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1. INTRODUCTION AND LITERATURE REVIEW 
 

1.1 Definitions of Drought 
 

Drought is a serious and ubiquitous climatologically phenomenon in almost all of 

the world’s climatic regions. It has played a significant role in many human affairs. 

Examples of this include the decline of the Mayan Civilization (Haug, et al 2003), the 

historical Dust Bowl of the 1930s in the USA, and the Sahel drought in sub-Saharan 

Africa today. The simple definition of drought is “an extended period of little or no 

rainfall”, but the reality is more complex than this. For instance, precipitation levels 

which may be considered low in Seattle thus causing drought conditions there may be 

considered high in New Mexico and thus ending drought conditions at this location. 

Because of this, we need to take other hydrological parameters besides precipitation into 

account when defining drought conditions. These include parameters such as soil 

moisture, evapotranspiration (ET) rates and water balances. Thus, in defining drought, 

the long-term climate of a region needs to be considered as well, whether it is tropical, 

temperate or semi-arid. Generally, there are 4 different types of droughts as described by 

the National Drought Mitigation Center (NDMC): 

1. Hydrological: Streamflow, groundwater and reservoir levels are all 

significantly lower than normal. 

2. Meteorological: A change in the atmospheric circulation pattern which 

leads to a precipitation deficit compared to the average precipitation in a 

region. 
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3. Agricultural: Insufficient precipitation during critical agricultural growth 

periods, negatively affecting crop yield. 

4. Socioeconomic: The effects of low precipitation and below-normal 

hydrological parameters affect everyday life, and curtail normal social and 

economic activity. 

 Semi-arid regions in particular are extremely affected by drought conditions 

because of the already low precipitation that is definitive of such regions. Any variation 

in precipitation levels and water balances can be extremely disruptive to the region’s 

ecology and human activity, since there is already a limited supply of water available. For 

this reason, many drought monitoring programs have been established worldwide, and 

drought management and prediction has become an important area of research. 

According to Donald Wilhite (1990): 

Drought differs from other natural hazards in several ways. First, since the effects 
of drought often accumulate slowly over a considerable period of time and may 
linger for years after the termination of the event, the onset and end of drought is 
difficult to determine.  Because of this, drought is often referred to as a creeping 
phenomenon. Climatologists continue to struggle with recognizing the onset of 
drought and scientists and policy makers continue to debate the basis (i.e. criteria) 
for declaring an end to a drought. 
 

 Since the effects of drought are cumulative over a period of time, it is considered 

to be a creeping phenomenon. Also, since there are multiple definitions of drought, it can 

be difficult to determine whether or not a drought has been broken. Drought 

quantification is made complicated by the differences that droughts take among 

themselves, both regionally and qualitatively. These differences usually involve three 

essential characteristics: intensity, duration and spatial coverage.  Intensity refers to the 

degree of the precipitation shortfall and/or the severity of impacts associated with the 
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shortfall (Wilhite, 1990). I would amend this description to include hydrological 

parameters along with precipitation. Duration refers to the length of time that drought 

conditions are present. The longer a drought is in effect, the greater is its effect on human 

and ecological activities. Droughts may take a few months to take effect depending upon 

the region under stress, but once drought conditions are established they may last for 

several months or years. Repeated drought episodes and extended drought stresses will 

deplete water reserves and have a seriously adverse impact on agriculture, municipal 

water supplies, and vegetation/animal life.  

Furthermore, the spatial aspect of drought is also significant. Drought may affect 

different regions at the same time, or affect one region while another recovers from 

drought, and regional intensity may shift from one region to the next over different time 

scales. For example, the Dust Bowl drought of 1934 affected approximately 65% of the 

USA, but it affected 95% of the Great Plains region of the USA. A recent drought 

analysis by the U.S. National Drought Mitigation Center for the 48 contiguous states 

demonstrated that severe drought affected more than 25% of the country in one out of 

four years (Wilhite, 2001). 

 Because of the potentially devastating effects of drought, it is advantageous to 

have a drought monitoring mechanism in effect. However, it is difficult to determine 

what parameters to measure as an indicator of drought because of the various definitions. 

For example, meteorological drought is principally defined as a deviation of precipitation 

from the average precipitation over a given region for a given time, while agricultural 

drought involves soil moisture deficiencies. Both of these variables depend upon human 

measurement. For precipitation, not only is a long-term dataset needed to calculate 
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“normal” precipitation, but a recent record of precipitation for the region under study is 

also needed for comparison to this “normal”. For extremely remote regions, this record 

may not be available, and any available records are usually point data from a rain gauge 

or a network of rain gauges. This will cause issues if the spatial variability in 

precipitation is large and cannot be adequately represented by the number of rain gauges 

under review. Soil moisture is even more difficult to monitor than precipitation because 

of expense, time and spatial relevance. Thus, researchers have begun to focus on the 

response of vegetation to drought stress and remote sensing of vegetation as an indirect 

observation of drought stress. 

1.2 Drought Indices 
 

Because of the pervasive and varying degree of drought effects, it is important to 

develop methods for drought assessment. The intensity/severity of a drought is quantified 

by a drought index which measures the departure of some climatic index from normal, 

and is normally closely linked to duration in the determination of drought impact. The 

World Meteorological Organization defines a drought index as “an index which is related 

to some of the cumulative effects of a prolonged and abnormal moisture deficiency” 

(Heim, 2002). They are calculated from varying hydrological parameters dependent upon 

the purpose of each index. There are many different types of drought indices in existence. 

Heim (2002) did a review of drought indices and indicated that reliable precipitation 

observations became available about two centuries ago, and that practically all drought 

indices and definitions incorporated precipitation either solely or with other parameters. 

Most early drought indicators were defined by the length of precipitation deficit and the 

number of consecutive days of rainfall below a certain level. Such indicators were 
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regionally limited however, and only accounted for meteorological drought, not 

hydrological or agricultural. These inadequacies were realized early and scientists in the 

early 20th century focused on addressing these inadequacies. Munger (1916) developed a 

measure of annual and regional forest fire risk. For his drought index, he used the length 

of the period without a 24-hour rainfall of 0.05 inches. Mathematically, the severity was 

expressed as: 

2

2Lseverity =        (1) 

where L is the length of drought in days. Kincer (1919) prepared charts showing seasonal 

distribution of precipitation across the USA, and defined drought as thirty or more 

consecutive days with less than 0.25 of an inch of precipitation in 24 hours. Marcovitch 

(1930) devised a drought index: 

2
)/100( 22 RN        (2) 

where N is the total number of two or more consecutive days above 90 degrees 

Farenheight and R is the total summer rainfall for months. 

 One person whose work furthered the development of drought indices was 

Thornwaite (1931). He incorporated potential evapotranspiration and developed an index 

which used the ratio between monthly precipitation and monthly evaporation. As time 

progressed, drought identification evolved from simplistic approaches focusing on 

rainfall deficiency to more involved models of limited applicability. The apex of these 

involved models was the Palmer Drought Severity Index (PDSI), developed by Wayne 

Palmer in 1965 (Palmer, 1965). It was hailed as “the most satisfactory solution to the 

problem of combining precipitation and temperature as predictor variables.” (Julian and 
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Fritts, 1968) and has been widely used in the USA in its modified form called the Palmer 

Drought Index (PDI), but has had mixed results in other areas of the world. Other indices 

were introduced later, and the most recognized of them has been the Standardized 

Precipitation Index or SPI (McKee, 1993) which will be examined later in this thesis. 

Other indices developed post-PDSI also includes the Surface Water Supply Index or 

SWSI (Shafer and Dezman, 1982) and Rainfall Deciles (Gibbs and Maher, 1967). The 

SWSI was designed to complement the PDSI by integrating snowpack, reservoir storage, 

streamflow and precipitation at high elevations, and has a similar scale to the PDSI 

(Heim, 2000). Rainfall Deciles use median levels of precipitation as a means of 

monitoring meteorological drought. It ranks observed precipitation totals for the 

preceding three months against climate records. If the sum falls below the lowest decile 

of the historic distribution of 3-month totals, then the region is considered to be in 

drought (Keyantash and Dracup, 2002). Other indices have been developed regionally in 

various locations around the world, and there are many references available with 

additional information. Drought index development is an evolving study, as Heim (2002) 

states: 

The monitoring and analysis of drought have long suffered from the lack of an 
adequate definition of the phenomenon. This has affected the development of 
drought indices, which have slowly evolved during the last two centuries from 
simplistic approaches based on some measure of rainfall deficiency to be more 
complex problem-specific models. These models continue to evolve as new data 
sources become available. The incorporation of evapotranspiration as a measure 
of water demand by Thornwaite led to the landmark development by Palmer of a 
water budget-based drought index, which is still widely used thirty years later. 
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1.3 Palmer Drought Severity Index and Palmer Drought Index 

1.3.1 Definition of PDSI 
 
 Wayne Palmer published his model for a drought index in 1965 (Palmer, 1965). 

This index was designed to incorporate antecedent precipitation, moisture supply and 

moisture demand and was based upon the pioneering evapotranspiration work by 

Thornwaite (1931). In his landmark paper, Palmer stated that agriculture and hydrology 

are more concerned with the effects of a moisture shortage than with solely the 

meteorological aspects, this in response to the mainly precipitation-based indices 

previously developed. He went on to define a drought period as a period of time (duration 

in months or years) during which the actual moisture supply at a given location 

consistently falls short of the climatically expected or appropriate moisture supply. He 

also stated that the severity of drought may be considering as a function of both the 

duration and magnitude of the moisture deficiency. In developing his index, Palmer chose 

2 climatically dissimilar sites in the Midwestern USA. The first site was the western third 

of Kansas, comprising of 31 counties with temperature and precipitation data available 

monthly and recorded from January 1887. He classified this region as a semi-arid/dry 

subhumid climate with cold winters and hot summers, and 70% of the precipitation 

occurs during the freeze-free months. The second site chosen consisted of the 12 counties 

of Iowa’s central climatic division. Available data for this region extended from January 

1931 through December 1957, and the region was classified as moist sub humid with 

colder winters and summers than the Kansas region. This region was chosen as a contrast 

to the Kansas site because weather that would be considered normal in Kansas would be 
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considered exceptionally dry in Iowa, and the idea was to develop a drought index that 

would provide relevant results for both sites.  

