duration is based on the idea that pulse duration
is the time difference between the arrival of the shock and when the pressure
returns to one atmosphere, or zero overpressure [70, 89, 92]. Zero overpressure
is characteristic of a sound wave, so it would be expected that the point of zero
overpressure propagates at the local speed of sound [70, 74]. This propagating
point at zero overpressure is referred to as the ”release wave” and tracking this
point from the interface forward is a method to determine the pulse duration.

The previous method for estimating pulse duration [70, 89, 92] is investi-
gated here in more depth to ground the estimate in more physical wave behavior.
The duration estimation approach tracks the propagation and arrival of a release
wave propagating through the shock field. The shock wave time of arrival for
any point can be calculated using the standard Dewey equation, Equation 1.10.
The release wave will move at the local speed of sound, which is given by

a =
√

γRspecT (4.9)

where Rspec is the specific gas constant, and T is the local temperature [72].
Assuming an ideal gas, where γ and Rspec are constant then the temperature is
the only term that will vary as a function of Mach number and radius. The tem-
perature ratio across a shock wave is a function of Mach number and is given
by

T2

T1
=

(1 + γ−1
2 M2)( 2γ

γ−1 M2 − 1)

M2( 2γ
γ−1 +

γ−1
2 )

(4.10)

where T1 is the temperature before the shock wave, T2 is the temperature af-
ter the shock wave, and M is the Mach number of the shock wave. Using Equation
4.10 and the Mach number radius curve, the temperature immediately following
the shock wave is shown in Figure 4.23. By assuming that the temperature is
constant from the time the shock passes until the arrival of the release wave, the
local speed of sound at every point in the shock field can be calculated using the
post-shock temperature and Equation 4.9. The local speed of sound as a function
of radius and Mach number is shown in Figure 4.24. Using the speed of sound as
the wave speed for the relaxation wave, the relative wave velocity for the shock
and release waves are shown in Figure 4.25.
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Figure 4.23: The Mach number and post shock temperature as a function of ra-
dius.

Figure 4.24: The Mach number and post shock speed of sound as a function of
radius.
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Figure 4.25: The wave velocities of the shock wave and relaxation wave as func-
tion of radius
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The relative wave speeds can be used to determine the position of the two
waves which gives the pulse duration. Figure 4.26 is an x-t diagram of the shock
and release wave positions. The vertical distance between the two lines, colored
purple, is the pulse duration. At early times the pulse duration is minimal and
increases at greater radii. Figure 4.27 shows the numerical value of the pulse du-
ration as a function of radius as well x-t diagram of the two waves. Figure 4.28
shows the analytical model of pulse duration and the experimental Friedlander
values for pulse duration. The analytical model matches the trend of the exper-
imental data but falls below the mean of the experimental data. This method
also predicts that as the shock approaches 0 radius it asymptotically approaches
a pulse duration of 0.

Figure 4.26: x-t diagram of the position of the shock and relaxation wave as a
function of radius. The area between the curves is highlighted since the vertical
distance is the pulse duration.
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Figure 4.27: x-t diagram of the position of the shock and relaxation wave as a
function of radius and the resulting numerical value of the pulse duration.

Figure 4.28: Comparison of the experimental and analytical values for pulse du-
ration.
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4.4.3 Analytical Model of Pulse Duration Release Wave

One cause for the discrepancy between the analytical and experimental pulse
duration is the assumption that the release wave begins to propagate outwards
from the surface of the pellet at shock wave break out. Figure 4.29 shows a sim-
plified 1D cartesian wave diagram of the explosive pellet. For simplicity all ve-
locities are shown as constant in Figure 4.29 so the diagram is a schematic rep-
resentation and has been expanded temporally to better show details. To give
an approximate time scale for the events in the diagram, the rarefaction fan is
expected to reach the zero radius line on the order of microseconds. The first
wavelet, or head, of the rarefaction fan is expected to reach the air-detonation
product interface at a time on the order of 10µs and the tail of the rarefaction
fan reaches the interface on the order of 100µs. State 0 is unreacted PETN and
A1 is ambient air. Time t = 0 is detonator initiation at the pellet center. State 1 is
the Chapman-Jouguet (CJ) state for PETN which assumes the detonation shock is
not under or over driven. When the shock wave reaches the surface of the pellet
an air shock is sent into the ambient air. The gas interface between the shocked
air and detonation products cannot support a pressure or particle velocity differ-
ence. A rarefaction fan moves from the interface into the detonation products to
accelerate the gas to balance pressure and velocity across the interface. In the di-
agram the rarefaction fan is broken into 10 wavelets for later use with method of
characteristics analysis. No other waves are generated at the shock wave break-
out. This supports the idea that the shock wave breakout is not the origin of the
release wave.

The origin of the release wave should be when the pressure at the detonation
product interface reaches atmospheric pressure. Zero over pressure is the defin-
ing feature for pulse duration so tracking this point from the interface forward
is a possible way to determine the pulse duration. In Figure 4.29 the rarefaction
fan moves from the interface at shock wave breakout into the detonation prod-
ucts and reflects from the center line as a rarefaction fan. Since the detonation
products have a higher impedance than the shocked air, when the rarefaction fan
reaches the interface it is transmitted into the shocked air as a rarefaction fan.
During the interaction between the rarefaction fan and the interface the release
wave will be generated. Determining this point during the interaction that the ab-
solute pressure reaches one atmosphere, zero over pressure, is difficult. A point
that should occur near the same time as the zero over pressure point but can be
more easily determined is the point of maximum detonation product expansion.

Neither the point of zero over pressure or maximum expansion can be accu-
rately determined from the experimental focused shadowgraph images. Figure
4.30 is a streak image from a no-reflection test N5, imaged with the the 30 cm
focused shadowgraph. In Figure 4.30 identifying the gas cloud in the early time,
less than 100 µs, is difficult due to the high level of turbulence behind the shock
wave. Due to the noise from the turbulence it is not possible to accurately de-
termine the time and radius at which the gas cloud is at maximum expansion.
It is also not possible to calculate pressure from focused shadowgraph images
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Figure 4.29: Simple 1D wave diagram of the detonation and expansion of a high
explosive. The rarefaction fan generated at shock wave breakout is divided into
10 wavelet.
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so the point of zero over pressure can not be identified from the images. An-
alytical models and computational simulations will not have these problems as
turbulence is omitted from many simulations and models and the pressure can
be plotted at all points from simulations or models.
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Figure 4.30: Streak shadowgraph image from test N5. The zero radius point is
at the center of the charge and the streak image was generated from a horizontal
line.
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A method of characteristics approach can be used to develop an analytical
model of the expansion process of the PETN pellet immediately after detona-
tion. This approach divides the area of interest into regions of uniform properties
separated by lines of constant change. Using this approach allows a continuous
process, like an expansion fan, to be discretized. Further details on application of
method of characteristics to compressible flow problems can be found in [91, 93].

To complete the analytical model requires calculating the boundary condi-
tions at the centerline and interface. These boundary conditions can be found by
plotting and manipulating the pressure-particle-velocity (P-u) Hugoniots. The
unreacted Hugoniot for PETN is shown as the blue line in Figure 4.31 and the
detonation products as the red line. The intersection of these two lines is the
equilibrium conditions after the detonation wave but before the rarefaction fan,
state 1 in Figure 4.29. The intersection of the air Hugoniot, the yellow line in
Figure 4.31, and the detonation products is the conditions after the rarefaction
fan, state 11. The transition across the rarefaction fan, states 2-10, can be closely
approximated by following the PETN products line from the CJ condition to the
interface condition [74]. In the following analysis each of these steps will be de-
fined as having an equal change in particle velocity. States 2-10 are shown as the
light blue dots in Figure 4.31.

Figure 4.31: The solution for the pressure and particle velocity for the first wavelet
at the center line and interface.

The locus of the first left-running wavelet is shown as the purple line in Fig-
ure 4.31. The locus of the left-running wavelet was determined by horizontally
flipping the detonation products about the first transition state, state 2. Assuming
symmetry at the centerline requires a velocity of zero on the centerline. The re-
sult of this assumption is that the centerline condition, state 12, is the y-intercept
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of the left-running wavelet which is shown as the red dot in Figure 4.31. Hori-
zontally flipping the detonation products about the centerline condition gives the
locus of the right-running wavelet, the green line. The intersection between the
right-running wavelet and the air Hugoniot is the conditions at the interface after
the first wavelet, state 22.

The velocity of the intermediary states between the centerline and interface,
states 13 through 21 in Figure 4.29, were determined using the method of char-
acteristics approach of constant change across characteristic lines. The CJ veloc-
ity, state 1, was 2.2 km/s and the velocity at the initial interface, state 11, was
8.2 km/s. Dividing this change evenly across 10 lines gives each a change in ve-
locity of 0.6 km/s. The velocity of states 13 through 21 was then determined by
adding this change in velocity to the prior state, i.e. state 12 had a velocity of zero
then state 13 has a velocity of 0.6 km/s and state 14 a velocity of 1.2 km/s. Once
the velocity of each state was known its pressure was determined by finding the
corresponding value on the right-running wavelet. The remaining state proper-
ties, speed of sound, the specific heat ratio or gamma, and density, are functions
of pressure which was determined using the JonesWilkinsLee (JWL) equations of
state for PETN detonation products [94]. The isentropic JWL equations of state
and coeffiencents for PETN can be found in [95].

This process was repeated to determine the properties of each state for the
remaining wavelets. Figure 4.32 shows the fifth wavelet as an additional example
of the Hugoniot process. The Hugoniots were used to determine the velocity and
pressure of each state and the JWL equation of state was used to determine the
speed of sound, density, and gamma.

Figure 4.32: The solution for the pressure and particle velocity for the fifth
wavelet at the center line and interface.
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Using the P-u Hugoniot to find boundary conditions and the symmetry as-
sumption resulted in an invalid solution. The net velocity of each wavelet is the
local speed of sound plus or minus the local particle velocity. For a wave mov-
ing with the particle flow, the total velocity is the sum of the particle velocity
and speed of sound and the difference for waves moving against the flow. The
interface was assumed to move outward at the particle velocity of the region bor-
dering it. Since the rarefaction fan is a continuous process the velocity of the
characteristic lines were the average of the states on either side of the line. Using
these assumptions, the characteristic line for the first wavelet never interacts with
the interface. The wavelet had a total velocity of 7.8 km/s, an average of state 11
and 21, and the interface, state 11, expands at a velocity of 8.2 km/s.

To make a functional solution the symmetry assumption was re-evaluated.
An issue with the original problem setup is that State 1 is defined as the CJ con-
dition for PETN, having a particle velocity of the CJ velocity, but is also adjacent
to the centerline which was defined as having no velocity. One method to ac-
count for the inconsistency, without changing the assumption of uniform regions
or initial particle velocity, is to change the problem geometry. If the problem is
redefined as the impact of a sandwich plate, shown in Figure 4.33, the rear face
of the explosive can have a non-zero velocity. In the modified geometry, a slab of
PETN with a width that matches the radius of pellets is impacted from one side
at the CJ velocity. A detonation wave then moves from the impacted face towards
the interfaces with air. The X = 0 line is then the rear surface of the detonation
products moving at the CJ velocity. The properties of each state were then recal-
culated with this set of assumption. Figures 4.34 and 4.35 are the resulting P-u
Hugoniot for each of the wavelets. The particle velocity of each state is then taken
as the velocity found via the Hugoniot analysis minus the CJ velocity.
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Figure 4.33: Diagram of the impact of a sandwich plate problem geometry.

Figure 4.34: The solution for the pressure and particle velocity for the first wavelet
at the center line and interface using the modified centerline assumption.
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Figure 4.35: The solution for the pressure and particle velocity for the fifth
wavelet at the center line and interface using the modified centerline assump-
tion.
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Using the sandwich plate impact assumption resulted in a functional model
and the resulting wave diagram was plotted. A scale wave diagram was made
using the particle velocity and speed of sound of each region defined in Figure
4.29. Figure 4.36 shows the first 20 µs of the wave diagram. The leading edge of
the rarefaction fan moves inward while the trail of rarefaction fan moves away
from the centerline. This outward movement of the rarefaction fan tail is due to
the local speed of sound being lower than the local particle velocity.

Figures 4.37,4.38, and 4.39 show the wave diagram with a longer time axis.
In Figure 4.37 the leading edge of the rarefaction fan reflected from the inter-
face slowing the expansion rate of the interface. Since the detonation products
have a higher shock impedance than the shocked air, the expansion wavelets are
reflected as compression wavelets. By 600 µs, in Figure 4.38, the first three com-
pression waves have coalesced and several of the expansion wavelets that were
initially expanding outwards have changed direction and begun to move towards
the centerline. Figure 4.39 shows the furthest extent of the wave diagram that was
plotted. At 2.5 ms the detonation product have expanded to over 2 m which is
over an order of magnitude larger than experimentally measured from the streak
image in Figure 4.30. Note that in Figure 4.30 the wavelets are not drawn after
their interactions with the last expansion line.

Figure 4.36: The first 20 µs of a scale wave diagram of the expansion of a PETN
pellet with a radius of 5.5 mm.

The largest difference between the analytical wave diagram in Figure 4.39
and the experimental results shown in Figure 4.30 is that the analytical model is
a one dimensional rectangular model and the pellet has spherical symmetry. To
examine if the one dimensional rectangular assumption is the main cause of the
discrepancy between the experimental and analytical results, the detonation of a
PETN pellet was simulated using the Sandia National Laboratory code CTH.
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Figure 4.37: The first 100 µs of a scale wave diagram of the expansion of a PETN
pellet with a radius of 5.5 mm.

Figure 4.38: The first 600 µs of a scale wave diagram of the expansion of a PETN
pellet with a radius of 5.5 mm.
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Figure 4.39: A scale wave diagram of the expansion of a PETN pellet with a radius
of 5.5 mm.
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4.4.4 CTH Simulation of the Pulse Duration Release Wave

CTH is hydro-code capable of simulating strong shock and detonation for
multi-material multi-phase problems in one, two, or three dimensions. More in-
formation on CTH can be found in [96, 97].

The one dimensional rectangular simulations were carried out at two differ-
ent scales: a short simulation to look at the leading edge of the rarefaction fan
and a long simulation to look at the expansion of the detonation products. The
short simulation used a 50000 point mesh over 5 cm (1000 mesh points/mm) and
the long simulation used a 40000 point mesh over 40 m (1 mesh point/mm). In
both simulations the PETN pellet had a radius of 5.5 mm and air at 25◦ C and 1
atmosphere filled the remaining area. The PETN was initiated at time 0 from a
region between 0 and 0.65 mm, which is the size of detonators used in the experi-
mental work. The remaining PETN was reacted using a History Variable Reactive
Burn (HVRB) model. For the short simulation the pressure, density and particle
velocity at each point were recorded at 5 ns increments. For the long simulation
pressure and density were recorded at 5 µs increments. The zero radius bound-
ary was a reflective boundary and the max radius boundary was a transmissive
boundary. The transmissive boundary gave a numerical error when the primary
shock reached it that resulted in a weak shock wave reflection. To eliminate this
error the simulation was ended before the weak reflection reached the area of
interest.

