Numerical Analysis Qualifying Exam Mathematics Department, New Mexico Tech Summer 2008

(Answer all 6 questions.)

1. Suppose that we want to approximate the definite integral $\int_{-1}^{1} f(x) dx$ using a linear combination of the function values f(0), f(1), and f(2). That is,

$$\int_{-1}^{1} f(x)dx \approx af(-1) + bf(0) + cf(1).$$

Find coefficients a, b, and c so that the formula is exact for 0, 1st, and 2nd degree polynomials. Show that your formula is also exact for cubic polynomials. Derive an error term for your approximation.

- 2. Let a be some positive constant. It is possible to use Newton's method to calculate x = 1/a without doing division. Using Newton's method, write down an iterative scheme for computing 1/a using only addition, subtraction, and multiplication. Specify a starting point x_0 for your iteration that ensures convergence.
- 3. Consider the initial-value problem

$$y' = f(t, y), \ y(t_0) = \alpha.$$

- (a) Define the A-stability of a numerical method for the initial-value problem.
- (b) Find the region of A-stability for the implicit trapezoidal method

$$w_0 = \alpha, w_{j+1} = w_j + \frac{h}{2} [f(t_j, w_j) + f(t_{j+1}, w_{j+1})]$$

and determine if the method is A-stable.

- 4. Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$.
 - (a) Describe the Gauss-Seidel method for solving a linear system Ax = b.
 - (b) Give the iteration matrix of the method.
 - (c) Formulate the Gauss-Seidel method for the standard five-point finite difference approximation of the boundary value problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y), \ (x,y) \in \Omega = (0,1) \times (0,1), \ u|_{\partial\Omega} = 0.$$

- 5. Let $g \in C[a, b]$ and $g : [a, b] \rightarrow [a, b]$.
 - (a) Prove that g has a fixed point in [a, b].
 - (b) If, in addition, g'(x) exists on (a, b) and $|g'(x)| \le k < 1$ for all $x \in (a, b)$, prove that the fixed point is unique.
- 6. Let Π_n be the set of polynomials of degree n or less.
 - (a) Construct $p_i \in \Pi_i$, i = 0, 1, 2 such that $p_i(1) = 1$ and $\int_{-1}^{1} p_i(x) p_j(x) dx = 0$, when $i \neq j$.
 - (b) Find the quadratic polynomial, $q_2(x)$, such that $\int_{-1}^{1} |x^3 q_2(x)|^2 dx$ is minimal.