 Palmer used various techniques in developing the index. The first technique he 

derived incorporated evapotranspiration based on Thornwaite’s work and determined 

availability of water in the soil. The soil was divided into two arbitrary layers. The upper 

layer was called surface soil and was assumed to contain 1 inch of available moisture at 

field capacity. This is the layer assumed to encounter precipitation and where evaporation 

takes place, and in accounting for moisture Palmer assumed that evapotranspiration 

occurs at the potential rate from this surface layer until all available moisture from this 

layer is removed. Only after this could moisture be removed from the underlying layer, 

and it was also assumed that there was no recharge to the lower layer until the upper layer 

had reached field capacity. It was also assumed that the water loss from the underlying 

area was dependent upon initial water content, the potential evapotranspiration and the 

available soil water capacity. Thus: 

 
'  o r ( )s sL S P E P= −       (3) 

whichever is smaller and 

 
'

'( ) ,   u
u s u u

SL PE P L L S
AWC

= − − ≤      (4) 

where Ls = moisture from surface layer, '
sS = available moisture stored in surface layer at 

beginning of month, PE= monthly potential evapotranspiration, P=precipitation for the 

month, Lu=water loss from underlying levels, '
uS =available moisture stored in underlying 

levels at start of month, and AWC=combined available water capacity of both levels. All 

units are in dimensions of length, (inches as described by Palmer). 
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 Palmer then carried out a hydrological accounting procedure, calculating various 

potential values and coefficients. Specifically, he described potential recharge as AWC-

'
sS , and potential loss as PLs+PLu where PLs=the smaller of PE or '

sS  and PLu=(PE-

PLs)* '
uS /AWC. He also described coefficients of evapotranspiration, recharge, runoff and 

loss. The coefficient of evapotranspiration α is defined as: 

 ET
PE

α =         (5) 

This can also be called the evaporative fraction, being the ration of actual 

evapotranspiration to potential evapotranspiration.  

 

The coefficient of recharge β is defined as: 

 R
PR

β =         (6) 

where R is recharge and PR is potential recharge. 

The coefficient of runoff γ is defined as: 

 '

RO
S

γ =         (7) 

where RO is runoff and 'S is as defined in equation (4). 

The coefficient of loss δ is defined as: 

 L
PL

δ =         (8) 

where L = water loss and PL = potential water loss. 

All of these coefficients are dimensionless. Using these coefficients, he defined the 

CAFEC precipitation, where CAFEC stands for “Climatically Appropriate for Existing 

Conditions”; an ideal precipitation. This precipitation is defined as: 
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 ˆˆ ˆ ˆ ˆ ˆP ET R RO L= + + −        (9) 

where all the right hand side elements are the product of the potential equivalents and the 

corresponding coefficients described above. 

Palmer then compared the CAFEC precipitation to the actual precipitation and 

recorded the numerical difference between them as: 

ˆd P P= −         (10) 

Using an empirical formula for the Iowa and Kansas regions he was studying, he defined 

a climate characteristic K, where: 

 Iowa Kan

Kan Iowa

K d
K d

=         (11) 

According to Palmer, these K values represent averages for some as yet undefined 

characteristics of the two areas’ climates during an observed 14-15 month dry period. He 

then developed an approximation of K, where: 

PE Rk
P L
+

=
+

         (12) 

and k is the first approximation of K, calculated monthly. However, this equation did not 

work very well in other climates, and a different equation had to be developed. Since the 

work on the final K was dependent upon this approximation, Palmer described the 

development based on this and then retraced the final evaluation of K. 

 Next, Palmer used these monthly k values as weighting factors for the monthly 

moisture departures during the two dry periods being considered. He thus defined the 

“moisture anomaly index” as: 

 z dk=          (13) 
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These z values express on a monthly basis and from a moisture standpoint the departure 

of the weather of the month from the average moisture climate of the month. These 

values are the basic indicators of the PDSI. Drought severity is approximated by: 

 
1 (0.309 2.691)

i
t

t
t

zX
t=

=
+∑       (14) 

where t represents the month number in the period and i is the total number of months in 

the period. This is a first approximation to the relationship sought, and further detail and 

refinement (especially concerning the approximation k) is available in Palmer’s 1965 

paper “Meteorological Drought”. The Modified PDSI is called the PDI and is calculated 

for month t by: 

 10.897* 0.333*t tPDI PDI z−= +      (15) 

This equation was empirically developed by arbitrarily defining an extreme drought as an 

index value of -4, and using the driest periods in the Kansas and Iowa regions described 

above as the benchmark to find a relationship between the maximum observed monthly 

rates at which the negative values of z accumulated during the observed dry intervals, and 

then determining the rate at which z must increase in order to maintain a constant value of 

the PDI. The coefficient values show that a current month’s PDI is composed of only 

one-third of that month’s precipitation deficit and almost nine-tenths of the previous 

month’s PDI, exhibiting a long-term memory of previous moisture conditions. This is the 

index variation most widely used today. In practice, separate indices are calculated for 

wet and dry spell, and the final PDI is either the wet or dry index. The decision is based 

on whether or not spells are incipient, established, or ended. This shows the complexity 

of the PDI, and because of this complexity it is not uncommon for a PDI time series to 

exhibit large sudden changes (Guttman, 1998). 
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1.3.2 Use of PDSI 
 

Since its inception, the PDSI has been extensively used as a drought indicator for 

the continental USA. PDSI maps are available for all climatic regions of the USA from 

the Climate Prediction Center at the National Weather Services website at the following 

url: www.nws.noaa.gov. The PSDI ranges from values -5 to +4, with -5.0 to 4.0 

indicating extreme drought, -3.9 to -3.0 indicating severe drought, -2.9 to 2.0 indicating 

moderate drought, -1.9 to 1.9 indicating near-normal conditions, 2.0 to 2.9 indicating a 

moderate moist spell, and 3.0 to 3.9 indicating a very moist spell. 

1.4 Standardized Precipitation Index 
 

The SPI was developed in 1993 by Thomas McKee of the Colorado Drought 

Center, and is based on precipitation records (Mckee, 1993). It was designed to serve as a 

versatile tool in drought monitoring and analysis and would require only one input 

variable. Usually this variable is precipitation, but it could be applied in a similar way to 

snow pack, streamflow, reservoir storage, soil moisture and other hydrological 

parameters. The nature of the SPI allows drought determination at a particular time scale 

for any region of the world that has a precipitation record. 

1.4.1 Definition of SPI 
 

Thom (1966) found the gamma distribution to fit climatological precipitation 

well. The gamma distribution is defined by its frequency or probability density function: 

 1( )
x

g x x eα β
αβ α

−
−1=

Γ( )
      (16) 
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where x, α and β > 0 and α is a shape parameter, β is a scale parameter, x is the amount of 

precipitation and Γ(α) is the gamma function defined as: 

 
0

yy e dyαα
∞

−1 −Γ( ) = ∫        (17) 

Computation of the SPI involves fitting a gamma probability density function to a given 

frequency distribution of precipitation totals for a station. The alpha and beta parameters 

of the gamma probability density functions are estimated for each station and each time 

scale of interest (3 months, 12 months, 4 weeks, etc), and for each time period division. 

From Thom (1966), the maximum likelihood solutions are used to optimally estimate α 

and β: 

 4ˆ 1 1
3
Aα

 1
= + +  4Α  

      (18) 

 ˆ
ˆ
xβ
α

=          (19) 

where: 

 
ln( )

ln( )
x

A x
n

= − ∑        (20) 

 n=number of precipitation observations. 

The resulting parameters are then used to find the cumulative probability of an observed 

precipitation event for the given month and time scale for the station in question. The 

cumulative probability is given by: 

 ˆˆ
ˆ

0 0

1( ) ( ) ˆ ˆ

xx x

G x g x x x e dxα β
αβ α

−
−1= ∂ =

Γ( )∫ ∫     (21)  

Letting ˆ/t x β= , this equation becomes the incomplete gamma function: 
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The gamma function is undefined for x=0, but precipitation distributions may contain 

values of zero. Thus, the cumulative probability becomes: 

 H(x)=q+(1-q)G(x)       (23) 

where q is the probability of a zero. If m is the number of zeros in a precipitation time 

series, Thom (1966) states that q can be estimated by m/n. 

 The cumulative probability, H(x) is then transformed to the standard normal 

random variable z with a mean of zero and a variance of one; this is the value of the SPI. 

This is an equiprobability transformation which Panofsky and Brier (1958) state has the 

essential feature of transforming a variate from one distribution (i.e. Gamma) to a variate 

with a distribution of prescribed form (i.e. standard normal) such that the probability of 

being less than a given value of the variate shall be the same as the probability of being 

less than the corresponding value of the transformed variate. In other words, it is 

transformed to a z-score where the z term is the SPI value. This z-score is more easily 

obtained computationally using an approximation provided by Stegun (1965) that 

converts cumulative probability to the standard normal random variable z: 

 
2
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 for 0<H(x)≤0.5  (24) 
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where: 
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   for 0<H(x)≤0.5    (26) 
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1ln
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t
H x

 
=  − 

 for for 0.5<H(x)<1.0    (27) 

and c0=2.515517;c1=0.802853;c2=0.010328;d1=1.43788;d2=0.189269;d3=0.001308. 

Conceptually, the SPI represents a z-score, or the number of standard deviations 

above or below the mean, assuming normal distribution. This assumption is not valid for 

short time scales, since the distribution is skewed. The SPI also normalizes with respect 

to location and time, since it not only accounts for the frequency distribution and 

variation of precipitation at a station, it can also be computed at any number of time 

scales depending upon the impacts of interest to the analyst. Additionally, the SPI 

represents a cumulative probability in relation to the base period for which the gamma 

parameters were estimated for any location or timescale. Using the SPI as the indicator, a 

functional and quantitative definition of drought can be developed for each time scale. 