An important difference between the simulation and the analytical model
is that the model assumes uniform states and the simulation does not. Figures
4.40 show a time step from the short simulation prior to shock wave break out.
In the analytical model it was assumed that the region behind the detonation
front was a uniform region at the CJ conditions. In the simulation, the PETN
was shocked up to the CJ conditions and then a Taylor expansion wave reduces
particle velocity to zero and the pressure to below the CJ pressure. This is a more
realistic assumption of the detonation process but it is more difficult to represent
analytically.

The one dimensional rectangular simulation shows similar results to the an-
alytical model. Figure 4.41 is a synthetic density streak image that was generated
from the long simulation by plotting the density at each point as a function of
time. Figure 4.42 is the pressure plotted as function of time and radius. The pri-
mary shock is the thin dark band at the bottom of the figure, indicated with point
1. The interface between the detonation products and the shocked air, which is
indicated at by point 2, is sharp discontinuity from dark to light (from left to
right) behind the primary shock. The interface has a maximum radius of 10.2 m
at 14.2 ms which is later than was analytically calculated. At early time in Figure
4.41 it is difficult to distinguish between the primary shock and the interface, so
to compare the simulation to the model the density was plotted at 2.5 ms, Figure
4.43. The first density spike in Figure 4.43 is the primary shock and the second
density spike is the location of the interface which is located at 5.3 m. Analyzing
Figure 4.39 shows at 2.5 ms the analytical model predicts the interface to have a
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Figure 4.40: Plot of particle velocity as a function radius for a 1D rectangular
simulation of the PETN pellet. The dashed line denotes the boundary between
the PETN or PETN detonation products and air.
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radius of 2.1 m. This shows that both the one dimensional rectangular analytical
model and computational simulation results in the detonation products interface
expanding much further than was observed in Figure 4.30.

Figure 4.41: Plot of density as a function of time and distance for a 1D rectangular
simulation of the PETN pellet. Four points of interest are labeled. Point 1 is the
air shock. Point two is the point of maximum expansion of the air-detonation
products interface. Point 3 indicates the region where the density and pressure of
the detonation products drops to effectively zero. Point 4 is after the detonation
products have rebounded against the x = 0 boundary.
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Figure 4.42: Plot of pressure as a function of time and distance for a 1D rectangu-
lar simulation of the PETN pellet. Four points of interest are labeled. Point 1 is
the air shock. Point two is the approximate location of the air-detonation prod-
ucts interface. The product interface cannot support a pressure differential which
is why there is no discontinuity. Point 3 indicates the region where the density
and pressure of the detonation products drops to effectively zero. Point 4 is after
the detonation products have rebounded against the x = 0 boundary.
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Figure 4.43: Plot of density at 2.5 ms for a 1D rectangular simulation of the PETN
pellet.
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To better match the experimental geometry the CTH simulation was repeated
with spherical symmetry instead of rectangular symmetry. The one dimensional
spherical simulation used a 6000 point mesh over 60 cm (10 mesh points/mm).
The PETN explosive had a radius of 5.5 mm and air at 25◦ C and 1 atmosphere
filled the remaining area. The PETN was initiated at time 0 from a region be-
tween 0 and 0.65 mm. The remaining PETN was reacted using a HVRB model.
The pressure, density and particle velocity at each point was recorded at 0.5 µs
increments. The zero radius boundary was a reflective boundary and the max
radius boundary was a transmissive boundary. To prevent numerical errors the
simulation was ended before the primary shock crossed the transmissive bound-
ary. A synthetic density streak image was generated from the spherical simula-
tion by plotting the density as a function of radius and time, Figure 4.44. Since
the primary interest of this simulation is the interface, Figure 4.45 shows the syn-
thetic density image cropped to 10 cm Figure. 4.46 is the pressure plotted as a
function of radius and time. To better show the expansion and contraction of the
detonation products the plots were cropped to 200 µs, Figure 4.47 and 4.48.

Figure 4.44: Plot of density as a function of time and radius for a 1D spherical
simulation of the PETN pellet.
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Figure 4.45: Plot of density as a function of time and radius for a 1D spherical
simulation of the PETN pellet.

Figure 4.46: Plot of pressure as a function of time and radius for a 1D spherical
simulation of the PETN pellet.
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Figure 4.47: Plot of density as a function of time and radius for a 1D spherical
simulation of the PETN pellet. The figure has been cropped to 10 cm and 200 µs.

Figure 4.48: Plot of pressure as a function of time and radius for a 1D spherical
simulation of the PETN pellet. The figure has been cropped to 10 cm and 200 µs.
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The spherical simulation was compared to the experimental streak image
by merging the images together in Figure 4.49. Figure 4.49a is the experimental
streak image. The synthetic streak schlieren image, Figure 4.44, was then cropped
to size of the experimental image. A Canny edge detection was performed on the
synthetic streak image to detect the points of change, Figure 4.49b. The edge de-
tection resulted in a few artifacts which were manually removed. The edges were
then visually thickened with an image dilatation. The edges were then overlaid
onto the experimental image, Figure 4.49c. Comparing the edges and the exper-
imental image shows good agreement between the spherical simulation and the
experimental streak image. The primary shock matches well for the first 15 cm.
After 15 cm the simulation under-predicts the shocks radius by up to 5 %. Sim-
ilarly, the location of the secondary shock is under-predicted but has reasonable
agreement. The large shadowgraph distortions around the predicted location of
the detonation products makes direct comparison difficult. Comparison of the
detonation products radius between the experimental and simulation shows that
the simulation may over predict the radius while under predicting the time of the
maximum expansion. Figure 4.49 shows that the inclusion of spherical symmetry
is important to accurately represent the spherical pellets.
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Figure 4.49: a is the experimental streak image. b is the synthetic streak image
with a Canny edge detection overlaid. c is the edges of the synthetic streak image
overlaid onto the experimental streak image.
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The spherical simulation was used to determine the point of maximum prod-
uct expansion and zero over pressure at the interface. Figure 4.47 shows the point
of maximum product expansion at 9.27 cm and 96 µs. Figures 4.47 and 4.48 were
combined using ’imfuse’ to generate Figure 4.50 which shows the pressure as a
function of color and density as a function of brightness. The point along the in-
terface where the pressure first reaches an absolute pressure of one atmosphere
was found, 9.15 cm and 120 µs, and plotted on Figure 4.50.

Figure 4.50: Composite image generated from the density and pressure data from
the spherical simulation. A color legend for the pressure and density is shown.

Using the two potential starting locations of the release wave found via the
CTH simulation, the pulse duration was recalculated. The delayed pulse dura-
tion was calculated by starting the release wave at the time and radius of either
the point of maximum product expansion and zero over pressure and moving
the release wave outward at the local speed of sound. This procedure is similar
to what was used in Figure 4.27 but started at a later time and radius. The red line
in Figure 4.51 shows the pulse duration with the release wave started at the point
of zero over pressure as well as the experimentally found pulse duration. The yel-
low line in Figure 4.51 shows the pulse duration with the release wave started at
the point of maximum product expansion. Comparing the two lines, shows that
starting at the maximum product radius better matches the experimental data at
smaller radius and starting at the point of zero over pressure better matches at
larger radii. Neither line perfectly match the data. The zero over pressure pulse
duration curve has an R2 value of 0.80. The maximum product expansion pulse
duration curve has an R2 value of 0.84. For comparison the non-delayed pulse
duration curve, Figure 4.28, has an R2 value of 0.49.

Neither starting location for the release wave, the point of zero overpressure
or the point of maximum product expansion, perfectly predict the experimental
pulse duration. Both starting locations better predicted one region and both had
very similar R2 value. The more physical starting location of the release wave is
the point of zero overpressure so in the following calculations and analysis it will
be used but more work is needed to refine the analytical model of pulse duration
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Figure 4.51: Comparison of the experimental pulse duration and the analytical
pulse duration were the release wave has been started at either the point of zero
over pressure or the point of maximum product expansion.

to better match experiments. This analysis also shows that if in future works with
different explosive materials only the location of the maximum product expan-
sion can be determined, then the pulse duration can be reasonably predicted by
starting the release wave at the point of maximum expansion.
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4.4.5 Decay Coefficient

The α term is the final Friedlander parameter required to calculate impulse.
The α term can be referred to as either the wave shape factor or decay coefficient
as it controls the rate of exponential decay. Many prior researchers have studied
how α varies as a function of scaled distance but none have developed physical
model explaining what causes the change in wave shape [98]. Currently all mod-
els of α are numerical fits to experimental data with notable work being presented
by Brode in 1955 [99], Baker in 1983 [100], Kinney and Graham in 1985 [70], Lan
in 2004 [101], Dharaneepathy in 2006 [102], Larcher in 2007 [103] and Borger in
2008 [104], with most models being power law fits [105]. Figure 4.52 shows the
proposed α curves by Larcher, Lan, Borgers, and Dharaneepathy as a function
of standard scaled distance (Z), which is m/kg1/3. None of these fits agree at
small scaled distance and even at larger scaled distances still disagree by up to
50%. The discrepancy between the different fitting values can be contributed to
different factors, two factors that have been previously explored in literature are
charge shape and height of burst [105]. Difference in explosive charge composi-
tion will also have an major impact on the α function. Since there is not a model
that clearly is suited for the given experimental setup, the α values determined
in Figure 4.19 were fit to a power law function. The Friedlander α values and
resulting fit is shown in Figure 4.53. Figure 4.54 shows the experimental α values
and their fit along with the proposed literature curves. The literature curves have
been scaled from a charge mass of 1 kg to the experimental charge mass. The fit of
experimental data did not closely match any literature curve so the experimental
power law fit was be used in calculation of impulse.

Figure 4.52: Predicted α values as function of scaled distance (Z) reproduced from
multiple literature sources.
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Figure 4.53: The decay coefficient α as a function of radius for the fit experimental
data and the resulting numerical power law fit of the data.

Figure 4.54: The decay coefficient α and the resulting numerical power law fit of
the data. Additionally the α curve from multiple literature sources.
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4.4.6 Analytical Impulse

Using the three Friedlander terms, peak pressure Ps, pulse duration td, and
the decay coefficient α, the shock impulse can be calculated using Equation 1.15.
The experimental pressure probe data was fit to the Friedlander equation with
the resulting terms shown as a function of radius in Figures 4.17-4.19. The Fried-
lander terms were also analytically derived from the radius-Mach number curve,
Figure 4.7. The peak pressure, Ps, was directly calculated from the Mach num-
ber using Equation 1.13. The analytical peak pressure as a function of radius is
shown in Figure 4.22. Since the pressure curve was in terms of pressure ratio
of peak pressure over atmospheric pressure, the impulse was calculated using a
standard atmosphere, 101.3 kPa, as the pressure before the shock. The pulse du-
ration, td, was calculated by determining the relative wave speeds of the shock
wave and a sound wave behind the shock, the pulse duration is shown in Fig-
ure 4.51. Several models of decay coefficient, α, were presented but no model
matched the experimental data. The experimental α values were fit to a power
law function and is shown in Figure 4.53. Figure 4.55 shows both the experimen-
tal and the analytically calculated impulse per unit area. The analytical curve was
calculated using the analytical pressure and pulse duration and α from the power
law fit to experimental data.

Figure 4.55: Shock impulse as a function of radius for experimental data and
analytical. The Kinney and Graham emperical equation for impulse per unit area
is shown.

In Figure 4.55 the analytical impulse per unit area curve starts above the first
set of data points and then ends just below a furthest data points. For comparison,
the Kinney and Graham empirically derived equation relating scaled distance to
impulse per unit area is shown in Figure 4.55 [70]. To simplify comparison with
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prior or future work, Figure 4.56 shows the impulse data scaled to the standard
charge mass of 1 kg. The Kinney and Graham empirically equation agrees well
with the experimental data. This shows that the analytical method used to predict
impulse can still be improved.

Figure 4.56: Shock impulse as a function of radius for experimental data and
analytical. The Kinney and Graham emperical equation for impulse per unit area
is shown. Data scaled to 1kg
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Since there are only three terms in the Friedlander impulse equation the dis-
crepancy between the analytical and experimental results must stem from one or
more of those terms. Equation 1.15 shows that peak pressure and pulse duration
are directly proportional to impulse but the relationship between α and impulse
is not immediately apparent. To show the effect of the α term on the impulse, the
α section of the Friedlander impulse equation was isolated and Figure 4.57 shows
how the value of the section varies as a function of α. Figure 4.57 shows that as
α increases the value of the section decreases. The exact value of the α section of
the Friedlander equation as a function of radius is shown in Figure 4.58. Figure
4.53, which is the experimental data and fit of α, shows that below 0.25 m the fit
line is below the median of experimental data. Above 0.25 m the fit line is above
the median of the experimental data. Accounting for this difference could result
in a 5 to 10% change in impulse.

Figure 4.57: The value of part of the Friedlander impulse equation that contains
the α variable as a function of α.
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Figure 4.58: The value of part of the Friedlander impulse equation that contains
the α variable as a function of radius.
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The peak pressure term was calculated by applying Equation 1.13 to the
Mach radius curve, Figure 4.7. Equation 1.13 is derived from first principles and
the underlying assumptions are valid over the region studied. For this reason it
is assumed that the discrepancy between the experimental results and analytical
lie either in the Mach radius curve or in the experimental data. The Mach radius
curve is a fit of approximately 7.5 ∗ 104 individual data point over fifteen tests,
both non-reflected and reflected tests. There is variation from test to test with the
curve being the average of all the tests. As a result the variation is assumed to be
a result of scatter within the experimental data.

The pulse duration calculation has two major pieces, the starting location of
the release wave and the wave velocity of the release wave. Comparing Figure
4.51 and Figure 4.28 shows that delaying the start of the release wave results
in better agreement with experimental data. Two proposed starting locations of
the release wave were examined via simulation. Both starting points matched
the experimental data well but the zero overpressure location is more physical
but further work is required to fully investigate the correct origin of the release
wave. An ideal option for further investigation is the development of spherical
analytical models. An analytical model was developed to study the expansion
process but comparison with simulation and experimental results show that the
use of spherical characteristic equations are required to improve the utility of the
model. The results of a spherical analytical model will applicable to a wider range
of cases than the simulation.

