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Abstract
A new scaling is developed for both air and underwater blast waves based on dimensional analysis. The new length, time,
velocity, and pressure scales are based on three control parameters: the energy release of the explosive EHE , the density
of the undisturbed ambient medium ρ0 , and the speed of sound in the undisturbed ambient medium C0 . The shock wave
propagation is divided into two regimes based on its decay characteristics, and the resulting control parameters are different
in each regime. For strong shocks with Mach numbers MSW � 5, the increase in the shock wave radius R with time t is
approximated by a power law with an exponent of 2/5 as previously described by G. I. Taylor. Shock propagation in this
regime is shown to not be a function of the ambient medium sound speed, but only the ambient medium density, explosive
energy release, and time. For weak shock waves with Mach numbers MSW � 5, the shock wave radius increase with time can
be approximated by a linear function plus a logarithmic-type correction which decays to a sound wave at sufficiently long
time. Shock propagation in this regime is scaled according to the medium’s ambient density, sound speed, explosive energy
release, and time. The new scaling is compared to, and agrees well with, published experimental data for air and underwater
blasts, from milligram explosions to nuclear blasts. The new scaling improves upon traditional Hopkinson and Sachs scaling
by relating shock propagation in liquid and gas environments, allowing them to be scaled to a single functional relationship.
The functional scaling relationships developed here are dimensionless.
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1 Introduction

Shock waves generated by explosions propagate through
an ambient environment producing overpressures and ulti-
mately damage throughout the blast field. Shock wave
positionversus time fromexplosions is oneof themost funda-
mental measurements in explosive engineering applications
and has been reported throughout the history of explosive
studies [1–5]. Many experimental methodologies have been
developed to identify shockwave propagation including pho-
togrammetry [6], particle tracers [7], and refractive imaging
[5,8–10], and pressure gauges as time of arrival sensors.
Although many experimental approaches have been applied,
theoretical prediction from first principles, i.e., governing
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equations, is limited, and the predictions rely heavily on
experimental studies.

Apowerful tool for semi-analytic analysis of blastwaves is
dimensional analysis,which has been applied from the begin-
ning of blast wave studies [11,12]. Dimensional analysis is
regularly incorporated in the study of fluid dynamics, heat
transfer, and explosives (see, e.g., Buckingham [13], Bridg-
man [14], Taylor [1], Sedov [15], Baker [16], and Barenblatt
[17]). According to Churchill [18], the fundamental basis
for dimensional analysis was established by Fourier in 1822.
Rayleigh [19] demonstrated the power of dimensional analy-
sis in a short paper published in theNaturemagazine in 1915,
giving examples from various fields. Taylor [1] demonstrated
the power of dimensional analysis in the prediction of the first
atomic blast energy release using a series of pictures.

Dimensional analysis is not only useful in providing
proper scaling for the experimental data, but the proper
scaling can yield insight into the underlying physics. The
first step in a dimensional analysis is to identify relevant
parameters in the physical problem. Table 1 lists some of
the major parameters that affect the propagation of shock

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00193-021-01012-y&domain=pdf
http://orcid.org/0000-0001-7256-6052
http://orcid.org/0000-0001-5861-6770


232 T. Wei, M. J. Hargather

Table 1 Parameters involved in
shock wave propagation

High explosive parameters Ambient medium parameters Blast wave parameters

ρHE : density of HE ρ0 : density of ambient medium t : time of arrival

eHE : specific energy of HE C0 : speed of sound R: shock wave location

rHE : radius of HE P0 : ambient pressure USW : shock wave speed

si: shape parameters T0 : ambient temperature u: particle velocity

Vdet : detonation speed γ : adiabatic index Pmax : peak shock wave pressure

I : impulse

Table 2 Traditional scaling
laws of blast waves by
Hopkinson–Cranz [11,12],
Sachs [21], and Baker [16]

Hopkinson–Cranz Sachs Baker

Repeating variables WHE EHE , ρ0 , P0 EHE ,C0 , P0

Characteristic length lc ∼ W 1/3
HE

∼ rHE lc =
(

EHE
P0

)1/3

lc =
(

EHE
P0

)1/3

Scaled distance from source R
W 1/3

HE

R
lc

= RP1/3
0

W 1/3
HE

R
lc

= RP1/3
0

E1/3
HE

waves: high explosive (HE) properties (column 1), ambient
mediumproperties (column2), and the shockwaveproperties
(column 3).