Usually, a drought event for time scale i is defined as a period in which the SPI is 

continuously negative and the SPI reaches a value of -1.0 or less. The drought begins 

when the SPI first falls below zero and ends with the positive value of SPI following a 

value of -1.0 or less. SPI values are usually classified in ranges, with values between -1.0 

and 1.0 defined as near-normal conditions. Values between -1.0 and -1.50 are moderately 

dry, values from -1.50 to -2.0 are severely dry, and any value less than -2 is extremely 

dry. At the other end, values between 1.0 and 1.50 are moderately wet, 1.50 to 2.0 are 

very wet, and values greater than 2 are extremely wet conditions. 

 The SPI has several limitations to it. Firstly, it is only as good as the data used in 

calculating it, so extreme values may provide misleading results. Also, regional 

climatology knowledge is required, since at the smaller time scales (< 3 months), the SPI 

is very similar to the percentage of normal representation of precipitation, which can be 
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misleading in regions with low seasonal precipitation totals, leading to the issue stated 

above. Understanding the climatology improves the interpretation of these SPI values. 

1.4.2 Use of SPI 
 
 The SPI was originally developed for use in Colorado, but interest in it has grown 

and propelled it to use at state, regional and national levels. The National Drought 

Mitigation Center (NDMC) and National Oceanic and Atmospheric Administration 

(NOAA) has monthly SPI maps for the continental USA available on the Internet 

(http://www.drought.unl.edu/monitor/spi.htm, http://www.wrcc.dri.edu/spi/spi.html), and 

the Colorado Climate Center (CCC) continues to present SPI maps of Colorado on 

various time scales, to cite a few examples. A specific example of the SPI’s application 

was the drought of 1996. This drought affected most of the USA west of the Mississippi, 

and began in October 1995. From late 1995 to January 1996, very little precipitation fell 

in the southern plains and Southwest. February 1996 was a very dry month from southern 

Minnesota and South Dakota to the Texas-Mexico border. The 5-month SPI calculated 

for this period indicated that most climatic divisions from southern Nebraska to 

California had SPI values of less than -1.0, and the SPI was less than -2.0 in 8 of 9 

climatic divisions in Kansas. By the end of February, the SPI clearly indicated that 

drought was occurring in the southern plains and Southwest, especially in Kansas, 

Oklahoma, New Mexico and northern Texas. Other indicators were also confirming the 

existence and severity of this drought, such as agricultural reports and wildfires. The SPI 

study of the drought was done after the fact, and the results demonstrated that it would 

have been a beneficial tool for detecting and monitoring the drought in the southern 

plains and southwestern United States. Although the drought was region wide, the 
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dynamics of the drought varied by location. Since awareness of this index has increased, 

it can be better used to monitor and predict future drought events.  

1.5 Comparison of SPI and PDSI 
 

Keyantash and Dracup (2002) performed an evaluation of drought indices 

classified by types of drought. Their evaluations were based on 6 criteria, listed below in 

decreasing order of significance: 

1. Robustness: This refers to whether or not the index was useful and/or 

relevant over varying climatic condition, and whether it was consistently 

responsive or solely temperamental. 

2. Tractability: This refers to whether or not the index is practical. In other 

words, this aspect examines if the index can be easily used due to 

simplicity, or is extremely complex either in calculation or in 

data/parameter collection or definition. 

3. Transparency: This refers to the purpose of the index, examining 

whether the purpose for the index’s existence is clear and reasonable, or 

extremely obfuscated and confusing.  

4. Sophistication: This may seem to contradict the previous criterion, but is 

included to examine the validity of the index, and ensure that the index 

does not oversimplify reality. 

5. Extendibility: This is the degree to which the index may be extended 

across time to other drought scenarios, either temporally or regionally. 
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6. Dimensionality: This refers to the connection of the index with the 

physical world, with indices comprising physical units or derived from a 

physical ratio having an advantage over dimensionless indices. 

The drought indices under evaluation included the SPI and the PDSI along with Rainfall 

Deciles, the Surface Water Supply Index and a few other indices. The results of the 

evaluation placed the SPI as the second highest ranked drought index, with a total score 

of 115 (highest was Rainfall Deciles with a score of 116). The PDSI placed much lower 

with a total score of 61 (Keyantash and Dracup, 2002). 

 Also, Guttman (1998) compared the SPI and PDI using precipitation data from 

the National Electronic Drought Atlas to compute both the PDI and SPI (with timescales 

of 1-,2-,3-,6-,12-,24- and 36-month periods) for all the sites given in the Atlas. The sites 

with the longest record length were then selected for spectral analysis. This analysis 

technique is used to look for cyclical patters in a time series. The time series is 

decomposed into a sum of sine and cosine waves of different amplitudes and 

wavelengths. The amplitude of a given wave or cycle, when smoothed over the whole 

duration of the time series, is an estimate of the contribution or importance of the cycle to 

the observed time series. Spectral densities of the PDI time series and the 1-,2-,3-,6-,12-

,24-, and 36-month SPI time series were computed. The higher the density, the more a 

given cycle contributes to the observed time series. Cross spectral analysis, which is 

similar to spectral analysis but looks at the interrelationships between two time series, 

was also performed. Cross spectral densities between the PDI time series and each of the 

SPI time series were computed. The aim of these analyses was to gain in understanding 

of the underlying structure of both the PDI and the SPI as well as to gain insight into the 
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spatial consistency of the indices. The results of the analyses showed that there were no 

spatially coherent patterns in the PDI spectra; i.e. the spectral patterns vary from site to 

site, while the SPI spectra exhibit the same pattern at all locations. High coherence 

between the PDI and SPI indicate that precipitation is the dominant factor in the PDI, and 

the phase relationship between the two indices show that for periods of less than a year, 

the PDI lags the SPI and for periods of about a year, the two indices are in phase. 

1.6 Remote Sensing and Drought Stress Detection in Vegetation 
 
 Vegetation is significantly affected and impacted by drought conditions. Water 

comprises about 85-90% of the fresh weight of most herbaceous plants, and is usually 

absorbed by roots in the soil and translocated to the shoots as a result of pressure 

gradients developed from either root pressure or transpiration. Whenever the rates of 

water loss by transpiration exceeds the rates of water absorption by the roots, water in the 

conducting tissues is subject to a tension (negative pressure), that is, its potential is 

lowered and competition for water among the various tissues and organs of the plant 

takes place because the equilibra among the separate water potentials have been disturbed 

(Hale and Orcutt, 1987). Hale and Orcutt also state that drought stress occurs when 

available water in the soil is reduced and atmospheric conditions cause continued loss of 

water by transpiration and evaporation. Stress may occur on a daily basis or over a 

prolonged period, and the plant’s leaves will wilt. At the permanent wilting point, the 

water potential of the leaves remains below the water potential of the soil, and at this 

point water cannot move to the roots rapidly enough to overcome the deficit in the plants. 

This stress affects the cell vacuoles and chlorophyll level (which give plant leaves their 

green color) in the leaves, which in turn has an effect on remote sensing of the plant. 
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Remote Sensing is sometimes defined as “the science of acquiring, processing and 

interpreting images and related data obtained from aircraft and satellites that record the 

interaction between matter and electromagnetic radiation” (Sabins, 2000). However, it 

can include ground-based sensing of remote data as well. Remote Sensing in its broadest 

sense is the observation from any distance of the reflection of electromagnetic waves of 

various wavelengths from various targets of interest, and determining the properties of 

the targets from the measurements of the emitted and/or reflected electromagnetic 

radiation. The spectral reflectance of a target is defined as the ratio of the reflected 

spectral radiance flux to the incident spectral radiance flux and can be measured in three 

ways: in the laboratory, in the field, or from an elevated platform such as an aircraft or 

satellite. The values of reflectance are unitless and range between 0 and 1. The 

reflectance of a particular target across a range of EM wavelengths is called its spectral 

signature and is a representative property of that target. To facilitate research of various 

regions of the spectrum, bands have been developed. These are selected wavelength 

intervals which may show variations in reflectance for various targets. Vegetation in 

particular has a signature that is easily recognizable in different bands. Plant leaf 

responses to various stresses usually dominate the spectral responses of the entire plant, 

with stems and branches providing a minor contribution. When a leaf intercepts incoming 

radiation, a portion of the radiation is absorbed, another portion is transmitted and the rest 

is reflected. The amount of absorption depends on the photon energy and also upon the 

concentration of leaf chlorophyll pigments and tissue water content (Gausman, 1985). 

Bowker (1985) summarized the features of vegetation reflectance. Figure 1-1 is an 

example of a reflectance curve for photosynthetically active vegetation, dry vegetation 
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with no chlorophyll and desiccated cells, and soil. The spectrum can be broken into three 

regions according to the major factor responsible for the curve behavior. Below 0.7 µm, 

absorption is dominated by carotenoid pigments (centered at 0.48 µm) and chlorophylls 

(centered at 0.68 µm). 

 

Figure 1-1: Representative spectral signatures of green vegetation, dry vegetation and soil (source 
http://www.iac.ethz.ch/staff/stockli/ndvimeasurement/ndvimeasurement.html ) 

 
The green peak (centered at approximately 0.56 µm) is the region of the visible spectrum 

corresponding to weak absorption. The sharp rise around 0.7 µm (called the red edge) 

marks the change from chlorophyll absorption to cellular reflectance. The near-infrared 

reflectance from 0.7 to 1.3 µm is dominated by the cell-wall/airspace interface and, to a 

lesser extent, by refractive index discontinuities of cellular constituents (Gausman 1985). 