Rarefaction waves propagate within a material at the local speed of sound.
If the material is moving the net velocity of the wave is the sum of the speed of
sound and particle velocity. The analytical model assumed that the air behind
the shock wave has no velocity. This assumption is based off of the time delay
between the shock and the release wave allowing the blast wind, or the velocity
of the gas behind the shock, to dissipate. This assumption could be further inves-
tigated by using simulations to directly track the velocity behind the shock as a
function of time or experimentally by tracking turbulent structures or with tracer
particles, similar to [68]. Since the velocity of the gas after the shock is radially
outward, the net effect will be to increase the release wave velocity and decrease
the pulse duration. The model also assumes that the temperature is constant
from the shock to the arrival of the release wave. This assumption is reasonable
at larger radii due to the lower temperature. The temperature grows exponen-
tially at smaller radii, so radiation and outward convection will play a larger roll.
The net effect of cooling at small radii is an additional delay.

The analytically predicted impulse agrees well with the experimental data
with the majority of the deviations attributable to pulse duration. Of the three
terms in the Friedlander impulse equation, peak pressure had the best agreement
with experimental data, contributing little to the overall inaccuracy in the im-
pulse. The α curve fit under predicts at lower radii and over predicts α at higher
radii. This contributes between 5 and 10 % to the overall discrepancy. The ma-
jority of discrepancy comes from the pulse duration. Improving the analytical
model of pulse duration will have the greatest improvement in the ability to pre-
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dict impulse.
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CHAPTER 5

RESULTS AND DISCUSSION OF THE REFLECTED
GRAM-SCALE TEST SERIES

A series of gram scale pellets of PETN were detonated above an instru-
mented reflecting plate which was placed within two shadowgraph imaging sys-
tems. A series of pressure probes were flush mounted in the reflecting plate to
record the pressure and impulse from the shock reflection as a function of dis-
tance. The shadowgraph systems consisted of a 1-meter-diameter system that
focused of the expansion of the shock wave and a 30-centimeter-diameter system
that focused on the shock wave reflection. The shadowgraph systems recorded
at between 250,000 and 1,000,000 frames per second.

5.1 Shock Reflection Transition

5.1.1 Analytical Shock Reflection Transition

Figure 5.1 shows the path of a shock wave from 1 g of PETN detonated at
0.1 m above a reflecting surface plotted as a function of effective wedge angle
and Mach number. The shock path starts at a high Mach number and an effec-
tive wedge angle of 90◦ for the normal shock wave impact on the surface directly
under the explosive charge. This point is shown as the green dot in Figure 5.1.
As the shock wave expands, the Mach number and effective wedge angle de-
crease with the final plotted point shown as a magenta dot in Figure 5.1. Figure
5.2 shows the shock wave path overlaid on the reflection type domain diagram,
previously shown as Figure 2.7. This diagram predicts the points where the re-
flection type will change [106]. The analysis techniques used in this work, high
speed imaging and pressure transducers, are discretized, so Figure 5.3 shows the
points along the shock path where each frame occurs for a 500,000 fps imaging
system. The time of several frames is shown, with zero time being first light.
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Figure 5.1: The Mach number and effective wedge angle path of the shock wave
from 1 g of PETN detonated 0.1 m above a reflecting surface. The initial reflection
point is shown as a green dot and the final point shown is highlighted with a
magenta dot. An arrow was added to indicate the progression of the reflection.

Figure 5.2: The Mach number and effective wedge angle path of the shock wave
from test R1 overlaid on the shock reflection type domain map.
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Figure 5.3: The Mach number and effective wedge angle path of the shock wave
from test R1 overlaid on the shock reflection type domain map. The location
of the frames from the 30 cm schlieren system are shown as blue circles. The
first frame following the predicted transition from a regular reflection to irregular
reflection is shown as a solid blue dot.
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5.1.2 Refractive Imaging of Shock Reflection Transitions

To study the transition between reflection types, a series of tests were con-
ducted where PETN pellets were detonated over a rigid reflecting surface. Table
5.1 summarizes all tests and results for the reflection test series. The reflection
transition data from the majority of the tests were determined to be unusable due
to oblique shocks from fragments interacting with the primary shock near the re-
flection transition point. An example of a test with unusable reflection transition
data is shown in Figure 5.4. In the first frame of Figure 5.4, at 33 µs, several frag-
ments can be seen to have propagated faster than the primary shock wave. At
50 µs some of the fragments have impact the reflecting surface. In the frames at
65 µs and 80 µs the primary shock is visibly disrupted at the reflection point. The
disruption is visualized in the difference between the undisturbed shock, which
is visualized as a thick dark smooth curve, and the area around the reflection
point which has a thin transition and is highly noisy. The result of this disruption
can be seen as an added bulge at the bottom of the Mach stem at 112 µs. By 123 µs
a classic Mach reflection has formed but it is unknown if its properties are iden-
tical to the properties of an undisturbed reflection. A test with a usable reflection
transition is characterized as having no disruptions to the primary shock wave
immediately before or during the transition. Significant effort was expended to
make the explosive charges as free of particles and irregularities as possible, but
some variations on individual tests still occurred.

Table 5.1: Summary of the reflection tests series.

30 cm Schlieren System Pressure Data
Test ID Frame Rate (kfps) Visualization of Transition Usable Pressure Traces
R1 500 Usable 15
R2 N/A No Refractive Data 15
R3 1,000 Unusable Transition 15
R4 1,000 Unusable Transition 15
R5 1,000 Unusable Transition 15
R6 1,000 Transition Not Observed 12
R7 500 Unusable Transition 15
R8 500 Usable 15
R9 500 Unusable Transition No pressure data
R10 250 Unusable Transition 12
R11 500 Usable 14
R12 500 Unusable Transition 13
R13 1,000 Unusable Transition 14
R14 1,000 Unusable Transition 15
R15 1,000 Unusable Transition 15
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Figure 5.4: Frames from a test with an unusable shock reflection transition.
Oblique shocks disrupt the primary shock immediately prior to the reflection
transition. This figure will be broken into two rows to make it more easily seen.
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Figure 5.5 shows the transition of the shock wave reflection from a regular
reflection to a irregular reflection. The first frame of Figure 5.5, at 86µs, shows
a regular reflection with the initial and reflected shock meeting at the reflecting
surface. The reflection in final frame of Figure 5.5, at 98µs, is a irregular reflection
with a short Mach stem visible. The exact frame where the transition occurs is
difficult to identify due to a slight misalignment in the experimental setup be-
tween the Z schlieren system and the reflection plate. The misalignment between
the refractive imaging systems and the reflection plate had two causes: curvature
of the surface of the reflection plate and the surface of the reflection plate and the
light rays of the imaging systems not being parallel. The result of the misalign-
ment was the reflection plates casts a shadow in the schlieren system causing a
black area above reflection plate that was not visualized.

The welding of the reflection plate resulted in the system having a slight con-
cave curvature. The result of this was a small un-visualized area directly above
the center of the plate, the area the reflection transitions were expected to occur.
To minimize the concave curvature the edges of the reflection plate was tensioned
downwards while the center was supported. Eliminating the curvature in the di-
rection of both cameras was found to be impracticable. Since the 30 cm system
had a higher spacial resolution than the 1 m system, the 30 cm system was opti-
mized. Tensioning the reflection plate to eliminate the curve resulted in the sur-
face of the reflection plate being non-parallel with the 30 cm system Z schlieren
system. To allow adjustment of reflection plate and increase the parallelism of the
system, the feet of the reflection plate were placed on laboratory scissor jacks. The
height of the scissor jacks were adjusted to minimize the non-visualized area over
the reflecting surface. After minimizing the curvature of the plate and aligning
the surface and schlieren system, the maximum height of the area which was not
visualized in the 30 cm system Z schlieren system was limited to approximately
2-3 mm (3-4 pixels). This was measured in the center of the test section where
the non-visualized height was the greatest. The height of the non-visualized area
steadily decreased to zero height at the edges of the reflection plate. The system
was inspected between tests to verify the non-visualized area did not increase.

Due to the unvisualized area, the Mach stem is not the first sign of the tran-
sition between a regular and irregular reflection in the R1 test. As the Mach stem
forms the point where the initial and reflected shock meets moves away from
the reflecting surface. Tracking this point gives the first sign that an irregular re-
flection has formed. Figure 5.6 shows an enlarged section of the frames near the
transition point. To improve identification, the lowest visible pixel of the right
edge of the primary shock is highlighted in red. In the first two frames of Figure
5.6, 86 µs and 88 µs, the primary shock ends at the bottom of the visualization
area. At 90 µs the bottom right edge of the primary shock is visible and a region
connecting the primary and reflected shock is visible. The implication of this is
that the transition from regular and irregular reflection occurred prior to 90 µs.
The final frame before the transition was visualized, at 88 µs, is shown in Figure
5.7 as the green dot. The frame where the transition is expected to occur is shown
in solid blue.
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Figure 5.5: Frames, with time stamp added, from test R1 to show the shock re-
flection transition.
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Figure 5.6: Select frames from Figure 5.5 enlarged to show the lower right edge
of the primary shock lifting off of the reflection surface.

Figure 5.7: The Mach number and effective wedge angle path of the shock wave
from R1 overlaid on the shock reflection type domain map. The predicted re-
flection transition is shown in solid blue and the observed transition is shown in
solid green.
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Due to the increased height of burst in tests R8 and R11 the formation of the
Mach stem occurred further from the center of the plate. Near the edges of the
plate the height of the non-visualized area was much less than the maximum. As
a result the Mach stem formation was better visualized allowing Mach stem for-
mation to be used to identify the transition from regular to irregular reflection.
Figure 5.8 shows a series of enlarged images from test R8. The top left frame in
Figure 5.8 is a regular reflection since the primary shock intersects the reflection
plate. The final frame in Figure 5.8 is a irregular reflection since a Mach stem con-
nects the primary shock to the reflection plate. The exact location of the transition
from regular to irregular is difficult to identify as Mach stem growth is a gradual
process and the pixelized nature of digital photography results in the infinitely
thin shock front being visualized by multiple pixels. To standardize the manual
identification of the transition between tests, the shock front location is defined as
the first pixel which shows a decrease in intensity below the average background
intensity. This definition is demonstrated in Figure 5.9 with the point where the
shock front intersects the bottom of the visualized area highlighted in red. Fig-
ure 5.10 shows the frames from 124 µs to 130 µs with the bottom most portion of
the shock front highlighted in red. At 124 µs and 126 µs the bottom of the shock
has a constant slope. At 128 µs the bottom two pixels are vertical followed by
a constant slope. Over time the bottom pixels remain vertical and grow which
indicates that the Mach stem is being visualized and not noise. Since the Mach
stem was visualized at 128 µs and the Mach stem growth is slow, the transition is
expected to have occurred closer to the frame at 126 µs. Figure 5.11 shows con-
ditions of the observed transition and the predicted transition. The time of the
transition from regular to irregular reflection was identified for test R11 using the
same procedure as for test R8 with the results shown in Figure 5.12. Figure 5.13
shows the conditions of the observed transition as well as the predicted transition
conditions.
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Figure 5.8: Frames from R8 showing the transition of regular to irregular reflec-
tion.
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Figure 5.9: An enlarged view from Figure 5.10 to show how the leading edge of
the shock is being defined in the refractive images.

Figure 5.10: Frames from R8 showing the transition of the primary shock to a
Mach stem.
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Figure 5.11: The Mach number and effective wedge angle path of the shock wave
from R8 overlaid on the shock reflection type domain map. The predicted re-
flection transition is shown in solid blue and the observed transition is shown in
solid green.

Figure 5.12: Frames from R11 showing the transition of the primary shock to a
Mach stem.
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Figure 5.13: The Mach number and effective wedge angle path of the shock wave
from R11 overlaid on the shock reflection type domain map. The predicted re-
flection transition is shown in solid blue and the observed transition is shown in
solid green.
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5.1.3 Mach Stem Growth Effect on Visualization of Mach Reflection

In the three cases studied the transition from regular to irregular reflection
occurred at a lower effective wedge angle than predicted. In test R1 the transition
was predicted to occur at an effective wedge angle of 50◦ and was observed at 44◦.
In test R8 the transition was predicted to occur at an effective wedge angle of 50◦
and was observed at 47◦. In test R11 the transition was predicted to occur at an
effective wedge angle of 49◦ and was observed at 45◦. In each case the transition
occurs between 3− 6◦ lower than predicted. The 3− 6◦ delay is greater than the
1− 2◦ discrepancy shown for the transition of planar pseudo-steady shock waves
[6]. A possible cause of this delay is the time required for the Mach stem to grow
large enough to be observed by the imaging system.

The Mach stem growth was analytically modeled to estimate the time re-
quired for the Mach stem to be visible in the refractive imaging system. The
properties of an irregular reflection for a given Mach number and effective wedge
angle can be determined by simultaneously solving Equations 2.9 through 2.17.
The property required to predict the Mach stem height is χ, which is the slope
at which the triple point moves away from the reflecting surface. The height of
the Mach stem at any point along a path can be predicted analytically by inte-
grating χ from the transition to an irregular reflection to the desired point. Using
the Mach number and effective wedge angle from in Figure 5.1, χ was calculated
by simultaneously solving Equations 2.9 through 2.17. χ was then plotted as a
function of time, Figure 5.14. By integrating χ, the Mach stem height was then
plotted as a function of time, Figure 5.15.

Figure 5.14: The triple point trajectory χ as a function of time for tests R1, R8,
R11.

118



Figure 5.15: The Mach stem height as a function of time for tests R1, R8, R11.
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Assuming the entire Mach stem is visualized by the schlieren sytem, the
Mach stem may not be visualized until it has grown to the height of at approxi-
mately 1 pixel. The 30 cm system Z schlieren system had a spacial resolution of
0.7 mm

pix . Figure 5.15 shows that for test R1 the reflection transitions from regular
to irregular at approximately 70 µs but the Mach stem doesn’t reach 0.7 mm in
height until 88 µs. One problem with this methodology is that the Mach stem
may be observed prior to it reaching the height of 1 full pixel. The intensity of
each pixel is the average of the brightness of everything in the imaged area over
the time the camera shutter is open. Theoretically, over the frames between Mach
stem formation and when it reaches a full pixel height the pixel corresponding to
the bottom of the reflection will gradual decrease in intensity. This gradual visual
transition is not seen for a number of reasons. The primary reason is the noise in
the image background, which varies between normalized values of 0.30 and 0.38.
Additionally the visual transition from the reflection surface to the background
occurs over 2 pixels, as shown in Figure 5.9. Due to this noise it is not possible to
observe the sub pixel growth of the Mach stem. A more reasonable assumption is
that the Mach stem is observed when it is between a half and full pixel in height.
For test R1 the analytical model predicts the Mach stem to reach a height of a
half pixel, 0.35 mm, at 80 µs and a full pixel, 0.7 mm, at 88 µs. The Mach stem
was observed in test R1 between 88 µs and 90 µs. For test R8, Figure 5.15, the
Mach stem should be a half pixel tall at 134 µs and a full pixel at 146 µs. Figure
5.10 shows that the Mach stem is observed between 126 µs and 128 µs which is
slightly after the half pixel height. For test R11, the Mach stem should be half
pixel tall at 217 µs and a full pixel at 234 µs. The Mach stem in R11 was observed
between 216 µs and 218 µs which is the half pixel time. In the above calculation
it was assumed the Mach stem was fully in view of the schlieren system. If part
of the Mach stem was obscured by the non-visualized area this would delay its
observation.