Explosives are frequently characterized by their specific
energy release eHE = EHE/mHE . In general, the specific
energy of common high explosives is similar, and the dif-
ference is rarely larger than 50%. Moreover, the difference
of explosives becomes smaller when eHE is raised by a 1/3
power, as shown below in the analysis. Here, the heat of det-
onation (e.g., eHE ≈ 4.6 MJ/kg for TNT, eHE ≈ 5.81 MJ/kg
for PETN) [20] is used as the energy release for the scaling
as a representative total energy release.

The first scaling of blast waves was developed more than
one hundred years ago, independently by Hopkinson [11]
and Cranz [12]. The Hopkinson–Cranz “law” was based on
empirical observation, and the scaled distance z is still a
dimensional variable:

z
def= R

W 1/3
HE

(1)

where R is the distance from the detonation center and WHE

is the weight of the explosive. Thus, the Hopkinson–Cranz
law is also called the cube-root law. The Hopkinson–Cranz
law which states that similar shock waves are generated
from two explosions at the same scaled distance z is con-
venient in many practical applications. A shortcoming of the
Hopkinson–Cranz law is that the ambient mediums for the
two explosions have to be at the same conditions.

In the 1940s, Sachs [21] improved the Hopkinson–Cranz
law by considering the effect of the external atmospheric
conditions. Using a similarity transformation, Sachs derived
a scaling that accounts for the effects of atmospheric condi-
tions. Sachs scaling can be presented as:

z
def= RP1/3

0

W 1/3
HE

(2)

A formal dimensional analysis of shock waves was per-
formed by Baker et al. [16], who chose EHE , P0 , andC0 as
the repeating variables.

The traditional scaling relations of shock wave are sum-
marized in Table 2. In the traditional analysis, the air blast
and underwater blasts are typically treated separately. In the
present work, a unified scaling is developed for air and under-
water blasts from a dimensional analysis.

2 New shock wave scaling

Proper selection of control parameters is of utmost impor-
tance in a successful dimensional analysis of any flow or
heat transport problem. Here, a dimensional analysis, dif-
fering from that of Baker’s by the selection of the control
parameters, is proposed. The control parameters are selected
as EHE , ρ0 , C0 , and the independent variable is the shock
wave arrival time t . The new dimensional analysis is summa-
rized in Table 3, where the third row is the non-dimensional
control parameter of the problem. In the new dimensional
analysis, there are four control parameters, entailing three
primary dimensions: mass, length, and time. Thus, there is
only one non-dimensional control parameter, Πt .

In this scaling analysis, the velocity scale is set as C0 or
the speed of sound in the undisturbed ambient medium. The
length scale is set as:

lc
def=

( EHE

ρ0 C2
0

)1/3 = (V– HE)
1/3

(ρHE eHE
ρ0 C2

0

)1/3
(3)
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Table 3 New dimensional analysis of blast wave

Control parameters EHE , ρ0 , C0 , t

Repeating variables EHE , ρ0 , C0

Non-dimensional control parameter, Π Πt = t C0
(EHE /(ρ0C

2
0
))1/3

Characteristic length lc
def=

(
EHE
ρ0 C2

0

)1/3

Hence, the length scale lc is directly related to the
property of the explosive (EHE) and the ambient medium
(ρ0 and C0 ). Equation (3) shows that lc is proportional to the
radius of the high explosive, rHE , via the volume V– HE . As
an example, for a spherical shape HE, (V– HE)

1/3 = 1.61rHE .
Equation (3) also shows that lc is proportional to the ratio
(ρHE eHE/(ρ0 C

2
0 ))

1/3, where ρHE eHE is the energy of the high
explosive per unit volume and ρ0 C2

0 is the kinetic energy of
the ambient medium moving at the speed of sound. For TNT
blast in air, (ρHE eHE/(ρ0 C

2
0 ))

1/3 ≈ 38.5, and for TNT blast
under water, (ρHE eHE/(ρ0 C

2
0 ))

1/3 ≈ 1.5. This ratio is much
larger than 1 for a nuclear blast.

The time scale is set as:

tc
def= lc

C0
(4)

Thus, the time scale also depends on both the explosive prop-
erties and the ambient medium properties. The pressure scale
is set as

Pc
def= ρ0C

2
0

(5)

The pressure scale depends solely on the properties of the
ambient medium.