Beyond 1.3 µm, reflectance is primarily controlled by leaf water content. Specular 

reflectance occurs at the leaf cuticle while diffuse reflectance originates from light 

scattering within the leaf mesophyll. Figure 2 is a diagram of reflectance of EM radiation 

interaction with a leaf. From the Figure, it is seen that while blue and red light are 
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strongly absorbed by the leaf chloroplasts, green light is reflected from it; and though 

infrared radiation is unaffected by chloroplasts, it is strongly reflected by the spongy 

mesophyll. 

 

Figure 1-2: Electromagnetic radiation interacting with a plant leaf. (Source: 
http://www.geog.ucsb.edu/~jeff/115a/lectures/films_and_filters.html) 

 
Carter (1993) described the responses of vegetation reflectances to various stresses 

to determine the wavelengths at which leaf reflectance is most responsive to stresses, 

looking at a variety of plant species. He discovered that visible reflectance, particularly in 

the green spectrum and red spectrum increased consistently in response to stress 

regardless of stress agent or species. Differences near 710 nm were greater than those 

near 550 nm, and with dehydration a peak difference occurred in the yellow spectrum at 

584 nm. Differences in the visible spectrum generally were smallest at the violet and blue 

wavelengths. Infrared reflectance responded consistently only when stress had developed 

enough to cause severe leaf dehydration. 
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Although much research is available on leaf optical properties, there is still work to 

be done in this field and this should be kept in mind by those who use remote sensing of 

vegetation. Jacquemond and Ustin (2001) did a review of various methods used in remote 

sensing and made the following conclusion: 

Contrary to accepted dogma, much more work is required before we will 
completely understand leaf optical properties. This knowledge is nevertheless 
crucial to develop more accurate relationships between these properties and 
important leaf functional characteristics, or to improve models which are directly 
used to interpret remote sensing data when coupled with canopy reflectance models 
To give an example, the separation of leaf photosynthetic pigments (chlorophyll a, 
b, carotenoids and xanthophylls) is still at issue, and this information would greatly 
improve the cartography of plant photosynthetic activity from space. Additionally, 
other aspects of leaf optics like fluorescence have not been developed here [in this 
paper] but provide critical information about photosynthetic function. As 
mentioned earlier [in this paper] our understanding of leaf bidirectional properties 
is still in its infancy. 

1.7 Vegetation Indices 
 

A vegetation index is defined as the various combinations of reflectances of 

channels/bands of remote sensing sensors, and is an indicator of the target vegetation’s 

inherent properties as examined by their reflectance in these different bands. In principle, 

these combinations are applied to the reflectances of whatever the target is, but most 

indices have been developed with respect to vegetation spectral reflectance properties.  

 Vegetation indices are quantitative measurements indicating the vigor of 

vegetation and are developed to enhance the sensitivity of individual spectral bands in the 

detection of biomass. They serve many different purposes in remote sensing; they can be 

used for classification (identifying various land cover regions and separating vegetation 

from open soil etc.) as well as for land use changes, vegetation density, crop 

discrimination and prediction, among others. The most obvious properties of vegetation 

reflectance that are used for vegetation index calculation are the high absorption of the 
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red spectrum (630-690 nm) by plant chlorophyll and the strong reflection of the infrared 

spectrum (760-900 nm) by leaf cellular structures. While the vast majority of indices 

were developed for specific sensors, the principles behind their development can be 

usually applied to other sensors monitoring the same band regions, and most indices can 

be applied to any satellite sensors that monitors in the ranges that define the vegetation 

index. The indices used in the research for this thesis are defined and explained in the 

following sections. 

1.7.1 Normalized Difference Vegetation Index 
 
 By far, the most common vegetation index in use today is the Normalized 

Difference Vegetation Index, or NDVI (Rouse, 1972). It is defined as: 

 NIR red

NIR red

NDVI ρ ρ
ρ ρ

−
=

+
       (28) 

where NIRρ  stands for the reflectance in the near-infrared band and redρ stands for the 

reflectance in the red band. This index is based on healthy vegetation having a high 

reflectance in the infrared band and a low reflectance in the red band, while stressed 

vegetation will have a lower IR reflectance and progressively higher red band reflectance. 

The NDVI values range from 1 to -1, with values below 0 indicating poor vegetation 

conditions or non-vegetation targets such as soil. The index is sensitive to the presence of 

green vegetation (Sellers, 1987) and permits the prediction of agricultural crops (Tucker 

and Sellers, 1986). It has also been used to predict monthly evaporation (Szilagyi, et al, 

1998) and used as the basis for drought detection using remote sensing (Wan et al, 2004). 

Kogan (1997) developed the Vegetation Condition Index (VCI) which is defined in terms 

of NDVI. This index compares the vegetation of a region to the maximum values thus: 
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where NDVImax is the maximum NDVI recorded on record for the region during the study 

period, NDVImin is the minimum NDVI recorded for the region, and NDVI is the current 

NDVI measurement. This was developed using the AVHRR sensors, and requires a 

lengthy record of NDVI values. It is not used in this research for that reason. Further 

discussion of VCI applications is presented further along in this chapter. 

1.7.2 Normalized Difference Water Index 
 
 The Normalized Difference Water Index (NDWI) was proposed by Bo-Cai Gao 

(1996) for remote sensing of vegetation liquid water from space. It uses two infra-red 

channels, one at 0.86 µm and the other at 1.24 µm. The index is defied as: 
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     (30) 

where ρ is the reflectance at the given wavelength. These wavelengths were chosen 

because of their reflectance properties when considering absorption by water. Since the 

1.24 µm channel has similar vegetation scattering properties as the 0.86 µm  channel, and 

because the 1.24 µm channel is sensitive to liquid water content (Bo-Cai Gao, 1996), 

NDWI is expected to be sensitive to vegetation liquid water changes. In general, NDWI 

values are positive for green vegetation due to the weak liquid water absorption near 1.24 

µm. 

1.7.3 Vegetation Index Number and Ratio Vegetation Index 
 
 The Vegetation Index Number (VIN) is also referred to as the Simple Ratio. 
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 It also relies on the contrasts in reflectance of plants in the infrared and red spectrums, 

and is defined as: 

 NIR

red

VIN ρ
ρ

=         (31) 

The VIN was one of two vegetation indices developed by Pearson and Miller in 1972. 

The other index was simply the inverse of the VIN, and was called the Ratio Vegetation 

Index (RVI). These indices enhance the contrast between the ground and vegetation; they 

are less affected by the effect of illumination conditions but are sensitive to ground 

optical properties (Baret and Guyot, 1991). The relationships between the reflectances of 

the two bands permit to eliminate disturbances from factors affecting in the same manner 

the radiances of each band. (Holben and Justice, 1981.)  The RVI index is sensitive to 

atmospheric effects and its discriminating power is weak when the vegetation cover is 

less dense (less than 50%) while it is best when the vegetation cover is dense (Bannari, et 

al, 1995). 

1.7.4 Atmospherically Resistant Vegetation Index 
 
 The Atmospherically Resistant Vegetation Index (ARVI) was developed for use 

with the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer 

MODIS sensor (Kaufman and Tanré, 1992). It utilizes the blue band for MODIS and 

Landsat satellites in addition to the red and infrared bands. The resistance of the ARVI to 

atmospheric effects when compared to the NDVI is accomplished by a self-correction 

process for the atmospheric effect on the red channel, using the difference in radiance 

between the blue and red channels to correct the radiance in the red channel. The ARVI 

has a similar dynamic range to the NDVI and is on average 4 times less sensitive to 
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atmospheric effects than the NDVI (Kaufman and Tanré, 1992). In reflectance terms, it is 

defined as: 

 NIR rb

NIR rb

ARVI ρ ρ
ρ ρ

−
=

+
       (32) 

where 

 )rb red blue redρ ρ γ ρ ρ= − ( −       (33) 

where γ is a constant which depends on aerosol type (particles present in the atmosphere). 

Research performed by Kaufman and Tanré (1992) showed that the best value for γ is 1.0 

if information on the aerosol type is unavailable, and this was the value used in this 

research. 

1.7.5 Soil-Adjusted Vegetation Index 
 
 The Soil-Adjusted Vegetation Index (Huete, 1988) is aimed at reducing the effect 

of soil brightness on the NDVI and is calculated by shifting the NIR and red channels 

towards a negative origin by adding a constant L to the NDVI formula. Thus: 

 ( )1NIR red

NIR red
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L
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     (34) 

where (1+L) is the multiplication factor added so that the index can conform to the 

maximum and minimum NDVI range. For most purposes and in this thesis, the value of L 

was 0.5, corresponding to intermediate vegetation canopy cover. 

 

 

1.7.6 Modified Soil-Adjusted Vegetation Index 
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 Qi et al. (1994) have shown that the adjustment factor L in the SAVI definition is 

not a constant but a function which varies inversely with the amount of vegetation 

present. To minimize the effect of bare soil on the SAVI, they proposed a modification, 

the Modified Soil-Adjusted Vegetation Index (MSAVI). This modification was aimed at 

finding a self-adjustable L that would increase the SAVI vegetation sensitivity by 

increasing the dynamic range and further reduce the soil background effects. The result 

would be an improved, modified SAVI with a higher “vegetation signal” to “soil noise” 

ratio. An induction method was used to derive L or the MSAVI. Using any seed value, L0 

(0,±∞) would reduce the effect of soil to the MSAVI value: 
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     (35) 

Now, since there is an initial MSAVI0, another L function L1 may be obtained: 

 L1=1-MSAVI0        (36) 

which would result in an MSAVI1 that further minimizes the soil effect: 
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Continuing this process n times, we obtain 

 11n nL MSAVI −= −        (38) 

and 
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With this processing, there exists an iteration time N such that MSAVIN=MSAVIN-1, where 

soil effects cannot be minimized further. Then: 
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One of the two solutions for the above equation within the range of 0 and 1 is: 

 
2 4

2N
b b cMSAVI − − −

=       (41)  

where b = -(2ρNIR+1) and c=2(ρNIR-ρred). Therefore, with an inductive L function of  

 21L MSAVI= −        (42) 

the resultant MSAVI by induction, MSAVI2, becomes: 
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This was the formula used in this research. Research by Qi et al (1994) indicated that the 

MSAVI showed itself to be a more sensitive indicator of vegetation amount than the 

SAVI, but this research was validated using ground and aircraft-based radiometric 

measurements only. 