The maximum height of the non-visualized area occurred at the center of the
reflection surface and decreased to full visualization at the edges of the reflection
structure. The height of the non-visualized area was not measured directly at any
other locations. It is not possible to interpolate the height of the non-visualized
area at other locations due to the non-uniform construction of the reflection struc-
ture. The center plate was the test section plate which was 6.25 mm (0.25 inch)
thick and attached to the substructure at its edges, approximately 150 mm (6 inch)
apart. The extension plates, where the reflections were visualized, was 0.5 mm
thick and bolted to the substructure at its edges, approximately 600 mm (2 feet)
apart. The extension plates were mounted on rubber sheets to raise them to the
same height as the test section plate. Due to the wide difference in plate thickness
and difference in mounting these plates are not deformed uniformly.

Since the height of the non-visualized area cannot be interpolated from the
system geometry another method was used to estimate the height of the non-
visualized area. A regular reflection is characterized by the primary and reflected
shock meeting at the reflecting surface. Figure 5.16 shows the final regular reflec-
tion frame for tests R1, R8 and R11, with the bottom pixels of the primary and

120



reflected shock highlighted. The bottom pixels of the shocks were then fit to a
line and those lines plotted over the image. Only the very bottom pixels were fit
to minimize impact from the curvature of the shock. Being regular reflections,
the fit lines should intersect at the reflecting surface. In Test R1, Figure 5.16A,
the intersection is 3 pixels below the visualized surface. This implies that the
local height of the non-visualized area is approximately 3 pixels. This matches
the expectation of a large amount of the reflection being obscured and is why the
visualization of the Mach stem was not used as the transition criteria in Figure
5.6. In Test R8, Figure 5.16B, the intersection of the lines is under half a pixel from
the visualized surface. Similarly, in Test R11, Figure 5.16C, the lines intersect at
the visualized surface. This shows that in Tests R8 and R11 the local height of the
non-visualized area is less than half a pixel. In these cases, the uncertainty due to
the Mach stem growth will dominate over the uncertainty due to the local height
of the non-visualized area.

The transition from regular to irregular reflection matched theory to within
the uncertainty of the imaging system. Of the three tests with good data, the
transition to an irregular reflection was observed when the Mach stem was be-
tween a half to full pixel in height, a range between 8 µs and 17 µs. This gives an
uncertainty in the effective wedge angle of the transition of ±5◦.

121



Figure 5.16: The final frame of the regular reflections from Tests R1, R8, and R11.
The bottom pixels of the primary and reflected shocks are highlighted and a fit
line shown.
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5.2 Experimental Peak Pressure and Impulse

5.2.1 Fitting Experimental Pressure Data

Pressure traces were recorded for each of the shock reflection tests so that
the peak pressure and impulse could be evaluated. Figure 5.17 is a flow diagram
that outlines the process used to fit the pressure data to the Friedlander equation,
Equation 1.14. Similar to the non-reflected case, the first step was to crop the
data from the time of arrival to approximately the first time the pressure trace
returns to zero. The pressure traces had two general forms where the pressure
either asymptotically decayed to zero overpressure, Figure 5.18, or passed zero
overpressure to have a negative phase, Figure 5.19. The Friedlander equation
assumes there will be a negative phase which allows the root of the pressure
trace to be found. When the pressure traces without a negative phase were fit to
the Friedlander equation the resulting fitting parameters were unrealistic.
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Figure 5.17: Flow chart outlining the calculation of the Friedlander parameters
for a reflected shock.
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Figure 5.18: Raw pressure trace from the pressure probe at X=-5.1 cm from Test
R1.
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Figure 5.19: Raw pressure trace from the pressure probe at X=-15.2 cm from Test
R1
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To improve the fit of the reflected pressure data that gave unrealistic values,
the pulse duration was first determined then the data was fit to the Friedlander
equation with a fixed pulse duration. The pulse duration was found by plotting
the pressure trace as a function of logarithmic time and linear pressure and per-
forming a linear fit to the lower portion of the pressure trace. The semi-log fit
was performed from a pressure of 40% of the raw peak to the lowest pressure
point. The resulting X intercept of the linear fit is taken as the pulse duration
[70, 107]. This process is shown in the left half of Figure 5.20. The pulse duration
was then used as a fixed value in the Friedlander fit and the peak pressure and
decay coefficent, α, found using a non-linear least squares approach, Figure 5.20
right.

Figure 5.20: Two step fitting to the pressure trace from the pressure probe at X=-
7.6 cm from Test R1. The left plot is the linear fit to the semi-log data to find the
pulse duration. The right plot is the Friedlander fit to determine the remaining
two variables.

In the reflection testing, the explosive pellet was suspended at four different
heights of 8, 9, 11 and 14 charge diameters (0.088, 0.102, 0.123 and 0.155 m). The
fitted peak pressure from each height of burst (HOB) is shown in Figures 5.21
through 5.24. The X axis of Figures 5.21 through 5.24 is the radius from the charge
center to the pressure probe location which was determined using the measured
HOB for each test. The fitted pulse duration for each height of burst are shown
in Figures 5.25 through Figure 5.28. The decay coefficient did not appear to be
a function of HOB, but is only a function of radius from the charge. The decay
coefficient, α, for all reflection tests are shown in Figure 5.29.
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Figure 5.21: Peak pressure values for the 8 charge diameter HOB tests.

Figure 5.22: Peak pressure values for the 9 charge diameter HOB tests.
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Figure 5.23: Peak pressure values for the 11 charge diameter HOB tests.

Figure 5.24: Peak pressure values for the 14 charge diameter HOB tests.
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Figure 5.25: Pulse duration values for the 8 charge diameter HOB tests.

Figure 5.26: Pulse duration values for the 9 charge diameter HOB tests.
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Figure 5.27: Pulse duration values for the 11 charge diameter HOB tests.

Figure 5.28: Pulse duration values for the 14 charge diameter HOB tests.
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Figure 5.29: Decay coefficient, α, for all tests.

132



5.2.2 Uncertainty In Pressure Data

The pressure data had two sources of error, mis-calibration and errors in the
dynamic measurement. To calibrate the pressure probes, the voltage response
of each pressure probe was recorded and a linear fit determined. The deviation
from the fit was recorded at 20%, 40%, 60%, 80%, and 100% of the probes range.
The vast majority had an error below 1%. The error in the dynamic measurement
is more difficult to measure but the objective of fitting the data to the Friedlander
equation is to reduce this error. To quantify the uncertainty in the resulting fit-
ting parameters the standard deviation was calculated as a function of radius. For
the decay coefficient, (α), the data was separated into 2-cm regions and the un-
certainty of each region was calculated. In Figure 5.30, the uncertainty is shown
about the local mean. This process was repeated for the peak pressure, Figure 5.31
through Figure 5.34, and pulse duration data, Figure 5.35 through Figure 5.38, for
each height of burst with the uncertainty calculated for each probe location.

Figure 5.30: Uncertainty as a function of radius for the decay coefficient, α.
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Figure 5.31: Uncertainty as a function of radius for the peak pressure for 8 charge
diameters.

Figure 5.32: Uncertainty as a function of radius for the peak pressure for 9 charge
diameters.
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Figure 5.33: Uncertainty as a function of radius for the peak pressure for 11 charge
diameters.

Figure 5.34: Uncertainty as a function of radius for the peak pressure for 14 charge
diameters.

135



Figure 5.35: Uncertainty as a function of radius for the pulse duration for 8 charge
diameters.

Figure 5.36: Uncertainty as a function of radius for the pulse duration for 9 charge
diameters.
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Figure 5.37: Uncertainty as a function of radius for the pulse duration for 11
charge diameters.

Figure 5.38: Uncertainty as a function of radius for the pulse duration for 14
charge diameters.
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The uncertainty of each term was propagated through the Friedlander im-
pulse equation, Equation 1.15, to find the uncertainty in the final impulse values.
The propagation of uncertainty for an arbitrary function Q = f (x, y, ...) is given
as [108]

∆Q =

√
(

∂ f
∂x

∆x)2 + (
∂ f
∂y

∆y)2 + ... (5.1)

were ∆Q is the uncertainty of the total function and ∆x and ∆y are the un-
certainty of each variable. Starting from Equation 1.15, the partial derivatives for
peak pressure and pulse duration are
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which can be rewritten as
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The partial derivative for α is
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Combining Equations 5.4, 5.5, and 5.6 into Equation 5.1 gives
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Using Equation 5.7 the uncertainty was calculated for the impulse per area
at each pressure probe location. This uncertainty was plotted about the local
mean along with the calculated impulse in Figures 5.39 through 5.42. The propa-
gated uncertainty was much greater than the uncertainty calculated based on the
impulse values themselves. This is due to the interaction between the pulse dura-
tion and decay coefficient terms. When the semi-log fit over calculated the pulse
duration the Friedlander fit gave an overly large α to maintain a good overall fit.
The result is that the large scatter in the pulse duration term forces large scatter
in the decay coefficient term. The large uncertainty in pulse duration and decay
coefficient cause a larger overall uncertainty.
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Figure 5.39: Experimental values and uncertainty of impulse as a function of ra-
dius for the 8 charge diameter tests.

Figure 5.40: Experimental values and uncertainty of impulse as a function of ra-
dius for the 9 charge diameter tests.
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Figure 5.41: Experimental values and uncertainty of impulse as a function of ra-
dius for the 11 charge diameter tests.

Figure 5.42: Experimental values and uncertainty of impulse as a function of ra-
dius for the 14 charge diameter tests.
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5.3 Analytical Peak Pressure and Impulse

Figure 5.43 is a flow chart to summarize the process that will be detailed in
the following section to analytically calculate the peak pressure and impulse for
a reflected shock wave. Inputs such as data and assumptions are shown in ovals.
Calculations and fits are shown in diamonds. There are three terms that are used
to calculate impulse: peak pressure, pulse duration and decay coefficient. The
sub-process for each term is grouped and outlined. The flow chart summarizing
the analytical pulse duration was separated into Figure 5.44.
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Figure 5.43: Flow chart outlining the calculation of analytical impulse for a re-
flected shock. The subprocess used to calculate pulse duration is shown in the
following figure.
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Figure 5.44: Flow chart outlining the calculation of analytical pulse duration for
a reflected shock.
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5.3.1 Analytical Peak Pressure

To calculate the impulse analytically required determining the three under-
lying terms: peak pressure, pulse duration and decay coefficient. The peak pres-
sure is calculated by first determining the reflection type and then solving for the
conditions across each of the reflected shocks. For a given reflection location the
primary shock wave’s Mach number is used to find the effective wedge angle cor-
responding to the sonic condition, as discussed previously in Section 2.4. If the
effective wedge angle is greater than the sonic condition then a regular reflection
will occur. The reflection details are solved by matching the angle of deflection
of the flow across the primary and reflected shock. The pressure ratio across
the reflection is then the product of the pressure ratios across the primary and
secondary shock wave. If the effective wedge angle is less than the sonic condi-
tion an irregular reflection will occur which is solved by simultaneously solving
Equations 2.9 throught 2.17. The pressure ratio at the reflecting surface is then
the pressure ratio across the Mach stem. Using this process, the pressure across
the reflection can be determined for any point along the reflection path.

The pressure was analytically determined for the four heights of burst and
showed good agreement with experimental data. The analytical peak pressure
is shown as a function of radius from the charge center for a height of burst of 8
charge diameters in Figure 5.45. The reflection begins at low radius as a regular
reflection at high over pressure and as the shock expands the Mach number and
changing angle decrease the over pressure. When the reflection reaches the sonic
condition the reflection transitions to an irregular reflection, the vertical dashed
line. The analytical peak pressure then drops after the transition. The peak pres-
sure then continues to decrease at increasing radius but at a lower rate than for
the regular reflection. Comparing the analytical peak pressure with the exper-
imental peak pressure shows that initially the analytical result is in the middle
of the experimental data. The analytical result then slightly underpredicts the
pressure around 0.1 m. Immediately after the transition, the analytical result un-
derpredicts the peak pressure by approximately 50%. The analytical result then
slightly underpredicts the pressure data around 0.135 m. At 0.155 m the analyt-
ical peak pressure is within the scatter of the experimental data but below the
mean of the data. Between 0.17 m and 0.24 m the analytical result is near the
mean of the experimental data and slightly overpredicts the peak pressure of the
final group of experimental data. This is the general trend between the analyt-
ical and experimental peak pressure for the other three heights of burst, Figure
5.46 through Figure 5.48. Initially the analytical peak pressure under predicts the
experimental data. At the transition from regular to irregular reflection the an-
alytical pressure drops. The analytical pressure of the irregular reflection then
under predicts the mean of the experimental pressure immediately after the tran-
sitions but then slightly over predicts the mean of the experimental pressure in
the far field.
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Figure 5.45: Comparison between the analytical and experimental values for peak
pressure for the 8 charge diameter tests.

Figure 5.46: Comparison between the analytical and experimental values for peak
pressure for the 9 charge diameter tests.
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Figure 5.47: Comparison between the analytical and experimental values for peak
pressure for the 11 charge diameter tests.

Figure 5.48: Comparison between the analytical and experimental values for peak
pressure for the 14 charge diameter tests.
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5.3.2 Analytical Pulse Duration

Figure 4.51 showed that the pulse duration of a shock wave expanding into
free air can be predicted by tracking a wave released in the expansion process of
the product gasses. Tracking the wave’s path is fairly straight-forward since the
geometry is spherically symmetric in free air. The spherical symmetry is broken
for the case of a shock reflection. After the release wave detaches from the prod-
uct gases it will begin by expanding uniformly behind the primary shock, similar
to the free air case. At some point, depending on the wave path and height of
burst, the release wave will reach the reflected shock. After the reflected shock the
release wave moves through non-symmetric regions of temperature and speed of
sound.