A dimensional analysis for the shock wave radius growth
with time can be presented as:

R = f (EHE , ρ0 ,C0 , t) (6)

and the new non-dimensional, scaled variables are denoted
by a superscript * as:

R∗ def= R

lc
= R

(EHE/(ρ0C
2
0
))1/3

= R

m1/3
HE

(ρ0C2
0 )

1/3

e1/3HE

(7a)

t∗ def= t

tc
= t C0

(EHE/(ρ0C
2
0
))1/3

(7b)

Thus, the non-dimensional form for the growth of shockwave
radius is given by:

R∗ = Ψ1(t
∗) (8)

where Ψ1 is a non-dimensional function that needs to be
determined from experimental measurements or numerical
simulation, or if possible, from an analytic solution.

Examining (7a), the Hopkinson–Cranz scaled distance

z = R/W 1/3
HE is one part of the new scaled distance. The

second part is an atmospheric scaling, which is similar to
the Sachs scaling, but uses an atmospheric dynamic pressure
based on sound speed instead of static atmospheric pressure.
If the ambient medium is a gas, then ρ0C2

0 = γ P0, and the
new scaled shock wave radius can be written as:

R∗ = RP1/3
0

m1/3
HE

γ 1/3

e1/3HE

(9)

This reproduces the Sachs scaled distance (Table 2). How-
ever, Sachs scaling cannot be applied to the underwater blast.
The new scaling applies to both air and underwater blasts.

Similarly, a dimensional analysis for the pressure of the
shock wave can be presented as:

P = f (EHE , ρ0 ,C0 , t) (10)

Denoting the scaled, non-dimensional pressure as
P∗ def= P/(ρ0C

2
0
), the non-dimensional pressure can be pre-

sented as

P∗ = Ψ2(t
∗) (11)

where the non-dimensional function also needs to be deter-
mined by experimental, numerical, or analytical solution.

The shock wave radius R can also be used as the indepen-
dent variable, instead of the arrival time t . For example, the
dimensional analysis for pressure or overpressure can also
be presented as:

P = f (EHE , ρ0 ,C0 , R) (12)

and the non-dimensional form becomes

P∗ = Ψ3(R
∗) (13)

The non-dimensional form of pressure as a function of radius
is generallymore useful for explosive applications and is used
here for comparison with experimental data.

3 Scaling of the shock wave radius

This scaling and dimensional analysis is evaluated here
using published experimental measurements of shock wave
propagation from numerous sources. Figure 1a presents
the dimensional shock wave radius versus the dimensional
arrival time. The data include air and underwater blasts of
explosions from milligrams to 100 ton, as well as nuclear
blasts. The measured times range from 0.1 µs to 1 s, and the
shock wave radius ranges from 1 mm to 1 km.
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(a) (b)

Fig. 1 a Dimensional shock wave radius versus time. Red open symbols are air blast, and filled blue symbols are underwater blast. b Scaled shock
wave radius and arrival time, R∗ versus t∗, using new scaling

In Fig. 1a, the air blast data with small t and R include
experiments of Kleine [8] (milligrams of AgN3) and Har-
gather and Settles [9] (grams of PETN). The kilogram C4 air
blast data are from Hargather [10] . The 100 ton TNT blast
data are fromKingery et al. [3], and 20 ton propane blast data
are from Dewey [22]. The nuclear blast data include Trinity
[1], Grable, and MET [23]. The underwater blast data pre-
sented in Fig. 1a are from Itoh et al. [24] (0.1 kg SEP), Kira
et al. [25] (0.005−0.1 kg SEP), and a nuclear blast published
by Porzel [26].

Figure 1b presents the new scaled shock wave radius ver-
sus the new scaled time: R∗ versus t∗. Overall, the new
scaling collapses the air and underwater blast data well. Scat-
ter is observed in the near charge measurements of small
scale explosions. It is known that the traditional scaling laws
are most improbable near the charge surface [2]. Possible
causes of the scatter near the charge surface include that the
radius of shockwave immediately after detonation is affected
by the shape of the explosive, the actual detonation is not
instantaneous, and experimental measurement uncertainties
are higher in regions of high shock wave velocities.