1.7.7 Normalized Difference Index 
 

For establishing the relationship between spectral reflectance and the surface 

covered by corn crop residues and for developing a methodology for mapping these 

residues, McNairn and Protz (1993) examined various combinations of Landsat bands to 

form Normalized Difference Indices (NDI). The combination that produced the best 

results for their study used the middle shortwave infrared and the near infrared bands. It 

is insensitive to soil organic matter content but quite sensitive to corn residues and soil 

types. It is defined as: 
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where NIRρ  is Band 4 of the Landsat TM sensor or a similar band in wavelength, and 

MIRρ  can be Band 5 of the Landsat TM sensor, or a similar bandwidth. 

1.7.8 Normalized Difference Greenness Index 
 
 The Normalized Difference Greenness Index (NDGI) is calculated using the red 

and green bands, and has revealed itself quite useful for identifying and mapping 

different active vegetation formations in inundated regions. It is defined as: 

 green red
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and was defined by Chamard et al in 1991 (Chamard et al, 1991; Bannari et al, 1995). 

1.7.9 Normalized Difference Redness Index 
 
 The Normalized Difference Redness Index is a coloration index which is a 

correction factor for soil color effect on vegetation indices (Bannari, et al, 1995). 

Variations caused by soil color greatly hinder the detection of low vegetative cover rates. 

This factor comes in second place after soil brightness, and the soil coloration index is 

thus a correction permitting to double the sensitivity of vegetation indices. By analogy 

with the NDVI, this index is defined as: 
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It is the exact inverse of the NDGI. 

1.7.10 Water Band Index 
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 The Water Band Index (WBI) was developed by Penuelas et al (1997) for the 

estimation of plant water concentration by ground-based reflectance measurements. It 

takes advantage of the reflectance of plant leaves at wavelength 970 nm (a water 

absorption band) and 900 nm (no absorption of water but strong indicator of plant vigor). 

The ratio is defined as: 

 900

70

WBI ρ
ρ9

=         (47) 

1.7.11 Red-Edge Vegetation Stress Index 
 
 The red-edge, centered at the largest change in reflectance per wavelength 

change, is located between the widely used red band and NIR band and may hold 

valuable information that may benefit aspects of ecological-based research. The 

wavelengths of the red-edge range from 670-760 nm, and high spectral resolution 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data encompassing this range 

has been used to describe community phenological response through time as a function of 

changes to red-edge symmetry. The RVSI was developed to identify inter- and intra-

community vegetation stress trends based on spectral changes in upper red-edge 

geometry (Merton and Huntington, 2002). In simple terms, reflectance spectra with upper 

red-edge convexity calculate negative RVSI values indicating low vegetation stress, 

whereas upper red-edge spectra with near-linear or concave curves indicate an “apparent 

stress” response. It is defined as: 
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1.8 Previous Work Relating Remote Sensing, Vegetation 
Indices, Environmental Parameters and Drought 

 
Because of the effects of drought stress on vegetation and the detection of these 

effects through vegetation reflectance, remote sensing and satellite imagery have been 

often used to detect and/or predict drought conditions (Kogan, 1996). Traditional drought 

indicators like precipitation and soil moisture are locally measured and can be difficult to 

obtain on a regional scale, while a remotely sensed satellite image of a region’s 

vegetation can be easily obtained for virtually any region on the earth and at a very large 

scale. Images have been acquired on many satellite platforms for drought analysis, such 

as the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Landsat series.  

The AVHRR in particular has been used extensively with the NDVI to investigate 

drought in many regions due to its high temporal frequency (images are acquired daily 

for any point on the earth). It has a very coarse spatial resolution of 1 km. The NDVI was 

originally developed for this sensor and most global drought remote sensing is done with 

this sensor. The VCI as previously described in this chapter has also been extensively 

used for global drought monitoring. Vogt (2000) examined the relationship between the 

3-month SPI and the 3-month running mean for the decadal NDVI and VCI for weather 

stations in Andalusia, Spain. He looked at the simultaneous trends over time between the 

SPI and the vegetation indices, with varying results. However, he did not do a statistical 

correlation in that paper. The VCI has also been used in Argentina (Seiler et al. 1998) to 

monitor crop production as a proxy of drought stress. The reflectance at the Middle 

Infrared band of the AVHRR sensor has also been used to monitor drought stress on 

tropical vegetation canopies in Malaysia showing an inverse correlation to rainfall over a 
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15-day period and a 5-day lag (Boyd, et al 2002). Links between NDVI and precipitation 

have also been established, and an example of this can be seen in a study done by 

Nicholson et al (1990) based in the Sahel and Eastern Africa. This study showed that the 

spatial patters of annually integrated NDVI closely reflect mean annual rainfall, and there 

was a good relationship between rainfall variations and NDVI on seasonal and 

interannual time scales for areas where mean annual rainfall ranges from 200 to 1200 

mm. However, the relationships varied with location, with NDVI being linearly related to 

mean annual rainfall in the Sahel, but log linear in East Africa and then only to a certain 

threshold, over which there was a minimal relationship. 

Ghosh (1997) performed a study of drought in India using digital analysis of 

satellite data and Geographical Information Systems (GIS). He used Indian Remote 

Sensing Satellite-1A Series Linear Imaging Self-Scanning Sensors 2 (IRS-1A LISS 2) 

datasets over the dry season (April to June) and the growing period (November to 

January) of 1988, 1990 and 1991, and analyzed it with a GIS system along with a 

continuous set of rainfall data over a 70-year period at 22 weather stations. He also 

incorporated soil-moisture measurements from all 22 stations, and created a final result of 

composite images based on vegetation, slope, albedo, soil moisture and land cover image 

analyses, and then compared this image analysis to field results in drought-stricken areas. 

Ghosh concluded that a composite drought index derived from the combined analyses can 

provide a useful tool for investigation, monitoring and prediction of drought. 

Bahrun et al (2003) examined water stress detection in maize using the RVI, 

defined as: 
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where iNI =incoming near infrared radiance and cNI =reflected near infrared radiance, 

and iPAR =incoming photosynthetically active radiation (between 400 and 700 nm) and 

cPAR =outgoing photosythetically active radiation. This differs from the RVI definition 

used in this thesis and described by Bannari et al (1995), in that equation (47) describes 

this thesis’s VIN index, using the panchromatic visible reflectance instead of the red band 

reflectance. Bahrun et al derived values for this index from field-grown but closely 

monitored maize plants and compared the RVI values with various plant parameters. He 

concluded that an increase in xylem [ABA] increment coincided with a decrease in the 

RVI of drought-stressed plants, that changes in drought-stressed plant RVI as compared 

to control plant RVI occurred at early stages of drought stress, and that RVI 

measurements of field measurements when compared with fully irrigated references 

could be used as an early warning system for timing of irrigation. 

Jacobberger-Jellison (1994) investigated the detection of post-drought condition in 

Sahelian West Africa using Landsat TM-derived NDVI and SAVI. He used six Landsat 

TM images from March 1986 to April 1988, applying corrections where needed. He 

found that NDVI and SAVI values exhibited a relationship that is inverse to seasonal 

vegetation trends, with the calculated vegetation indices being highest for dry season 

data, lower in the rainy season, and values for the dry 1988 season being lower than the 

less dry 1986 season. Jacobberger-Jellison stated that the usefulness of the NDVI was 

still limited in regions like this, where the soil brightness apparently overwhelms the 
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slight vegetation signature, while the SAVI’s failure was due to uncertainty in scaling 

factors and constants.  

Szilagyi et al (1998) investigated the relationship between NDVI and monthly 

evaporation using Landsat imagery over the Crescent Lake National Wildlife Refuge in 

the Sand Hills region, Nebraska. This region consists of undisturbed natural mixed-grass 

prairie over sandy soils. He calculated NDVI for thirty scenes of Landsat during the 

growing seasons between 1979 and 1983, and estimated monthly evaporation using the 

Thornwaite and Mather (1957) algorithm modified by Vorosmarty (1989) based on the 

monthly precipitation and potential evaporation estimated by the Jensen-Haise (1963) 

method. Szilagyi et al discovered that when no time lag was applied, the linear 

correlation between NDVI and both monthly precipitation and evaporation was very poor 

to moderate, with r=0.39 for precipitation and r=0.56 for evaporation. However, when a 

lag of one month was applied, the correlations improved significantly, with r=0.75 for 

precipitation and r=0.80 for evaporation. Szilagyi et al concluded that the NDVI vs. 

evaporation relationship can be strong for a water-restricted natural environment with an 

apparent time-lag between the two variables. 