To calculate the speed of sound field behind the reflected shock requires an
additional assumption to govern the movement of the reflected shock into the
already shocked air. Since a shock wave reflection from a perfect surface is equiv-
alent to a symmetry line between two identical charges, the reflected shock will
be assumed to move with the same radius time curve as the shock propagating
through unshocked air. This is demonstrated in Figure 5.49 where the radius
of the primary and reflected shock have radii of r. This assumption, causes the
reflected shock to have the same velocity as the primary shock.

Figure 5.49: Schematic of how the radius of the reflection shock is defined.

After the primary shock, the shocked air will have a higher temperature than
ambient and as a result will have a higher speed of sound. Assuming the re-
flected shock has the same velocity as the primary shock but moving through
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an environment with a higher temperature, and thus speed of sound, will cause
it to have a lower Mach number. The Mach number was then used to deter-
mine the temperature ratio across the reflected shock with Equation 4.10. Figure
5.50a is the temperature ratio across the primary shock. Using the atmospheric
temperature before the primary shock and Equation 4.9 the speed of sound was
calculated at all points in Figure 5.50a. This was used with the radius time curve
to determine the Mach number of the reflected shock at all points. Areas with
high temperatures had correspondingly high speeds of sound which decreased
the Mach number of the reflected shock. Areas near or in the fireball had very
high temperatures and thus speeds of sound. In these very high speed of sound
areas the Mach number was calculated to be below 1 so the Mach number was
rounded to 1. Using the Mach number of the reflected shock, the temperature
ratio across the reflected shock was calculated, Figure 5.50b. The product of the
temperature ratio across the primary and reflected shock gives the temperature
ratio from atmospheric to behind the reflected shock, Figure 5.50c. The combined
temperature ratio is then used to find the speed of sound behind the reflected
shock, Figure 5.51. The final speed of sound field was calculated on a square
0.1 mm grid.

To verify the methodology and underlying assumptions used to generate
the speed of sound profile in Figure 5.51, the temperature ratio was examined
at two points on the reflecting surface. The first point examined was directly
under the charge, at X = 0 in Figure 5.50. Using the Mach-radius profile, the
Mach number at X = 0 was determined to be 3.2. Using the Mach number, the
equations for a normal shock reflection from [70] and compressible flow relations
[72], the temperature ratio across the reflection was analytically determined to be
5.2. Figure 5.50c shows a predicted temperature ratio of 4.5 across the reflected
shock wave.

The second point examined was at X = 50 mm which would generate a reg-
ular reflection. From the Mach-radius profile the Mach number at this point was
determined to be 2.8 at an effective wedge angle of 63◦. The Mach number and
wave angle across each shock was determined using the process outlined in Sec-
tion 2.2. The temperature ratio across each shock was then determined using the
compressible flow equations across a oblique shock [72]. This gave a temperature
ratio across the reflection of 4.1 compared to the predicted temperature ratio of
3.8 shown in Figure 5.50c. This analysis shows that the new methodology and as-
sumptions used to calculate the temperature field and then speed of sound field
are reasonable and agree with prior analytical methods.

148



Figure 5.50: a) plot of the temperature ratio across primary shock. b) Plot of
the temperature ratio across the reflected shock. c) Plot of the temperature ratio
across the primary and reflected shock.

Figure 5.51: Plot of the speed of sound after the reflected shock.
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The pulse duration at any point on the reflecting surface should be the time
between the arrival of the shock wave and the release wave. The time of arrival
of the shock wave at a pressure probe is found by matching the radius of the pres-
sure probe and the radius time curve for PETN. Calculating the time of arrival of
the release wave starts with the radius and time of the release wave detaching
from the detonation products, Figure 4.50. Next the time at which the release
wave intersects with the reflected shock was calculated using the assumption of
constant radius time curve for the reflected shock. At this point the release wave
began propagating through the non-uniform speed of sound in Figure 5.51. The
path behind the reflected shock was divided into a series of line segments with
each line segment being in only one of the 0.1 mm grid spaces. The time for the
wave to travel each line segment was then just the segment length divided by
the speed of sound. The time of arrival of the release wave is then calculated by
adding the time to reach the reflected shock and the sum of the time to travel all
the line segments after the reflected shock. Using this process the pulse duration
is calculated for the 4 heights of burst, Figure 5.52. The pulse duration assuming
there is no reflection is also shown.

The reflected pulse duration does a better job of predicting the experimental
pulse duration than the non-reflected pulse duration. The reflected shock in-
creases the local speed of sound allowing the release wave to travel faster. This is
highlighted in Figure 5.52a where in both the reflected and non-reflected case the
wave starts at the same location which is the origin of the release wave. The non-
reflected pulse duration continues at the upper edge of the experimental data
while the reflected pulse duration moves to more closely approximate the mean
of the experimental pulse duration. This trend continues in the other 3 heights of
burst studied, Figure 5.52b through 5.52d, with the non-reflected pulse duration
being at the upper edge of the experimental data and the reflected pulse duration
near the mean pulse duration.
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Figure 5.52: Comparison between the analytical pulse duration, for both a non-
reflected and reflected shock, and experimental pulse duration. a) is the 8 charge
diameter tests. b) is the 9 charge diameter tests. c) is the 11 charge diameter tests.
d) is the 14 charge diameter tests.
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Figure 5.53 compares the experimental pulse duration and its uncertainty
with the analytical reflected pulse duration. At the majority of locations in Figure
5.53 the analytical pulse duration is within the uncertainty of the experimental
data. The large variance within the experimental data makes it difficult to deter-
mine if the analytical method under or over predicts the pulse duration.
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Figure 5.53: Comparison between the analytical pulse duration, for both a non-
reflected and reflected shock, and experimental pulse duration. a) is the 8 charge
diameter tests. b) is the 9 charge diameter tests . c) is the 11 charge diameter tests.
d) is the 14 charge diameter tests.
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At all heights of burst studied the reflected pulse duration better matched
the experimental data than the non-reflected pulse duration but the non-reflected
pulse duration may still be a useful tool. Calculating the reflected pulse duration
is more computationally expensive than calculating the non-reflected pulse dura-
tion. In the present work, the reflected pulse duration was more computationally
expensive by 4 orders of magnitude. Future work could increase the efficiency
with how the reflected pulse duration is calculated but it will always be more ex-
pensive than the non-reflected duration. In some applications, where only a first
order approximation or upper limit is required, the non-reflected pulse duration
may be the more useful tool. In Figure 5.54 the experimental pulse duration for
all the reflection tests and the analytical non-reflected pulse duration is plotted.
The analytical non-reflected pulse duration is at the upper limit of the experimen-
tal data. The experimental data for the non-reflected test is added in Figure 5.55.
Figure 5.55 shows that for limited applications where only an order of magnitude
accuracy is required the analytical non-reflected pulse duration may be a useful
tool.

Figure 5.54: Comparison between the analytical non-reflected pulse duration and
the experimental pulse duration for all the shock reflection tests.
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Figure 5.55: Comparison between the analytical non-reflected pulse duration and
the experimental pulse duration for all tests, both shock reflection and the non-
reflected tests.
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5.3.3 Decay Coefficient

Since there is not a physical model for the decay coefficient, α, the parameter
was determined by fitting the experimental data. To define α as a function of
radius, the experimental data was fit to a power law function, as shown in Figure
5.57. The power law fit was chosen as it has been used in literature previously to
describe the decay coefficient [105] and as it was used to describe α for the non-
reflection case, Figure 4.19. The data was fit to other curve fitting equations but
the other equations either yielded worse results or only marginal improvements
that did not justify the change from the literature method. The main reason for
the poor coefficient determination is the large amount of scatter in the α data.
Less noisy data would allow for the better determination of the optimum fitting
method for the decay coefficient.

Figure 5.56: The experimental decay coefficient, α, for the reflection tests and
power law fit to the data.

Comparing the decay coefficient, α, between the reflected and non-reflected
tests shows a large amount of overlap. Figure 5.57 shows the decay coeffiecient
for the non-reflection tests as well as their associated power law fit and the data
from the reflected tests with their fit. The maximum radius of the detonation
products, determined via CTH in Section 4.4.4, is also shown. Comparing the
two fits of the reflected and non-reflected cases shows that each starts at a dif-
ferent value at the edge of the fireball and seems to decay to a common value.
Additional data, paired with better data collection and analysis, to limit uncer-
tainty, would show if these two fits do asymptotically approach a single value in
the far field or stay separated.
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Figure 5.57: The experimental decay coefficient, α, for all tests and the power law
fit to both the reflected and non-reflected data .
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5.3.4 Analytical Impulse

Using the three terms of the Friedlander equation, peak pressure, pulse dura-
tion and decay coefficient, the impulse was analytically determined as a function
of radius. Figures 5.58 through 5.61 show the analytical impulse as a function of
radius from the charge center for the 4 heights of burst. In Figure 5.58 the im-
pulse starts at its highest value and then as the shock wave expands the impulse
begins to decrease. Shortly before reaching the reflection transition the impulse
reaches a local minimum and then increases until it reaches the reflection transi-
tion. This local minimum is caused by the interaction between the pressure and
pulse duration. In Figure 5.45 the peak pressure decreases from the normal re-
flection to the reflection transition but the slope decreases as it approaches the
transition. In contrast the pulse duration, Figure 5.55, increases at a mostly con-
stant rate across the entire area studied. Thus the local minimum is caused by
a point where the decreasing derivative of peak pressure matches the increasing
derivative of pulse duration. The reflection transition from regular to irregular
reflection causes a drop in the impulse that is caused by the drop in peak pres-
sure across the transition. After the reflection transition the impulse continues
to decrease with increasing radius. This pattern is repeated at all charge heights,
Figures 5.59 through 5.61. The impulse starts high, decreases to a local minimum
and then rises until it reaches the reflection transition where it drops and de-
creases with increasing radius. With increasing HOB the drop in impulse across
the reflection transition decreases until at a height of 14 charge diameters the two
lines almost meet.

Comparing the analytical and experimental impulse shows that the analyti-
cal impulse is within the uncertainty of the data. In Figures 5.58 through 5.61 the
experimental data are shown as dots with the uncertainty shown at the experi-
mental mean.

In the 8-charge-diameter tests, Figure 5.58, prior to the reflection transition
the analytical impulse is within the experimental data. Just after the reflection
transition the analytical impulse is below the experimental data but within the
uncertainty. With increasing radius the analytical impulse moves closer to the
mean of the experimental data until at 0.22 m the analytical impulse is at the ex-
perimental mean. Finally at approximately .25 m the analytical impulse is slightly
over the experimental mean. For the 9- and 11-charge-diameter cases, Figure 5.59
and Figure 5.60, the analytical impulse is within the uncertainty of the experimen-
tal impulse over the entire range studied. For the majority of the probe locations,
it is within the experimental data. For the 14-charge-diameter tests the analytical
impulse was within the uncertainty of the experimental impulse except for the fi-
nal two sets of data points at 0.25 m and 0.27 m, for which the analytical impulse
is slightly above the uncertainty

The analytical impulse well predicts the experimental data. Over the ma-
jority of the regions studied the analytical impulse is within the spread of the
experimental data. In only 2 of the 36 regions studied was the analytical impulse
outside of the uncertainty for the data. This shows that the method used to pre-
dict the 3 terms underlying impulse are valid. That being said, both the analytical
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models and experimental method can be improved. The large uncertainty in the
experimental data makes it difficult to identify the cause of the discrepancy be-
tween the experimental and analytical impulse. Further research should focus
on reducing the uncertainty of the experimental results and decreasing radial
distance between probes. The analytical results predict a discontinuity in pres-
sure and impulse across the reflection transition but the large spacing between
pressure probes do not allow the differentiation between a smooth transition and
sharp discontinuity in impulse.

Figure 5.58: The experimental impulse with one standard deviation and the ana-
lytical impulse for the 8 charge diameter tests shown as a function of total radius
from the charge. The transition from regular reflection to irregular reflection is
shown as the vertical dotted line.
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Figure 5.59: The experimental impulse with one standard deviation and the ana-
lytical impulse for the 9 charge diameter tests shown as a function of total radius
from the charge. The transition from regular reflection to irregular reflection is
shown as the vertical dotted line.

Figure 5.60: The experimental impulse with one standard deviation and the ana-
lytical impulse for the 11 charge diameter tests shown as a function of total radius
from the charge. The transition from regular reflection to irregular reflection is
shown as the vertical dotted line.
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Figure 5.61: The experimental impulse with one standard deviation and the ana-
lytical impulse for the 14 charge diameter tests shown as a function of total radius
from the charge. The transition from regular reflection to irregular reflection is
shown as the vertical dotted line.
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5.3.5 Surface Plots of Peak Pressure, Pulse Duration and Impulse

The analytical techniques used to calculate the impulse at the 4 heights of
burst can be applied to any height of burst. Figure 5.62 is a surface plot of the
peak pressure from a 1 g PETN charge as a function of X distances and heights
of burst. The black line in the figure denotes the location of the transition from
regular reflection to irregular reflection. Comparing the pressure on either side of
the transition for various height of burst shows that at a low height of burst the
pressure drop across the transition is quite large. At higher heights of burst there
is a pressure increase across the transition. Figure 5.63 shows the pulse duration
as a function of X distances and heights of burst. Between the origin and a radius
of 93 mm nothing is plotted as this area is inside of the product gases which
is beyond the scope of this work. Figure 5.64 is the surface plot of impulse at
varying heights of burst. The black line denotes the transition from regular to
irregular reflection.

Figure 5.62: Surface plot of peak pressure as function of height of burst and X
distance from the charge. The transition from regular to irregular reflection is
shown as the black line.
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Figure 5.63: Surface plot of pulse duration as function of height of burst and X
distance from the charge. The areas inside of the product gasses are not shown.

Figure 5.64: Surface plot of impulse per unit area as function of height of burst
and X distance from the charge.
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Using Figure 5.64 the impulse at a given point or region on a reflecting sur-
face can be predicted for a given height of burst. There are several points that
can be learned from Figure 5.64. The most important point is that in many cases
reducing the distance to the charge does not increase the impulse. As an exam-
ple, if the X distance to the charge is fixed at 0.1 m, the minimum radius to the
charge is at the lowest height of burst (HOB), 0.01 m, but the highest impulse,
0.0297 Ns/M2, is at a HOB of 0.124 m which is just before the transition from reg-
ular reflection to irregular reflection. This shows a second interesting point that
for a fixed X distance to the charge, the highest impulse is adjacent to the transi-
tion from regular to irregular reflection. For a HOB less than 0.164 m the regular
reflection side of the reflection transition has a higher impulse but at larger HOB
the irregular reflection side has the higher impulse. This point of inflection is
caused by the change in the pressure across the reflection transition as a function
of HOB. At 8 charge diameters there is a substantial drop in pressure across the
reflection, Figure 5.45. As HOB is increased the drop in pressure across the tran-
sition decreases until at 14 charge diameters there is a minimal drop across the
transition. At a HOB of 0.164 m there is no change in pressure across the tran-
sition and increasing the HOB above 0.164 m results in an increase in pressure
across the transition.