Based on the characteristics of shock wave radius growth
with time shown in Fig. 1b, the propagation of a shock wave
can be divided into two regimes: strong and weak shock
waves. For strong shock waves (small t∗, or small R∗ and
large MSW), the growth of the shock wave radius with time
can be approximated as:

R∗ ≈ (t∗)2/5 for MSW � 5 (14)

The 2/5 power law was first derived by Taylor [1], von
Neumann [27], and Sedov [15]. According to von Neu-
mann [27], the 2/5 power law was presented by G. I. Taylor
in June 27, 1941 (British Report RC-210), and by J. von
Neumann in June 30, 1941 (NDRC, Div. B, Report AM-
9). G. I. Taylor applied a classic dimensional analysis, and

vonNeumann’s arguments were also essentially dimensional
analysis. Sedov’s derivation was based on a similarity solu-
tion (see, e.g., [28]). As the exponent 2/5 was first suggested
by Taylor [1], this region is referred to as the Taylor regime
or the strong shock regime. The shock wave Mach number
in the Taylor regime can be approximated as:

MSW ≈ 2

5
(t∗)−3/5 ≈ 2

5
(R∗)−3/2 for MSW � 5 (15)

For smaller shock wave Mach numbers (MSW � 5),
termed the weak shock regime, the growth of the shock wave
radius can be approximated as:

R∗ ≈ t∗ + a
[
ln(b + c(t∗)m)

]n for MSW � 5 (16)

where the coefficient b is assigned to be 1 to match the origin
(R∗ = 0 at t∗ = 0) and coefficients a, c,m, and n are deter-
mined by curve fitting. Using the experimental data, here
the values of a ≈ 0.45, c ≈ 15, m = 1.4, and n ≈ 0.3
were found. These coefficients or the function form for the
weak shock regime are in no sense exact. More data are
required to improve determination of the coefficients and
to potentially identify more physically fundamental func-
tions. Logarithmic-type functions have been used in previous
studies of weak shock waves, but are not identified via an
analytical solution of the problem. For example, Kirkwood
andBrinkley [29] derived an asymptotic function at large dis-
tances, in which the maximum pressure is proportional to the
inverse of the logarithmic of the shock radius. Based on curve
fitting,Goodmandeveloped a formula for themaximumover-
pressure at large distance [2] and a logarithmic function is
involved. Dewey [7] has also proposed an empirical function
that uses logarithmic functions which has been widely used
in recent studies [5,9,10], but the functional form can result in
unphysical values if extrapolated outside the data used for the
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(a) (b)

Fig. 2 The predicted shock wave Mach numbers for the strong shock regime (15) and the weak shock regime (17). a Shock wave Mach number
versus the scaled time. b Shock wave Mach number versus the scaled radius. To avoid clutter, only three data are shown including the Trinity
nuclear blast, 0.37mg AgN3 (silver azide) data are from Kleine [8], and the 0.8g PETN data are from Hargather and Settles [9]

Table 4 Regimes in the
propagation of a shock wave

Strong shock regime Weak shock regime

t∗ � 0.02 t∗ � 0.02

R∗ � 0.2 R∗ � 0.2

Msw � 5 Msw � 5

R∗ ∼ (t∗)2/5 R∗ ∼ t∗ + a
[
ln(b + c(t∗)m)]n

a = 0.45, b = 1, c = 15, m = 1.4, n = 0.3

Msw ≈ (2/5)(t∗)−3/5 ≈ (2/5)(R∗)−3/2 MSW ≈ 1 + a · c ·m · n (t∗)m−1

(b+c(t∗)m )
[
ln(b+c(t∗)m )

]1−n

fit. The form proposed by Dewey is a dimensional equation,
for which each of the four curve fit coefficients has a different
dimensional value. The scaling relationship proposed here in
(16) is completely dimensionless, and all of the coefficients
are also dimensionless.

The shock wave Mach number in the weak shock regime
can be expressed by differentiating (16):

MSW ≈ 1 + a · c · m · n · (t∗)m−1

(b + c(t∗)m)
[
ln(b + c(t∗)m)

]1−n

for MSW � 5

(17)

Thus, the shock wave propagation in the weak shock regime
is approximated by a sound wave plus a logarithmic cor-
rection. As t∗ → ∞, the Mach number approaches 1, as
physically expected.

The predicted shock wave Mach numbers for the strong
shock regime and the weak shock regime are illustrated in
Fig. 2. To avoid clutter, only three data sets of shock wave
Mach number are presented in the figure. The shock Mach
number MSW is computed by finite differencing of the mea-
surement shockwave radius data.Overall, (15) and (17) agree
reasonably well with the experimental data.

4 Control parameters in different regimes

Experimental data shown in the preceding sections indicate
that the propagation of shock waves can be divided into two
regimes: a strong shock regime and a weak shock regime,
which decays to a sound wave. In the strong shock regime,
the shock wave radius grows with time as a 2/5 power law.

In G. I. Taylor’s dimensional analysis, the control param-
eters for the shock wave radius are given as

R = f (EHE , ρ0 , t) (18)

Compared with (6), Taylor’s dimensional analysis did not
include the speed of sound as a control parameter, which
leads directly to a 2/5 power law with time.