Di et al (1994) investigated modeling relationships between NDVI and 

precipitation during vegetative growth cycles. He conceptualized the NDVI as a function 

of climate, terrain, vegetation/ecosystem and soils/hydrological variables, with a 

governing equation of: 

( ), , ,NDVI f C V P S E= +       (50) 

where C is the climate submodel, V the vegetation/ecosystem submodel, P the 

physiography submodel, S the soil/hydrology submodel and E is modeling error caused 
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by unaccounted-for environmental variables and potential inaccurate measurement. The 

submodels in turn may be represented as functions of their major respective components, 

with C being a function of precipitation, temperature and insolation; V a function of 

ecosystem and vegetation class; P a function of elevation, slope and aspect; and S being a 

function of soil moisture retention, nutrients, permeability, surface water availability and 

ground water supply. All of these functions have similar E terms incorporated. This is 

still a huge simplification since the function components themselves are also dependent 

variables with time and space and with each other. Thus, it should be possible to partially 

or totally describe one environmental variable by other environmental variables, thus 

limiting the total number of variables. Di et al stated that the major climate variables 

which have a cumulative effect on NDVI were precipitation, temperature and insolation, 

thus giving an approximation of NDVI as: 

 ( ) ( ) ( ) ( )( ), ,t t tNDVI t f precipitation T temperature T insolation T E= +  (51) 

where ( )tT  refers to cumulative effect of a component for a period of time prior to the 

specific time t. Di further simplified the model by stating that in semi-arid to arid regions, 

insolation and temperature can often be partially described by precipitation as well as 

being highly correlated with a particular season of the year. Thus, a designated variable 

such as Julian day j could be used to represent climatic seasons. The model would then be 

simplified to: 

 ( ) ( )( ),tNDVI t f precipitation T j E= +     (52) 

If the temporal resolution is daily, then t becomes j. Since equation (52) states that NDVI 

at Julian day j is a function of precipitation and Julian day, Di et al separated the function 

into three parts: those with only j, those with only precipitation ( )tT  and those with both. 
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The first part is the seasonal effect described by Julian day, the second part describes the 

precipitation effects on NDVI, and the third part describes the combined effect of 

precipitation and season (e.g. the precipitation in May may have a greater effect on 

vegetation growth than in September). Thus, the model can be rewritten as: 

 ( ) ( ) ( )( ) ( )( ),j jNDVI j S j P precipitation T R precipitation T j E= + + +  (53) 

where j is the Julian day, S(j) is the background value due to soil and ( )jT  is a period of 

time prior to Julian day j. ( )( )jP precipitation T  describes the precipitation variables, and 

( )( ),jR precipitation T j  describes the combined effect of the two variables. Di et al 

assumed that both P and R would be positive, and if the precipitation within ( )jT  was 

zero, then the soil would be too dry to support vegetation and both P and R would 

become zero, making the NDVI equal to the soil background value. Di et al further 

assumed that the soil background value has little change and could be approximated by a 

constant C that is the NDVI value for the area without vegetative activity, such as during 

winter. Combining functions P and R using the precipitation ( )jT  term, Di et al created a 

new function called U. Thus: 

( ) ( )( ),jNDVI j C U precipitation T j E= + +     (54) 

Di et al then went on to add weight functions to account for seasonal variation. He tested 

his model using a time-series of NDVI images from the Crescent Hills National Wildlife 

Refuge in Nebraska. The results were positive, and demonstrated that the model may be 

useful in understanding NDVI-precipitation relationships. From the case study, Di et al 
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found that the duration of NDVI response to precipitation varies within a growing season, 

and thus it may be possible to estimate precipitation from NDVI. 

Peters et al (1991) investigated the 1988 Nebraska drought using AVHRR NDVI 

data, PDSI data and Crop Moisture Index (CMI) data. They used NDVI data from April 

to September of 1987 (a normal year) and 1988 (a drought year), and incorporated 

precipitation data via the PDSI and CMI values for the study regions during those times. 

Their results showed that while the PDSI showed a distinct separation between years, it 

did not respond quickly to soil moisture components. The CMI was more responsive to 

short-term soil moisture variability and the NDVI appeared to reflect the related response 

of vegetation to soil moisture variability. They concluded that the AVHRR data could 

accurately locate the geographic core of the drought, and that a relationship existed 

between the NDVI and short-term variations in soil moisture.  

Peters et al also investigated drought impact on semi-arid vegetation (1993) in New 

Mexico using AVHRR NDVI data, PDSI and CMI data, and monthly departure from 

precipitation for a wet year (1988) and a drought year (1989) in the region. The study 

area was an east-west transect of approximately 75 by 340 km extending from the Rio 

Grande between Las Cruces and Truth or Consequences, New Mexico to the Texas 

border. Peters et al classified the region into land cover classes using a two-step 

unsupervised classification procedure on nine images selected from the 1989 dataset by 

firstly separated them into two broad categories: woodland and non-woodland. Next, they 

ran the same unsupervised classification within those distinct groups. Their final result 

included classifications of desert basins, arid shrublands, arid grasslands, temperate 

grasslands, mixed forests and coniferous forests. Peters et al assessed the spectral 
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response of native plant communities to moisture stress by evaluating between-year 

changes in the mean and variance of NDVI values for each plant community type, and 

compared drought indices to vegetation indices by qualitative analyses of the shapes and 

trends of CMI, PDSI, monthly precipitation mean departures and NDVI. The results 

showed that grassland regions were more spectrally responsive to moisture stress than 

shrublands or forests, and shrublands did not respond as strongly as grasses to short-term 

changes in moisture availability. Peters et al stated that creosote (Larrea tridentata) is 

relatively insensitive to late summer precipitation and coniferous forest showd the least 

spectral variability of any plant community type during the 1989 growing season. Peters 

et al also concluded that the precipitation departure from monthly normal was the 

indicator most closely related to spectral NDVI response, and the CMI was more 

indicative of NDVI trends than the PDSI was, especially in grassland regions. 

Wang, Price and Rich (2001) investigated the spatial patterns of NDVI in response 

to precipitation and temperature in the central Great Plains, focusing on the entire state of 

Kansas. For this investigation, they derived bi-weekly NDVI images of Kansas for the 

growing seasons (March to October) from AVHRR satellite images between the years 

1989 – 1997. They also derived biweekly and month precipitation maps for each entire 

year from daily precipitation data from 410 weather stations in and around Kansas. 

Biweekly temperature maps comprising of maximum, minimum, average and 

accumulated growing degree day (AGDD) were constructed using daily maximum and 

minimum temperature data derived from 17 weather stations. AGDD is defined as: 

max min

2 base

T TAGDD
T
+

=
−∑       (55) 
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where Tmax is the daily maximum temperature, Tmin is the daily minimum temperature and 

Tbase is set at 10oC. They also stratified their analyses according to the categories of 

cropland, grassland and forest as defined in the land cover map for Kansas prepared by 

the U.S.G.S. Wang et al examined spatial relations between NDVI and each of the 

climate factors- precipitation, temperature (maximum, minimum, average and degree 

days) stratified according to the three land cover categories (cropland, grassland and 

forest). Correlation coefficients between NDVI and each climate factor were calculated 

for the state of Kansas by directly comparing corresponding spatial locations for pairs of 

NDVI and climate maps. The primary goal of the analyses was to evaluate the 

correspondence between NDVI spatial patterns and climate variation, and the analyses 

examined relationships both within growing seasons (within-season) and between 

seasons (seasonal). Within-season analysis compared different biweekly periods within 

the same growing season, while seasonal analyses compared NDVI and precipitation 

values between different years. For each year, the NDVI was averaged through growing 

season, and precipitation was accumulated for the entire growing season plus 14 

preceding months. The results indicated that the spatial correlation coefficients between 

NDVI and precipitation were quite different for NDVI according to of the growing 

season, time interval and lag over which precipitation was summed, and land cover type. 

Higher correlation coefficients were observed for longer time intervals over which 

precipitation was summed, and time lags only had a weak influence on correlation 

coefficients. However, when average growing season NDVI deviation was compared 

with precipitation deviation as a function of time interval over which precipitation was 

summed, the results were quite different and complicated in different years. For 1989, a 
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very dry year, correlation coefficients remained high for all precipitation time intervals, 

but for 1993, an extremely wet year, there was no significant correlation. When compared 

with temperature, the growing season average NDVI showed strong correlations with 

minimum temperature, moderate correlations with average temperature, weak or no 

correlations with maximum temperature and weak or no correlations with AGDD. Wang 

et al stated that NDVI spatial patterns in the central Great Plains are primarily related to 

precipitation spatial patterns, and temporal variation of NDVI spatial pattern was largely 

explained by precipitation deviation from the average. They also stated that the NDVI at 

any given time is influenced by precipitation during an interval that includes both the 

current growing season and part or all of the previous growing season. Furthermore, 

NDVI spatial pattern for a given biweekly period is generally more strongly correlated 

with the average precipitation than with recent precipitation and short-term variations in 

precipitation patterns does not change the underlying spatial patterns of NDVI because 

the underlying gradients are controlled by long-term climate conditions. Their conclusion 

was that the general spatial distribution of NDVI in the central Great Plains corresponds 

directly with the spatial pattern of average annual precipitation, while year-to-year 

variation of NDVI depends largely on the variation of precipitation. Temperature 

influence on the NDVI was only seen during the early and late growing season. 

Wang et al also investigated the temporal responses of NDVI to precipitation and 

temperature (2003) over the same study region, stratifying the raster maps of biweekly 

NDVI, precipitation and temperature according to land cover categories, and calculating 

correlation coefficients between each of the factors and NDVI for the entire pixels for 

each land cover category. He discovered that the nine-year average biweekly NDVI 
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values from 1989-1997 increased rapidly during the spring, peaked in the summer 

months and decreased rapidly during the fall. Correlation coefficients between NDVI and 

precipitation in grassland, cropland and forest were high in specific combinations of time 

duration and lag. In terms of time duration within season, NDVI was more strongly 

related to the sum of precipitation in four or five biweekly periods than in one-to three 

periods. In terms of time lag within season, NDVI was more strongly influenced by the 

second preceding biweekly period (four-week lag) though differences existed among 

different land cover types. The correlation coefficients were also different for the 

different land cover types. For grassland, correlation coefficients were mostly positive 

and maximum values for each year were between 0.7-0.96. For forest, correlation 

coefficients were also mostly positive and maximum values for each year were between 

0.66-1.0. For cropland, correlation coefficients were positive for some years but negative 

for other years. Wang et al concluded that NDVI values are most strongly correlated with 

the precipitation that has been integrated over three to four recent biweekly periods. The 

strength of the relationship varied depending on the land cover type under evaluation.  

Washington-Allen et al (2004) investigated the spatiotemporal mapping of dry 

season sagebush steppe vegetation response using Landsat TM images and derived SAVI 

images. The study site for this research was a private ranch in the Utah Panhandle called 

Deseret Land and Livestock Company Ranch. Washington-Allen et al acquired 22 dry-

season Landsat images from 1972 through 1997, with the dry season from late June to 

September and derived the SAVI from them. He then clustered the SAVI time series to 

identify spatial and temporal signatures, based on the hypothesis that there are four coarse 

time series trends possible: increasing, decreasing, stable, or combinations of these. 