For most cases of a fixed height of burst, decreasing the X distance to the
charge increases the impulse but there are few exceptions. There is a local min-
imum of impulse prior to the reflection transition. Within this region increasing
the X distance will increase the impulse until the reflection transitions to an ir-
regular reflection. After the transition, increasing the X distance will decrease the
impulse.
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CHAPTER 6

EXPERIMENTAL METHODS OF KILOGRAM-SCALE TEST
SERIES

Experiments were conducted at Eglin Air Force Bases Advanced Warhead
Experimentation Facility (AWEF). This test series consisted of the detonation of
kilogram-scale PBXN-110 charges over a reflection platform instrumented with
pressure probes. Five high speed cameras were placed in a 120◦ arc around the
charges. Four cameras were configured as BOS imaging systems with frame rates
set between 15,000 and 60,000 frames per second (fps). The final camera recorded
at between 50,000 and 60,000 fps and was used in a retroreflective shadowgraph
system.

The explosive charges were cast spheres of PBXN-110 which are listed in
Table 6.1. All charges where center initiated with an RP-1 detonator into a cylin-
drical 12.7 mm (0.5 inch) diameter by 12.7 mm (0.5 inch) long PBXN-5 booster.
The charges were cast as single units with a cavity for the initiation train. The
booster and detonator were glued into the cavity immediately prior to use. Three
sizes of spherical charges were used. The smaller charges had a mass of 0.45 kg
(1 lb.) and a diameter of 40.6 mm (1.6 inches). The middle charges had a mass
of 1.36 kg (3 lb.) and a diameter of 58.3 mm (2.295 inches). The largest charges
had a mass of 2.72 kg (6 lb.) and a diameter of 147 mm (5.8 inches). Each test was
denoted using a letter and number: spherical charges have the prefix ”S” and
individual tests were then numbered sequentially.

The charges were suspended over a steel reflection platform with flush mounted
pressure probes in a star-burst pattern, which is shown in Figure 6.1. The star-
burst pattern was centered below the charge and comprised of eight lines of pres-
sure transducers placed at 45 degree rotations and named A through H. The A
line, pointing towards the shadowgraph camera, had a gauge located directly
under the charge. Each line had a gauge at a radius of 152, 381, 686, 1067 and
1397 mm (6, 15, 27, 42, and 55 inches) from the center gauge. The A and E lines
had gauges at 165 mm (6.5 inches) instead of 152 mm (6 inches). The B, D, F, and
H lines had 45◦ off-sets from the shadowgraph camera, and an additional gauge
at 1778 mm (70 inches). The exact transducer used at each gauge location varied
on individual tests based on the expected pressure at that location as a function
of the charge height and weight.

165



Figure 6.1: Diagram of the pressure probe locations for the kilogram-scale test
series. A pressure gauge was located at the intersection of each ring and radial
line.
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Table 6.1: Details of the explosive charge used in each test. The rounded charge
weight denotes which of the three weight ranges the charge falls in: 0.45 kg (1 lb.),
1.36 kg (3 lb.), or 2.72 kg (6 lb.).

Test Name Rounded Charge
Weight (kg)

Exact Charge
Weight (kg)

Height of
Burst (cm)

S1 1.36 1.298 116
S2 1.36 1.303 116
S3 1.36 1.301 116
S4 1.36 1.298 174
S5 1.36 1.309 174
S6 0.45 0.457 116
S7 0.45 0.454 116
S8 1.36 1.275 116
S9 2.72 2.723 116
S10 2.72 2.730 116

6.1 Refractive Imaging Systems

Two types of refractive imaging systems were used to visualize each test:
retro-reflective shadowgraph and BOS. The light source for the retro-reflective
system was a 1000 watt arc lamp focused onto a rod mirror. The rod mirror was
secured to a lens cover on a fixed focal length lens on the high speed camera
which was approximately 13 m (44 ft.) from the charge. The arc lamp light
was then projected onto the retro-reflective screen placed approximately 4.6 m
(15 ft.) behind the charge. The cameras used for BOS were placed at similar
distances, approximately 13 m, from the charge. The ambient lighting conditions
were not sufficient for the natural landscape to act as a high contract background,
so speckle boards were used as a background. These boards were placed approx-
imately 4.6 m (15 ft.) behind the charge in a semi-circle opposite the BOS cameras.
All but one camera was placed at a similar elevation to the charge. The elevated
camera, which was used for BOS, was elevated by placing it on the roof of a
nearby one-story structure. To provide a background for the elevated camera,
the reflection platform was speckle painted. The speckle boards and platform are
visible in Figure 6.2. The refroreflective screen is shown in Figure 6.3.
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Figure 6.2: Photograph of part of the setup for the large scale tests. In the center
of the image is the reflection platform in which the starburst pattern of the pres-
sure gauges can be seen. The speckle boards used as a background for BOS are
positioned behind the reflection platform. The non-speckled space is where the
retro-reflective shadowgraph screen is placed prior to the test.
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Figure 6.3: Photograph of part of the setup for the large scale tests. A 1.36 kg
(3 lb.) sphere charge is hanging from the gantry. Behind the charge is the retro-
reflective shadowgraph screen.
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6.2 Camera Synchronizing

The method used to synchronize the cameras for the large scale test was to
supply each camera with a timing signal from a pulse generator. This was done as
an attempt to provided more accurate synchronization than IRIG. To determine
the accuracy of the synchronization, the data from five cylindrical charge tests
were examined with the results shown in Tables 6.2 and 6.3. Table 6.2 lists the
time, reported by the camera in µs, between when the camera receives the trigger
signal and when it begins to record the next image which is listed as frame 0. In
a system of perfectly synchronized cameras, all cameras would report the same
time. In a system with no synchronization, each camera will have a time between
0 and the inverse of the frame rate. At the bottom of the table is the maximum
time difference between cameras within a test. Table 6.3 lists the frame in which
first light is seen in each camera where frame 0 is the first frame after the trigger
signal was received. First light is defined as the first frame where any change is
seen in the explosive article. At the bottom of Table 6.3 is the maximum frame
difference between the first light frame in number of frames and in µs.
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Table 6.2: The difference, in µs, between the time the camera receives a trigger
signal and when it opens its digital shutter for the frame 0 for five individual
tests.

Test C1 C2 C3 C4 C5
Camera 1 (µs) 7.87 4.94 19.5 7.75 2.52
Camera 2 (µs) 8.9 6.3 19.64 8.48 3.02
Camera 3 (µs) 9.19 6.06 19.81 7.94 3.2
Camera 4 (µs) 8.82 5.84 19.77 8.61 2.5
Camera 5 (µs) 8.77 5.57 20.12 8.19 1.72
Max Difference
(µs)

1.32 1.36 0.62 0.86 1.3

Table 6.3: The difference, in frames, between the time the camera receives a trig-
ger signal and when any light is seen from the explosive. All cameras were
recording at 50,000 fps so the time between each frame is 20 µs.

Test C1 C2 C3 C4 C5
Camera 1
(frame)

0 0 0 0 1

Camera 2
(frame)

0 0 -1 0 0

Camera 3
(frame)

-1 -1 -2 0 0

Camera 4
(frame)

-2 -2 -2 -2 -1

Camera 5
(frame)

0 0 0 0 1

Max Difference
(frames)

2 2 2 2 2

Max Difference
(µs)

40 40 40 40 40
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Table 6.2 and Table 6.3 give contradictory views of the accuracy of the syn-
chronization. The reported time between frames and trigger listed in Table 6.2
show that the cameras should be synchronized to within ±1µs, this is half the
maximum discrepancy to a whole frame rate period. Using the difference in
frame numbers shown in Table 6.3, the cameras should be synchronized to within
±20µs, this is half the maximum discrepancy rounded up. An additional check
was to compare frames to estimate the discrepancy in time between cameras. Fig-
ure 6.4 shows the frame of first light for test C1 from each camera view. In four
of the views, the fireball has consumed only part of the charge. The other camera
view was over exposed so no determination can be made. Given the length from
the center of the charge to the end is 89 mm and PBXN-110 has a detonation ve-
locity of 8.39 mm µs−1 [109]. If it is assumed that the detonation wave has reached
steady state, it should take 10.6 µs for the entire charge to be consumed. Because
the fireball has only consumed a fraction of the charge, it can be assumed that
the synchronization is well below 10 µs for this test. The conclusion from Table
6.2 and 6.3 and Figure 6.4 is that the cameras are synchronized to within about
±5 µs, but frame 0 is not well defined. As such, the frame that first light is ob-
served will be taken as frame 0 moving forward and the synchronization will be
conservatively taken as ±20µs.
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Figure 6.4: The frame at which first light was observed for cylinder test C1. Frame
0 is defined by the camera as the first frame after it receives the trigger signal. The
images have been image processed to improve visibility of the charge. a) Frame
0 for camera 1, the shadowgraph camera. b) Frame 0 for camera 2. c) Frame -1
for camera 3. d) Frame -2 for camera 4. e) Frame 0 for camera 5.

173



6.3 Camera Calibration Techniques

Camera calibration is used to relate images taken with a digital camera to
the physical objects recorded. The camera calibration used in this work is single
camera calibration. Single camera calibration techniques are used to determine
the size of refractive objects in shadowgraph and BOS images. The camera cali-
bration was calculated by analyzing images of a checkerboard pattern.

Single camera calibration techniques allow for measurements to be made in
a single plane. A MATLAB script was written to perform these calibrations by
automatically detecting the pixel locations of the corners of a checkerboard pat-
tern of known size. This was used to generate a series of pixel-per-unit-length
calibrations for each square in the checkerboard pattern. The mean calibration
value is used to make measurements within the plane the calibration was taken;
two standard deviations from the mean was used as the uncertainty in each cali-
bration value.

In BOS imaging the shock wave is assumed to be imaged in a fixed plane.
Since the background is sufficiently far behind the object, the diffuse light coming
from the background was assumed to be effectively parallel and thus the shock
wave was visualized in a single plane that is perpendicular to the camera that
contains the shock source. For this reason the system is calibrated in the plane
that contains the shock source.

In retro-reflective shadowgraph imaging, the shock wave is assumed to be
visualized on a spherical surface which contains the shock source and the camera
lens. Retroreflective shadowgraph imaging visualizes the shock wave where the
diverging light rays are perpendicular to the shock propagation direction [50].
As a result, a geometric correction is required to measure the radius of shock
waves in shadowgraph images. This correction uses the geometry of the imaging
system and a calibration taken in the plane of the retro-reflective screen.

6.4 BOS Processing

The BOS image subtraction processing technique is used to improve detec-
tion of refractive objects [47]. In this work, the technique is used to compare two
images from an individual camera at different times. The two images compared
will be a reference image, referred to as a ”cold image”, and the image which is
being analyzed, or ”hot image”. In the image subtraction process used, the val-
ues of the pixels in the cold images are compared on a pixel-by-pixel basis to the
pixel values from the hot images using:

pic(x, y) =
[hot(x, y)− cold(x, y)]2

hot(x,y)+cold(x,y)
2 + 1

(6.1)
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where hot(x, y) is the value of a pixel at location x,y in the analyzed image,
cold(x, y) is the value of a pixel at the same location in the reference image, and
pic(x, y) is the value recorded for that pixel location in the new image [60]. The
value of any pixel change determines the brightness of the pixel in the new image.
When imaging refractive objects, the magnitude of change in pixel values tends
to be small, so the resulting image is processed with a manual histogram stretch
to make the shock wave more visible. The values used in each histogram stretch
are manually determined to produce an image with a clearly visible shock wave
with minimal background noise.

The image subtraction method can be optimized for shock wave tracking by
careful selection of the reference image, which is described in Figure 6.5. In tradi-
tional BOS, which is shown in the left column of Figure 6.5, the reference image
is taken before the event. When subtracted from the test image, the resulting im-
age shows everything that has changed since detonation including the fireball,
changes in lighting due to the fireball, lens glare, fragments, and the shock wave.
In Figure 6.5c neither the reflected or secondary shock is visible and the area near
the fireball is also washed out due to the lighting from the fireball. One method to
reduce this noise and increase the detail of the shocks is to use the previous image
in the high-speed imaging sequence as the reference image [87]. This sequential
subtraction approach is illustrated in the right column of Figure 6.5. By subtract-
ing the previous image from the test image, the resulting BOS image shows only
high velocity features such as fragments and shock waves that have changed in
the time between frames and does not show slower objects such as the fireball.
This also increases the apparent density with which the shock wave is visualized
because artifacts from the shock position at both times appear in the image. This
makes automated detection of the shock easier without changing the location of
the shock front [86, 87]. The difference made by selection of a proper reference
frame can be seen in the difference between Figure 6.5c and f. These images have
been processed using the same method except that Figure 6.5f used sequential
subtraction.
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Figure 6.5: (a) Reference image before detonation. (b) Hot image 3.34 ms after
detonation. (c) BOS image created by image subtracting (a) and (b). (d) Refer-
ence image recorded 1 frame (0.017 ms) before hot image. (e) Hot image, iden-
tical to (b), 3.34 ms after detonation. (f) Sequential BOS image created by image
subtracting (d) and (e). All images are from test S6.
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CHAPTER 7

RESULTS AND DISCUSSION OF KILOGRAM-SCALE TEST
SERIES

A kilogram-scale test series was performed at the AWEF at Eglin Air Force
Base. The test series used spherical charges with masses between 0.45 kg and
2.72 kg (1 lb. and 6 lb.).

Refractive imaging was used to track the radius of the shock wave from the
spherical charges as a function of time. The direct high speed images from spher-
ical tests were processed into BOS images using the process outlined in Section
6.4. The shadowgraph images were adjusted to improve brightness and contrast
but did not require further image processing. The location of the shock front was
determined either manually or automatically at multiple points in each frame
of each camera view. The shock locations were then used to determine the shock
wave radius at each point in pixel units. The pixel units were scaled to meters and
used to generate a time radius curve. This analysis was performed on a 0.45 kg
and 1.36 kg (one and three pound) spherical charge test. The data from each test
was scaled to 1 kg at standard temperature and pressure using the Sac’s Scal-
ing Equations, 1.6 thru 1.9. The scaled data was then fit to the Dewey Equation,
1.10, which gave the fitting parameters of A=0.0146, B=1, C=-0.628, and D=2.51.
The averaged scaled radius from each camera view and the curve fit is shown
in Figure 7.1. The shock wave reflection characteristics for each test were then
examined, similar to the analysis performed on the gram-scale charges.