In the strong shock regime, the sound speed of the undis-
turbed medium C0 is not a control parameter, because the
shock velocity is much larger thanC0 . However, as the shock
decays and its velocity becomes comparable with the sound
speed,C0 becomes an important control parameter. As shock
wave decays further, the energy release of the high explo-
sive, EHE , becomes irrelevant and the shock wave transitions
to a sound wave. The control parameters are summarized in
Table 5 for the strong and weak regimes. Table 5 also shows
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Table 5 Control parameters in
different regimes of shock wave
propagation

Regime Strong shock Weak shock Sound wave

t∗ t∗ � 0.05 0.05 � t∗ � 1 t∗ � 1

Control parameters t; EHE , ρ0 t; EHE , ρ0 ,C0 t; ρ0 ,C0

MSW (2/5)(t∗)−3/5 Ψ (t∗) 1

(a) (b)

Fig. 3 Scaling of the maximum overpressure in air blast and underwater blast: a Hopkinson–Cranz scaling, b new scaling. The dashed curve
for R∗ < 0.3 in Fig. 3b represents (20) with MSW approximated by (15), and the solid curve for R∗ > 1 in Fig. 3b represents (20) with MSW

approximated by (17). The sources of the air blasts are [2,3,22], and the sources of the underwater blast are [25,32–34]

the control parameters for a sound wave, which is the limit
of the weak shock wave regime.

5 Scaling of the peak overpressure

Overpressure is one of the most important quantities in the
study of shock waves. Overpressure (OP) represents the
pressure rise over atmospheric pressure that occurs as a
shock wave propagates past a location of interest [30]. The
overpressure integrated over time represents the explosive
impulse, which describes a structure’s response to shock
loading [30]. The peak overpressure produced by a shock
wave in a gas can be calculated from the shock wave
Mach number at a given location using one-dimensional gas
dynamics relationships:

OPmax

P0
≈ 2γ

γ + 1
(M2

SW
− 1) (19)

which has been shown to be accurate for a range of
charge sizes [5,9,10,30,31]. The overpressure thus scales
with the shock wave Mach number. Figure 3a presents
the overpressure versus the distance using the traditional
Hopkinson–Cranz’s scaling. The air blast and underwater

blast data collapse individually to two separate curves. The
new scaling developed here scales overpressure according
to:

OPmax

ρ0 C2
0

≈ 2γ 2

γ + 1
(M2

SW
− 1) (20)

In Fig. 3b, the new scaling is applied to the overpressure
and the distance from the detonation center which collapses
the air blast and underwater blast onto one curve. The dashed
curve for R∗ < 0.2 in Fig. 3b represents (20) with MSW

approximated by (15), and the solid curve in Fig. 3b rep-
resents (20) with MSW approximated by (17). Note that
deviation from the curve at small radii and high pressure
are due to the failure of the ideal gas law assumptions built
into (19).

6 Conclusions

Anewdimensional analysis was developed to study the prop-
agation of shock waves. The new analysis unifies the scaling
for the air blasts and underwater blasts through the definition
of new length, time, and pressure scales. The shock wave
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propagation is divided into strong shock and weak shock
regimes based on the shock wave Mach number, observed
growth characteristics, and relative importance of identi-
fied control parameters. The control parameters in this new
dimensional analysis are the energy release of the explosion
EHE, the density of the ambient medium ρ0 , and the speed
of sound in the undisturbed ambient medium C0 .

Dimensionless functional relationships for the shockwave
growth are developed here. At large shock wave Mach
number, Msw � 5, the growth of the shock wave radius is pro-
portional to t2/5 which agrees with the analytical solutions
developed by G. I. Taylor and others. Shock propagation in
this regime is shown to not be a function of the ambient
medium sound speed, but only the ambient medium den-
sity, explosive energy release, and time. For weak shock
waves with Mach numbers MSW � 5, the shock wave radius
increase with time can be approximated by a linear func-
tion plus a logarithmic-type correction which decays to a
sound wave at sufficiently long time. Shock propagation in
this regime is scaled according to medium’s ambient density,
sound speed, explosive energy release, and time. The identifi-
cation of these control parameters in each shockwave regime
has not been previously reported.

The new scaling collapses well the experimental data of
the shock wave radius and overpressure from both air blasts
and underwater blasts acrossmany orders ofmagnitude, from
milligrams to kiloton explosive charge masses.
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