 43

Washington-Allen et al also acquired PDSI data from the Utah Climate Center to 

correlate with the SAVI. The results indicated that only the increasing trend of one-year 

lagged first order difference of SAVI was positively correlated with the first order 

difference of PSDSI with r=0.38 and p=0.07, suggesting that the PDSI is not very well 

correlated with the SAVI. 

Ji and Peters (2003) investigated drought using the SPI, studying the northern and 

central Great Plains. The precipitation record of the region was from 1885-2000, and 

based on the 50-year normal period (1951-2000) annual precipitation ranged from 400 

mm in the northwest to 980 mm in the southeast region of the study area. The NDVI 

images used were biweekly 1-km resolution Maximum Value Composites (MVC) 

produced by the U.S. Geological Survey’s Earth Resources Observation System (EROS) 

Data Center. The MVC technique retains the highest NDVI value for each pixel during a 

14-day period producing images that are spatially continuous and relatively cloud free, 

with temporal resolution sufficient for evaluating vegetation dynamics (Ji and Peters, 

2003). The vegetation in the study regions were mostly croplands (wheat, corn) and 

grasslands (sagebrush, gramma). Ji and Peters used monthly NDVI data from the growing 

season (May-October) for the analysis, and performed correlation analyses for the NDVI 

vs. 1-, 2- through to 12-month SPIs. They analyzed each month separately, implemented 

linear regression on the NDVI time series and 3-month SPI, and employed seasonal 

dummy variables for analysis because the linear relationships between the NDVI and SPI 

were different for varying seasonal periods. Dummy variables are categorical variables 

used as predictors in regression models. These are a set of levels assigned to the 

categorical variables and used to account for the effect of the variables on the response 
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variable (Ji and Peters, 2003). In this study, the dummy variables were a set of six levels 

assigned to the six months of the growing season and used to account for the effect of the 

“month” on the NDVI. The regression model containing seasonal dummy variables is 

expressed as: 

0 1 2 1 3 2 4 3

5 4 6 5 7 1 8 2

9 3 10 4 11 5

( )
( ) ( )

( ) ( ) ( )

NDVI SPI D D D
D D D SPI D SPI
D SPI D SPI D SPI

β β β β β
β β β β
β β β ε

= + + + +
+ + + +
+ + + +

   (56) 

where NDVI is the average NDVI of grassland or cropland in a climate division, SPI is 

the 3-month SPI in a climate division, D1-D5 are the dummy variables, β1 – β11 are the 

regression coefficients and ε is random error. Dummy variables were assigned binary 

values depending on the month as seen in Table 1. 

Table 1: Dummy Variables in SPI analysis by Ji and Peters (2003) 

D1 D2 D3 D4 D5   
0 0 0 0 0  if observation is for May 
1 0 0 0 0  if observation is for June 
0 1 0 0 0  if observation is for July 
0 0 1 0 0  if observation is for August 
0 0 0 1 0  if observation is for September
0 0 0 0 1  if observation is for October 

 

Consequently, the regression models corresponding to the 6 months were: 

 

1

1 7

3 1 8

4 1 9

5 1 10

May             ( )
June             ( ) ( )( )
July             ( ) ( )( )
August         ( ) ( )( )
September   ( ) ( )(

NDVI SPI
NDVI SPI
NDVI SPI
NDVI SPI
NDVI SPI

β β ε
β β β β ε
β β β β ε
β β β β ε
β β β β

0

0 2

0

0

0

= + +
= + + + +
= + + + +
= + + + +
= + + +

6 1 11

)
October       ( ) ( )( )NDVI SPI

ε
β β β β ε0

+
= + + + +

    (57) 

For comparison, a simple regression model that did not use dummy variables was used, 

where each month followed the equation for May in equation 48, and where all slopes 
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and intercepts were assumed equal to those values. The results from this exercise showed 

varying responses for various months and various locations. For the grasslands in climate 

division 2, Nebraska in May, there were no significant correlations between NDVI and 

SPI. In June, there were significant correlations with the 2-, 3-, 6- and 9-month SPI. Very 

high positive correlations between all scales of SPI were noted in July. The correlation 

was still strong in August, but the 1-month SPI and NDVI correlation was not significant. 

Only the 3-month SPI was significant in September, and there were no significant 

correlations in October. The correlation between NDVI and SPI varied depending on the 

time-scale, with the 3-month SPI being the highest correlation overall for all the months. 

Li interpreted this to mean that the impact of precipitation on vegetation does not occur 

instantaneously, but is a cumulative effect. The regression fit was tested to compare the 

predicted results of equations 47 and 48, and the dummy fit model was shown to be very 

accurate as compared to the simple regression. Li concluded that the relationships 

between vegetation condition and moisture availability for the grassland and cropland in 

the northern Great Plains are significant in all climate divisions, and that the 3-month SPI 

had the most significant correlation to the NDVI. He also concluded that seasonality has 

a very significant effect on the relationship between the NDVI and SPI, due to the 

sensitivity of plants to water availability during the reproductive growth stage, and that 

seasonal effects must be taken into account. 

 Although it is not examined in this thesis, remote sensing of temperature has also 

been used to investigate drought. Wan (2004) investigated using Land Surface 

Temperature (LST) and NDVI to create an index called the Vegetation Temperature 

Condition Index (VTCI) which is defined as: 
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where 
.maxiNDVILST  and 

.miniNDVILST are maximum and minimum LSTs of pixels which have 

the same NDVIi value in a study region, respectively, and 
iNDVILST denotes LST of one 

pixel whose NDVI value is NDVIi. Coefficients a, b, a’ and b’ were estimated from an 

area large enough where soil moisture at the surface area spanned from wilting point to 

field capacity at the pixel level. Wan et al performed a linear regression analysis between 

precipitation and NDVI, LST, LST/NDVI ration and VTCI in the Great Plains region of 

the USA, incorporating all land-cover types, croplands and grasslands therein. The 

precipitation data was obtained from the National Climatic Data Center, and included 

total monthly precipitation (TPCP) and departure from normal monthly normal 

precipitation (DPNP). Their results indicate a high correlation between the NDVI and 

TPCP on cropland regions for longer time periods, but a low correlation for shorter time 

periods. For the LST, he found a moderately high negative correlation between it and the 

total monthly precipitation for some shorter time periods. With the VTCI, there was a 

significant correlation with precipitation for 3- and 6-month intervals, and also a 

significant correlation with the DPNP. These results suggest that the VTCI is not only 

closely related to recent rainfall events but also related to past rainfall amounts, and 

indicate that the VTCI might be a better index for drought monitoring. Wan et al 
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concluded that the VTCI is a near-real time drought monitoring approach that is time-

dependent and usually region specific.  

Another technique called Soil Thermal Inertia has also been used to investigate 

drought (Lianmeng and Deren, 2001). It is based on the remote sensing of the thermal 

capacity of soil according to the Apparent Thermal Inertia (ATI) theory, based on NOAA 

AVHRR data. The distribution of soil temperature rests with thermal capacity and 

thermal conductivity. The thermal capacity is the quantity of heat that raises one unit soil 

temperature by 1 oC which is calculated by equation (59): 

 ( )s s w w a aC V C V C V
C

V
+ +

=       (60) 

where Cs, Cw and Ca are the soil’s solid, water, and air thermal capacity per unit volume 

respectively, Vs, Vw and Va are the soil’s solid, water and air volume, and V is the sum of 

these three volumes, or the total volume of soil. Since Ca is very small, and the water 

thermal capacity is twice that of the soil particles, C varies primarily with the change of 

volumetric water content (θ), thus: 
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where Φ=soil porosity. 

According to Fourier’s law: 
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where Qs is the thermal flux, λ is the soil thermal conductivity, and T
z

δ
δ

is the change in 

temperature with the change in depth. According to Fourier’s law and the law of 

conservation of energy, the soil thermal conduction equation can be defined as: 
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where the left-hand side of equation (63) shows the energy change rate of the unit soil 

and the right-hand side shows the net import energy of the unit soil. For the isotropic 

homogeneous soil, if its water quantity is not changed by its depth and the effects of 

water volume change can be ignored for C and λ, then C and λ can be considered as 

constants. If the energy exchange is only in the vertical direction, then equation (63) can 

be simplified to: 
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where α = λ/C=the thermal diffusivity. Under a certain boundary condition (Liangmeng 

and Deren, 2001), the ATI equation can be defined as: 
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where 0T∆  is the daily temperature difference, A is the albedo and k is a constant. 

(Lianming and Deren, 2001). The soil temperature distribution depends on the soil 

thermal characteristic, which in turn depends on the soil water content. The daily albedo 

and temperature difference can be derived from soil reflectivity and brightness 

temperature, which can be obtained from the AVHRR sensor. Thus, one can monitor the 

soil water content. Lianming and Deren (2001) investigated drought conditions in Hubei 

province (People’s Republic of China) using this method and discovered that severe and 

moderate drought conditions were evenly distributed in elevations between 50-500 m in 

elevation, affecting 80% and 73% of the total area respectively. 
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1.9 Objectives 
 
 The purpose of this thesis is two-fold. Firstly, it will examine whether differences 

between drought-stressed, natural, and regularly irrigated vegetation can be detected by 

the statistical analysis of reflectance data. Through this, it may then be possible to 

determine solely from reflectance images whether or not a region of a certain vegetation 

cover is drought stressed or not, and it may also indicate whether the vegetation under 

review is sensitive or not to precipitation levels and how sensitive it is. Secondly, it will 

examine the relationship between various vegetation indices and drought indices 

(Standardized Precipitation Index and Palmer Drought Index) to see which indices have a 

good correlation and can be used to indicate drought conditions. Through this, we can 

process satellite images for vegetation indices and then use those images to indicate 

drought severity. This can be in real-time or using various time lags and this thesis will 

also examine the correlation over various time lags.  
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2. METHODS AND INSTRUMENTATION 
 

2.1 Study Region and Vegetation 
 

The study region is located in the Sevilleta National Wildlife Refuge (SNWR), 

site of the Sevilleta Long-Term Ecological Research site in Central New Mexico. This 

region is about 35 km northeast of Socorro, New Mexico and about 80 kilometers south 

of Albuquerque, New Mexico. The Refuge, which is managed by the US Department of 

the Interior, Fish and Wildlife Service, is positioned at the intersection of several major 

biotic zones: Chihuahuan Desert grassland and shrub land to the south, Great Plains 

grassland to the north, Piñon-Juniper woodland in the upper elevations of the neighboring 

mountains, Colorado Plateau shrub-steppe to the west, and riparian vegetation along the 

middle Rio Grande Valley. The study region for this thesis is at the intersection of the 

Chihuahuan and Great Plains biotic zone. Figure 4-1 shows a map of the study region. 