7.1 Shock Reflection Transition

The spherical tests only produced regular reflections over the range visual-
ized by the shadowgraph system. The reflection should transition from regular
to irregular below an effective wedge angle of 50◦. Due to the height of burst of
the charges, the edge of the screen was at 52◦ relative to the center of the charge,
this angle is equivalent to the effective wedge angle at the screen edge. As a re-
sult, the regular to irregular reflection transition is expected to occur outside the
shadowgraph field of view. Figure 7.2 shows that the shock wave from test S3,
a spherical 1.36 kg charge, produced a regular reflection at the edge of the shad-
owgraph system. This result was similar to all of the spherical tests, in that the
shadowgraph system only visualized regular reflections. The BOS cameras had
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Figure 7.1: Radius-time plot for 1 kg of PBXN-110. The data from the 0.45 kg and
1.36 kg is shown along with the Dewey Curve fit.

a wider field of view than the shadowgraph system but the higher noise levels in
the BOS images prevent the identification of the shock reflection.
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Figure 7.2: Shadowgraph of a regular shock wave reflection from test S3 0.87 ms
after detonation. The location of regular reflection is indicated by the arrow. The
charge used was 1.36 kg of PBXN-110.
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7.2 Experimental Peak Pressure and Impulse

7.2.1 Frequency Filtering Pressure Data

The pressure traces from the kilogram test series had more noise than the
gram scale tests. Figure 7.3 shows that in addition to the expected random noise,
many pressure traces had a strong oscillation around a mean at a regular interval,
which will be referred to as ’ringing’. The ringing noise was most prominent in
probes between the 3 to 5 pressure probe rings, as labeled in Figure 6.1. One
method to remove this type of noise is frequency filtering.

To perform the frequency filtering, the pressure trace was converted from
the time domain to the frequency domain with a fast Fourier transform (FFT).
The resulting frequency plot is shown as the blue line in the left of Figure 7.4.
The frequency analysis showed a strong peak at appromimetly 160 kHz and a
lesser peak at 150 kHz. To remove these peaks, the frequencies between 140 to
180 kHz were removed, the orange line in Figure 7.4. The filtered frequency data
was then transformed back to the time domain via an inverse FFT. The unfiltered
and filtered pressures traces are shown in the right of Figure 7.4.

Figure 7.3: Pressure trace from probe A4 from tests S3 which was a 1.36 kg (3 lb)
charge at a height of burst of 1.16 m (46 inches).

The frequency filtering eliminated the ringing noise but did not affect the
random noise. To handle the random noise the filtered pressure data was fit
to the Friedlander equation, Equation 1.14. Since the pressure asymptotically
approached 0 overpressure, the two step fitting approach, discussed in Section
5.2.1, was used to fit the data. The resulting fit and the fitting parameters are
shown in Figure 7.5. The original, un-frequency filtered, pressure trace was also
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Figure 7.4: Left, frequency analysis of the pressure trace from test S3 probe A4
before and after filtering. Right, the pressure trace before and after frequency
filtering.

fit to the Friedlander equation to determine the effect of frequency filtering prior
to fitting to the Friedlander equation, Figure 7.6. The frequency filtering had a
negligible effect in the found values for peak pressure, pulse duration and the
decay coefficient. The frequency filtering changed the found values by less than
1% for test S3 probe A4, Figures 7.5 and 7.6. This analysis was repeated for 4 other
probes which had prominent ringing noise. In each case, the frequency filtering
changed the found values by 1% or less. This shows that the Friedlander fitting
process is able to remove the ringing noise without pre-processing required and
for this reason only the Friedlander fitting will be used in the following analysis.
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Figure 7.5: The frequency filtered pressure trace from test S3 probe A4 fit to the
Friedlander equation via the two step process.

Figure 7.6: The unfiltered pressure trace from test S3 probe A4 fit to the Friedlan-
der equation via the two step process.
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7.2.2 Fitting and Uncertainty of Experimental Pressure Data

Pressure traces for each spherical test were recorded at up to 45 positions
for each test and the data were fit to the Friedlander equation to reduce noise.
There were 4 configurations of the kilogram scale spherical tests; the base line
tests, abbreviated as ’B’, had a mass of approximately 1.36 kg (3 lb.) and a height
of burst of 1.16 m (46 inches), the elevated tests (’E’) had a mass of approximately
1.36 kg (3 lb.) and a height of burst of 1.74 m (69 inches), the light tests (’L’) had
a mass of 0.45 kg (1 lb.) and a height of burst of 1.16 m (46 inches), the heavy
tests (’H’) had a mass of 2.72 kg (6 lb.) and a height of burst of 1.16 m (46 inches).
The peak pressure values for each test configuration are shown in Figure 7.7. The
uncertainty at each pressure probe location was calculated and shown at the local
mean. The pulse duration and corresponding uncertainty are shown for each test
configuration in Figure 7.8.

The decay coefficient, α, was determined to not be a function of height of
burst in the gram-scale tests, so it is possible to directly compare all of the test
configurations. The α term and the radius was found for each probe, then the
radii of the tests were scaled to 1 kg using Sachs scaling, Equations 1.6 through
1.9. The found α values and scaled radius are shown in Figure 7.9 along with the
uncertainty which was calculated for each 0.2 m region.

The found values of the Friedlander equation were combined in Figure 7.10
to calculate the impulse at each point. The uncertainty for the impulse was found
by propagating the uncertainties of peak pressure, pulse duration and decay co-
efficient. The full discussion of how uncertainty propagated for impulse was
presented in Section 5.2.2. The large uncertainties and interaction between the
pulse duration and decay coefficient terms result in the propagated uncertainty
for impulse being much larger than if the uncertainty was calculated on the final
impulse values.
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Figure 7.7: Peak pressure values for the 4 spherical test configurations. ’B’ are
the base line tests, ’E’ are the elevated tests, ’L’ are the light tests and ’H’ are the
heavy tests.
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Figure 7.8: Pulse duration values for the 4 spherical test configurations. ’B’ are
the base line tests, ’E’ are the elevated tests, ’L’ are the light tests and ’H’ are the
heavy tests.
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Figure 7.9: Decay coefficient, α, for all spherical tests. ’B’ are the base line tests,
’E’ are the elevated tests, ’L’ are the light tests and ’H’ are the heavy tests.
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Figure 7.10: Experimental impulse for all spherical tests and the uncertainty
found by propagating the uncertainties of peak pressure, pulse duration and de-
cay coefficent. ’B’ are the base line tests, ’E’ are the elevated tests, ’L’ are the light
tests and ’H’ are the heavy tests.
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7.3 Analytical Peak Pressure and Impulse

7.3.1 Analytical Peak Pressure

The analytical peak pressure was calculated as a function of radius for each
of the 4 charge configurations and compared to the experimental data. Using the
Dewey parameters found from Figure 7.1, the Mach-radius curve was calculated
and the radius scaled for the charge mass for each configuration. Using the charge
height and scaled Mach-radius curve the analytical peak pressure was then cal-
culated with the procedure laid out in Section 5.3.1. The analytical pressure was
then compared to the experimental peak pressure found from the Friedlander fits
in Figure 7.11. In almost all cases the analytical peak pressure over predicts the
Friedlander fitted peak pressure.

The ringing noise in the pressure trace may be causing the Friedlander fit to
underpredict the peak pressure. The blue line in Figure 7.12 is the un-modified
pressure trace from test S2 probe A1. This probe was chosen as it was directly
under the charge and the well understood normal reflection would occur. The
Friedlander peak pressure is shown as the yellow dot which is well below the
peak pressure of the un-fitted data. The analytical pressure is shown as the pur-
ple dot which is between the Friedlander peak pressure and the un-fitted peak
pressure. Pressure traces of a regular and irregular reflection are shown in Figure
7.13. The reflection type at each location was determined analytically. In each
case the analytical peak pressure was between the Friedlander and the raw peak
pressure. Figure 7.14 shows that the analytical peak pressure is within the exper-
imental data for the un-fitted peak pressure for all configurations.
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Figure 7.11: Analytical peak pressure and the Friedlander experimental peak
pressure for each test configuration. ’B’ are the base line tests, ’E’ are the elevated
tests, ’L’ are the light tests and ’H’ are the heavy tests.
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Figure 7.12: Pressure trace from the A1 pressure probe from the S2 test which is a
baseline configuration. The Friedlander fit and resulting peak pressure is shown
along with the analytical peak pressure.
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Figure 7.13: R is the pressure trace from the A3 pressure probe from the S2 test
which is a baseline configuration. The reflection at this location was analytically
predicted to be a regular reflection. I is the pressure trace from the A6 pressure
probe from the S2 test which is a baseline configuration. The reflection at this
location was analytically predicted to be an irregular reflection. The Friedlander
fit and resulting peak pressure is shown along with the analytical peak pressure.
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Figure 7.14: Analytical peak pressure and the unfitted experimental peak pres-
sure for each test configuration. ’B’ are the base line tests, ’E’ are the elevated
tests, ’L’ are the light tests and ’H’ are the heavy tests.
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7.3.2 Analytical Pulse Duration

The analytical pulse duration starts at the origin of the release wave, which is
covered in detail in Section 5.3.2. The theoretical origin of the release wave is the
point of zero overpressure at the detonation products interface but this point can
only be determined with an analytical model or computational simulation. The
point of maximum detonation product expansion should be near the point of zero
overpressure but can be determined experimentally. Figure 7.15 is a streak image
of the detonation products from test S4 which was a 1.3 kg (3 lb.) charge. The
streak image was made with the radial direction parallel to the reflection surface
and zero radius at the charge center. PBXN-110 is comprised of 88% HMX with
the balance being binders [110]. During the detonation process the binders do not
fully oxidize which make the detonation products appear either black or glowing
red. In Figure 7.15, t = 0 is first light, which whites out the field of view. When
the detonation products become visible they are rapidly expanding. At 1.3 m and
1.5 ms the expansion rate of the detonation products drops to effectively zero. At
2.7 ms a secondary shock from within the fireball reaches the detonation products
interface and the fireball begins to expand again. After the secondary shock the
detonation products goes through a second expansion process and then slows
and stops expanding. Following this the reflected shock reaches the field of view
forcing the detonations products upwards and outwards.

The point where the detonation products first stopped expanding, 1.3 m and
1.5 ms, is the point of maximum expansion. Using this point as the origin of
the release wave the pulse duration can be analytically determined. Figure 7.16
shows the experimental and analytical pulse duration for the ’B’ test configura-
tion. The vertical dotted line is the maximum radius of the detonation products.
The pulse duration inside of the detonation products is outside the scope of this
work but if the analytical pulse duration line is extrapolated backwards the ex-
trapolated line would be within the uncertainty of the experimental pulse dura-
tion. At the first three pressure probe radii that are outside the detonation prod-
ucts, the analytical pulse duration is within the uncertainty of the experimental
data. At the final probe radius the analytical pulse duration is outside of the un-
certainty but is within the experimental data. Figure 7.17 shows the experimen-
tal and analytical pulse duration for the ’E’ test configuration which also used a
1.3 kg (3 lb.) charge. Over the entire range shown the analytical pulse duration
underpredicts the experimental pulse duration. At the first 4 probe radii the an-
alytical pulse duration is at the bottom of the uncertianty region. The analytical
pulse duration is below the uncertianty at 2.25 m and below the experimental
data at 2.5 m.
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Figure 7.15: Streak image from test S4 which was a 1.3 kg (3 lb.) charge. The
radial direction is parallel to the reflection plane.

Figure 7.16: Comparison of the experimental, experimental uncertainty, and ana-
lytical pulse duration for the ’B’ test configuration.

194



Figure 7.17: Comparison of the experimental, experimental uncertainty, and ana-
lytical pulse duration for the ’E’ test configuration.
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Figure 7.18 is a streak image of the detonation products from test S6 which
was a 0.45 kg (1 lb.) charge. Similar to the 1.3 k (3 lb.) charge there is an ini-
tial section of rapid expansion which ends at the maximum expansion at 0.9 m
and 0.97 ms. Figure 7.19 shows the experimental and analytical pulse duration
for the ’L’ test configuration. At all radii the analytical pulse duration is within
the uncertianty but it is at the edges of the uncertianty region for all but one of
the radii. Due to the larger fireball from the 2.72 kg charge no camera fully cap-
tured the expansion process and the point of maximum expansion could not be
experimentally determined.

Figure 7.18: Streak image from test S6 which was a 0.45 kg (1 lb.) charge. The
radial direction is parallel to the reflection plane.
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Figure 7.19: Comparison of the experimental, experimental uncertainty, and ana-
lytical pulse duration for the ’L’ test configuration.
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7.3.3 Decay Coefficient

Since no physical model for decay coefficient exists, the alpha values for all
the spherical kilogram scale tests were plotted as a function of scaled radius and
fit to a power law function, as shown in Figure 7.20. Further details on the de-
cay coefficient or power law fit can be found in Section 5.3.3. Since the decay
coefficient is not a function of height of burst and Figure 7.20 shows that Sachs
scaling can be used to scale the radius term it is possible to directly compare the
α terms from the kilogram scale test series and the gram scale test series. Figure
7.21 shows experimental data and power series fits of α for both test series. The
two curve fits have very similar shapes but are slightly offset.

Figure 7.20: Plot of the decay coefficient α for all the kilogram scale sphere tests as
a function of scaled radius. The power fit to the data is shown with the resulting
parameters.
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Figure 7.21: Comparison of the reflected decay coefficient α between the gram
and kilogram scale test series. Only the radius has been scaled using Sachs scal-
ing. The power fits are also shown.
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A potential cause of the offset between the two fits in Figure 7.21 is the dif-
ference between the explosive used in the gram scale tests and the kilogram scale
tests. The charges in the gram scale tests were effectively pure PETN. The PBXN-
110 used in the kilogram tests was only 88% HMX with the remaining 12% being
a binder system, the main component of which was hydroxyl-terminated polybu-
tadiene polymer (HTPB) [110]. One method to account for the differences in ex-
plosives is by comparing their internal energy or specifically energy release. E0
is the JWL term that describes the total heat of reaction of an explosive [111]. To
compare decay coefficient α between two explosive materials a scaling approach
was developed which is given by:

Es =
E0

Ere f
(7.1)

αs = α/Es (7.2)

where Es is the heat of reaction scale factor, Ere f is a reference heat of reaction,
and αs is the scaled decay coefficient.

Using the new α scaling equations, Equations 7.1 and 7.2 and Sachs scaling
equations, Equations 1.6 through 1.9, the decay coefficients were compared be-
tween the gram and kilogram tests and shown to have good agreement. PETN
was used as the reference heat of reaction to which the PBXN-110 data was scaled
to. PETN has a heat of reaction of E0 = Ere f = 10.8 (GPa cm3/cm3 g) [111] and
PBXN-110 has a heat of reaction of E0 = 8.7 (GPa cm3/cm3 g) [112]. The data
was scaled using both α and Sachs scaling and fit to a power law function and is
shown in Figure 7.22. Accounting for the heat of reaction of the explosives caused
the gram and kilogram fits to collapse. The combined gram and kilogram data
was fit power law function and is shown in Figure 7.23. The fit values and R2 of
the unscaled α data from Figure 7.21 and the scaled α data from Figure 7.22 are
shown in Table 7.1. The fit values and R2 for the combined g and kg data is also
listed in Table 7.1. For comparison, the combined g and kg un-scaled α data was
fit to a power law function and the resulting values listed in Table 7.1.

Four literature curves for the decay coefficient α as a function of scaled radius
are presented in Figures 4.52 and 4.54. The Kinney and Graham data is from TNT
charges [70] and the Larcher curve is based off of data from a 1984 report which
used hemispheres and spheres of TNT [103, 113]. The internal energy of TNT
is E0 = 6 (GPa cm3/cm3 g) [114]. Using Equation 7.1 and 7.2 the Kinney and
Graham and Larcher curves were scaled to the same internal energy as PETN and
are plotted in Figure 7.24 along with the gram and kilogram data and the fit to
the combined data. The data used to generate the Lam curve was calculated from
a 1955 numerical solution for the shock wave from a sphere of high pressure gas
[101, 99]. Currently the α scaling approach is only applicable to explosive charges
and so the Lam curve is omitted. The full details of the Borgers experimental data
were unavailable so it is also omitted.
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Figure 7.22: Comparison of the scaled reflected decay coefficient α between the
gram and kilogram scale test series. Both the α term and radius have been scaled.
The power law fits are also shown.

Figure 7.23: The combined gram and kilogram scaled data of the reflected decay
coefficient α and resulting power law fit. Both the α term and radius have been
scaled.
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Table 7.1: List of the power law fit terms from the scaled and un-scaled gram,
kilogram and combined tests. The α scaling factor for the scaled gram and kilo-
gram tests is shown.

Data Set Es Value a Fit Value b Fit Value R2

Kilogram Unscaled N/A 6.14 -1.51 0.825
Gram Unscaled N/A 7.61 -1.35 0.644

Combined Data Unscaled N/A 6.53 -1.40 0.678
Kilogram Scaled 0.806 7.62 -1.51 0.825

Gram Scaled 1 7.60 -1.35 0.644
Combined Data Scaled N/A 7.61 -1.45 0.756

Figure 7.24: The combined gram and kilogram scaled data of the reflected decay
coefficient α and resulting power law fit with two α curve from literature shown.
Both the α term and radius have been scaled.
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Figure 7.24 shows that there may be a universal decay coefficient curve for
reflected shocks. The Kinney and Graham curve is a close match for the com-
bined fit to the gram and kilogram data. The Larcher curve has the same shape
as the combined fit curve but is offset while still being within the spread of the
experimental data. A potential cause for the offset between the two curves is the
different methods used to determine α, since the method used to calculate α has
been shown to have an impact on the found value [105]. In the present work
α was determined by fitting the pressure trace data to the Friedlander equation.
In the Larcher work, first the impulse, peak pressure and pulse duration was
determined and then α was calculated from the Friedlander impulse equation,
Equation 1.15 [103]. By scaling the α term to account for the differences in heat
of reaction of the explosives and applying Sachs scaling to the radii, all the data
from the gram and kilogram tests overlap and agree with historical data.
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7.3.4 Analytical Impulse

Using the analytically determined peak pressure, pulse duration and the fit-
ted decay coefficient the analytical impulse was calculated for ’B’, ’E’ and ’L’ test
configurations. Since the point of maximum expansion for the 2.72 kg charges
could not be found, the pulse duration for the ’H’ test configuration could not be
determined. Figure 7.25 shows the analytical and experimental pulse duration
for the ’B’ test configuration which consisted of a 1.36 kg (3 lb.) charge at a height
of burst of 1.16 m (46 inches). In the current model for pulse duration, the pulse
duration is undefined below the radius of maximum product expansion. This
is why the analytical impulse is not shown below the line of maximum expan-
sion. At 1.35 m the analytical impulse is at the mean of the experimental data.
At the first probe radii after the reflection transition the analytical impulse un-
derpredicts the experimental analytical results but is still within the uncertainty
bound. At 1.8 m the analytical solution is below the bounds of the experimental
uncertainty. At 2.15 m the analytical results are back to within the uncertainty
but slightly below the experimental data.

Figure 7.25: Comparison between the experimental and analytical impulse for
the ’B’ test configuration. The impulse is undefined below the maximum product
expansion.

Figure 7.26 compares the analytical and experimental impulse for the ’E’
configuration which had a 1.36 kg (3 lb.) charge at a height of burst of 1.74 m
(69 inches). From the first probe radii to 2.1 m the analytical agrees very well
with the experimental data being near the mean of the data. After 2.1 m the
analytical overpredicts the experimental but is within the uncertainty. After the
reflection transition the analytical overpredicts the experimental impulse by 25%.

204



Figure 7.27 compares the analytical and experimental impulse for the ’L’ configu-
ration which had a 0.45 kg (1 lb.) charge at a height of burst of 1.16 m (46 inches).
At all points the analytical impulse dramatically overpredicts the experimental
results. This is due to the discrepancy between the raw peak pressure values and
those found by the Friedlander fit. In Figure 7.28 the experimental impulse is
calculated using the unfitted peak pressure. Using the unfitted peak pressure the
analytical impulse is within the experimental data.

Figure 7.26: Comparison between the experimental and analytical impulse for
the ’E’ test configuration.

Figures 7.25, 7.26, and 7.28 show that the techniques developed from the
gram scale test series can be used to predict the impulse of kilogram scale charges
of the same spherical geometry. The ringing noise in the kilogram scale pressure
trace data caused the Friedlander fitting equation to underpredict the peak pres-
sure. The pulse duration was calculated using the point of maximum product
expansion as an approximation of the location of the point of zero overpressure
and decay coefficient was found by fitting the experimental data to a power law.
Using these techniques, over the majority of the region studied the impulse was
predicted to within the uncertainty of the data.
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Figure 7.27: Comparison between the Friedlander experimental and analytical
impulse for the ’L’ test configuration.

Figure 7.28: Comparison between the experimental and analytical impulse for
the ’L’ test configuration. The peak pressure term is the unfitted peak pressure.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

8.1 Summary and Conclusions

The majority of prior research in the field of shock wave reflections has fo-
cused on pseudo-steady reflections which are fundamentally different from the
most common case of explosively-driven unsteady shock waves. The present
work combines prior pseudo-steady reflection theory with new models, method-
ologies, and scaling to better predict and understand unsteady shock waves and
their reflections. A new model for the pulse duration of free air shocks, where
the origin of the release wave is at the point of zero overpressure, is applied
and shown to better predict experimental results than the prior model. A novel
methodology to calculate the pulse duration of reflected shocks is shown to accu-
rately predict the experimental results. A novel scaling approach was developed
for the Friedlander decay coefficient α of shock reflections based on the heat of re-
action of the explosive is shown to collapse the data from two different explosive
materials. Using these new models, methodologies, and scaling the overpressure,
decay coefficient, and impulse from a shock wave reflection can be analytically
predicted for any charge size, height of burst, or distance from the charge.

The sonic condition model predicts that a shock wave reflection will change
types when the flow behind the reflection becomes sonic. The present work
demonstrated that the sonic condition model was able to predict the reflection
type of explosively driven shock waves to within the accuracy of the refractive
imaging systems used to document the experiments. The slow growth rate of
Mach stems was also discussed and shown to be an important factor in when an
irregular reflection will be visualized.

The impulse from a shock wave can be expressed as a function of three pa-
rameters: the peak overpressure, the pulse duration and the path between those
two points which is mathematically described as a decay coefficient. For a regular
reflection the overpressure is the product of the pressure change across primary
and reflected shock. For an irregular reflection the peak pressure is the pressure
across the Mach stem. The value of the pressure change across these shocks was
found by solving the boundary condition and continuity equations for each re-
flection type. This was shown to predict the overpressure of explosively driven
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shock waves at the gram and kilogram scale and over a wide range of reflection
conditions.

Pulse duration is the time between the arrival of the shock wave and when
the overpressure returns to zero. The point when the overpressure returned to
zero was found by tracking a release wave traveling behind the primary shock
moving at the local sound speed. The prior model placed the origin of the release
wave at the shock wave breakout but wave diagram analysis of the expansion
of the detonation products was developed to show this to not be a viable origin.
The proposed model uses an origin for the release wave which is the point of zero
overpressure across the detonation products. A one dimensional rectangular an-
alytical model of the expansion of the detonation products was developed and
shown to not be applicable to spherical geometries. The hydro-code CTH was
used to computationally simulate the expansion of the detonation products and
the point of zero overpressure across the detonation products interface was de-
termined for a spherical gram charge. The point of maximum product expansion
was also determined in the simulation and shown to be located near the point of
zero overpressure across the detonation products. This point of maximum expan-
sion can thus be used as a proxy for the zero overpressure point. This is useful
because the maximum expansion point can be experimentally visualized. The
point of maximum product expansion was then determined for kilogram scale
charges of different composition through streak images of the explosive fireballs.

The release wave was tracked from its origin outwards as function of time
to determine the pulse duration for a variety of configurations. The simplest
configuration was of a shock wave expanding into free air. The speed of sound
field which the release wave moved through was spherically symmetric and cal-
culated from basic compressible relations. This approach was shown to accu-
rately predict the pulse duration of gram scale non-reflected shocks. Calculating
the pulse duration of reflected shocks requires accounting for the non-symmetric
fields behind the reflection. After the release wave detached from the detona-
tion products it would start by traveling through the symmetric field behind the
primary shock. The release wave then intersects the reflected shock. After pass-
ing the reflected shock the release wave moves through the non-uniform speed
of sound field. A new methodology to track the release wave through the non-
symmetric field is proposed and shown to accurately predict the pulse duration
of gram and kilogram charges at a range of heights of burst and angles.

The final term need to calculate impulse is the decay coefficient which was
found experimentally by fitting the experimental data to a power law function.
The Friedlander decay coefficient was found to vary between reflected and non-
reflected shock wave. The decay coefficient of a reflected shock was shown to be
independent of charge height. The reflected decay coefficient was also shown to
scale well across different explosives by applying a novel scaling approach based
on the heat of reaction of the explosive and across orders of magnitude differences
in charge mass by applying Sach’s scaling to the radius from the charge. This
novel scaling approach shows that it may be possible to analytically calculate the
decay coefficient of an arbitrary explosive and size.
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The impulse was analytically determined by combining the three terms: peak
overpressure, pulse duration, and decay coefficient. Over the majority of the
range studied the analytically determined impulse was within the uncertainty
of the experimental impulse. This analysis shows that the analytical methodol-
ogy used to calculate the impulse is an accurate and useful tool. The analytical
methodology was then used to create surface plots of the peak pressure, pulse
duration, and impulse for a wide range of heights of burst and horizontal dis-
tances. These surface plots show regions of local minimums and maximums and
can be used to discuss effect of changing height of burst has on impulse for a
given location.

8.2 Recommendations for Future Research

This dissertation covers only a fraction of the research possible with explo-
sively driven shock wave reflections. A few areas that were identified during the
course of this work that warrant further research and experimentation include
development of a physical model for the decay parameter and investigating more
near-field effects of explosions where the fireball plays a more prominent role.

The decay coefficient of the Friedlander equation, α does not have a physical
model. Current methodology for predicting α is built on the fitting of experimen-
tal data to an arbitrary curve. This work has shown that using a standard method-
ology to calculate the Friedlander parameters caused α from multiple charge ma-
terials and heights to collapse when scaled for charge mass and internal energy.
This work should be expanded to develop either a physical model of the decay
coefficient.

A potential model for the decay coefficient could be developed by treating
the pressure decay process with the same methodology as the pulse duration.
The pulse duration is calculated by propagating a specific pressure from the det-
onation products interface outwards. It may be possible to approximate the pres-
sure decay process as a series of fractions of the peak overpressure propagated
outward from the detonation products.

Prior to the development of a physical model of decay coefficient it may
be possible to generate a universal scaling law of α for shock wave reflections.
This work showed that the scaled decay coefficient of the reflection of a spherical
charge of PETN and PBXN-110 had very similar shapes and values. By repeat-
ing these experiments with a wider range of explosive materials, charge masses
and most importantly charge geometries it may be possible to show that α has a
predictable scalable form for specific charge geometries.

One limitation of the current work is that the analytical model of pulse dura-
tion is undefined for radii less than the origin of the release wave. Development
of a model for the pulse duration inside of the detonation products would allow
the calculation of pulse duration and impulse for any point in the experimen-
tal field. This may be achieved by tracking the rarefaction waves inside of the
detonation products.
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A one dimensional rectangular analytical model of the expansion of the det-
onation products was developed and shown to not be applicable to spherical
geometries. Development of a spherical analytical model of the detonation prod-
ucts will allow the origin of the release wave to be determined for an arbitrary
explosive material without the need for detailed computer simulations or exper-
iments. A spherical analytical model could also be used to determine the pulse
duration inside of the detonation products.
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0.506" Max.4.50"

0.130" DIA. Max.

BRIDGED
HEADER

INITIATING 
EXPLOSIVE: 
18 mg of  PETN

HIGH DENSITY EXPLOSIVE: 
9 mg of PETN

SLEEVE

RP-3 EXPLOSIVE TRAIN

RP-3 Firing Parameters
• Threshold Burst Current: 200 amps
• Threshold Voltage: Approx. 500 volts
• Threshold Voltage Std. Deviation: 25 volts maximum
• Function Time: 1.5 µsec. typical
• Function Time Simultaneity

Standard Deviation: 0.060 µsec Max.

is a subsidiary of Reynolds Industries, Incorporated

RP-3
EBW DETONATOR

Page 22

Caution: While EBW and EFI Initiators are inherently less susceptible to accidental detonation during handling and set-
up than devices containing primary explosives, electrical and electronic firing systems are sensitive to transient electrical
energies which could cause premature triggering or firing. The blasting area must be clear of personnel and equipment
before the detonator leads are connected to any RISI Firing System. Only approved RISI Firing Systems should ever be
used to initiate or detonate any explosive product manufactured and authorized for sale by RISI.

RP-3 EBW Detonator
P/N 167-9225

The RP-3 EBW detonator is a miniature detonator containing less than 30 mg of
PETN explosive. Although small this detonator will initiate most common military
explosives. The RP-3 is used in situations which cannot tolerate blast or fragment
damage but still requires the safety and reliability of an EBW detonator.
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