The dominant vegetation types present in the study site are creosote shrubs (Larrea 

tridentata) and black gramma grass (Bouteloua eriopoda). Other vegetation such as 

sagebush and yucca are present on the plains regions, while piñon juniper appears in 

more elevated regions. Creosote shrubs are ubiquitous in Chihuahuan deserts and much 

research has been done on this species, especially on its drought tolerance and propensity 

for invasion/encroachment. While it is assumed that high precipitation limits (>150 mm 

total annual) limits the distribution of creosote, such limits are most likely an indirect 

effect (Smith et al, 1997). Creosote has been classified as a true drought-resisting species 

that remains metabolically active during dry seasons and exhibits growth at any time of 
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the year (Oechel et al, 1972), even when exposed to very low soil water potentials. 

Relative to other xerophytes, creosote has been described as having poor stomatal control 

of water loss (Odening et al, 1974). However, as in most other desert perennials, creosote 

exhibits pronounced declines in stomatal conductance during times of high evaporation 

demand (Oechel et al, 1972; Franco et al 1994). Such reductions in conductance are 

correlated with changes in plant water potential (Franco et al. 1994). Creosote has a 

relatively high photosynthetic capacity and is able to reach photosynthetic compensation 

at water potentials of -8 MPa, much more resistant than gramma grasses. 

 

Figure 2-1: Map of Sevilleta National Wildlife Refuge (http://sev.lternet.edu) 
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2.2 Remote Sensing Methods 

2.2.1 Site Description 
 

There are two sites under study for this research. One site was established by Eric 

Small (Small and Kurc, 2003)for investigating differences between rain-sheltered and 

control desert vegetation ,specifically black gramma (Bouteloua eriopoda) and creosote 

shrubs (Larrea tridentata). The second site was established by Geoffrey Marshall and 

Xiaobing Zhou to investigate any detectable differences between normal creosote shrubs 

and regularly-irrigated creosote shrubs.  

The first site is located at latitude 34.338o N and 106.733oW, and consists of 6 

control plots and 3 rain-sheltered plots. Each plot is about 8 meters by 12 meters, 

rectangular, and has a vegetation cover of about 70%. The predominant vegetation in 

each plot is black gramma grass and between 4-6 creosote shrubs, along with various 

other small grasses and shrubs not under review in this report. The physically largest 

vegetation in each plot is the creosote shrub. Measurements were taken from one control 

plot and one drought plot. The measurements from the control plot came from two 

creosote shrubs, two black gramma grass patches, and two soil exposures. The rain-

sheltered plot measurements came from two creosote shrubs, four black gramma grass 

patches and two soil exposures. The second site is located at latitude 34.329o N and 

longitude 106.764. It consists of three creosote shrubs out in the open. One shrub is 

watered every 2 weeks or more frequently with the equivalent of a 2-hour intense 

precipitation event, while the other two shrubs are control shrubs. Both control shrubs are 

about 10 meters from the watered shrub and 60 meters from each other. Photos of both 

sites are seen in Figures 2-2 through 2-5. 
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2.2.2 Instrument Description 
 

Radiance data was collected from all the plants and soil targets by an Analytical 

Spectral Devices spectroradiometer. This instrument has two target sensors that record 

reflected electromagnetic radiation over a 15-degree angle of view and for wavelengths 

from 350 nm to 2500 nm. Appendix A has more information on the instrument operation 

theory and specifics. 

 

Figure 2-2: Control Field Plot 
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Figure 2-3: Drought Field Plot 

 
Figure 2-4: Irrigated Field Plot 
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Figure 2-5: Irrigated Shrub and Irrigation system. The spectroradiometer is visible in foreground 

2.2.3 Data Collection and Processing 
 
 The radiance and reflectance data collection for the Rain-sheltered Site extends 

from January 2003 until October 2004. Data was collected over fortnightly periods, but 

was hampered by weather conditions and machine/human error such as the laptop battery 

dying, so there were periods of more than two weeks without measurement. Each 

measurement consisted of radiance data collections at both the watered shrub Site and the 

Rain-sheltered Site on one day, weather-permitting. At least 20 discrete radiance spectra 

were recorded on each shrub per measurement, while three spectra were taken for grass, 

soil and white reference targets per measurement. Each spectra consisted of 2150 values 

representing target radiance for every wavelength between 350 nm and 2500 nm. This 

radiance data was then processed for each target over the wavelength range to get a single 

average radiance value per period per target for each wavelength in the spectroradiometer 
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range, corrected for solar angle, collection time, Julian day, and location (latitude and 

longitude). Because of the large amounts of data, the process was automated using a Perl 

script which performed all necessary corrections on the raw radiance data. The code for 

this script is presented in Appendix B, and includes step-by-step information on what 

corrections were made and how they were made. The corrected data was then converted 

to reflectance data by dividing the target radiance average data by the white reference 

radiance average data per wavelength for each measurement period. After all of this 

processing, the result was a single reflectance spectral signature for every shrub, grass 

and soil target measured during that measurement period. A single spectral signature for 

the Rain-sheltered Site control shrub plot was then obtained by calculating the mean of 

all control shrub spectral signatures, and the same process was repeated for the control 

grass and soil, and the rain-sheltered shrub, grass and soil. The Irrigated Site had only one 

irrigated and one control shrub, so all that was needed from both targets was the single 

reflectance spectral signature. The data was then processed to calculate Landsat band 

reflectances and vegetation indices for all measurement periods. There are seven bands 

on the Landsat ETM sensor, 6 of which were calculated in the data processing.  Bands 1 

through 3 represent the blue, green and red spectrum respectively. The blue band 

wavelengths are from 450 nm to 520 nm. The green band wavelengths are from 520 nm 

to 600 nm, and the red band wavelengths are from 630 nm to 690 nm. Band 4 represents 

the near-infrared spectrum and ranges from 760 nm to 900 nm. Bands 5 and 7 are in the 

middle infrared region, and while they were calculated for the sake of completion and 

thoroughness, they were not utilized much in this research. Band 6 uses wavelengths in 

the thermal infrared region that are longer than the maximum 2500 nm range of the 
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spectroradiometer, and was therefore not calculated. The field-based reflectance of the 

Landsat bands was determined by calculating the mean reflectance of all the wavelengths 

between the upper and lower defining wavelengths of each band. Processing of these data 

was a very labor-intensive task, since each measurement period had 2150 discrete data 

values for each target, 6 targets in the control plot, 8 targets in the rain-sheltered plot and 

2 targets for the Irrigated Site. Thus, even after processing and correcting the raw field 

data to get a single spectral signature for each target, there was a total of 34400 data 

values for each measurement period, not including White Reference radiance. When the 

mean spectral signature data for control and rain-sheltered shrub, soil and grass data are 

included, this Figure increases to 47300 data values. In addition, we must calculate 6 

Landsat reflectance bands from all of the mean target spectral signature values, and then 

calculate vegetation index values from specific band and wavelength reflectance for 12 

different indices for all 8 targets (Rain-sheltered Site control and rain-sheltered shrub, 

grass, and soil, Irrigated Site irrigated shrub and control shrub).  Furthermore, all of the 

data described above is from just one measurement period; this entire process had to be 

performed and repeated for 34 measurement periods at the Rain-sheltered Site, and 26 

measurement periods at the Irrigated Site. To aid in processing and calculating all of this 

data, several Microsoft Excel macros were created to calculate and manipulate the data in 

spreadsheets. Each macro was created for a specific purpose, from calculating the mean 

spectral signatures for all targets to creating spreadsheets of vegetation index data sorted 

by measurement date to creating a final spreadsheet (“archive”) of all reflectance data 

and vegetation index data for each measurement site. All macros were updated regularly 

to include new measurement data and processing. All of the data, both raw and 
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processed, are archived on a series of three compact discs which are attachments to this 

thesis. They are not reproduced in table form here as it would be too cumbersome.  

2.3 Precipitation Methods 

2.3.1 Data Collection and Processing 
 

The precipitation data was taken from the Five-Points weather station (station 49) 

located in the Sevilleta as shown in Figure 4-1. The weather station collects 

meteorological data on a daily basis and summarized data is available on the SNWR’s 

website (http://sev.lternet.edu). The data dates from January 1999 to October 2004, and 

SPI values were calculated from the daily precipitation data from this weather station, 

using a program downloaded from the National Drought Mitigation Center website at 

http://drought.unl.edu , based at the University of Nebraska-Lincoln. For two weeks in 

November 2003 there was no precipitation data from this weather station, so precipitation 

data from the next closest weather station (named Deep Well) was used for this time 

period. Since the data processing program took monthly integer values, the weather-

station precipitation was multiplied by a factor of 10 and then arranged in dummy months 

and years in order to calculate the SPI values for varying weekly intervals. The intervals 

selected were 1 through 30-week intervals. PDI values were taken from the NOAA’s 

daily derivation taken for the entire Central New Mexico region from 2003-2004, as we 

did not have enough data for the various parameters to calculate the index locally.  

Precipitation values for the Irrigated Site were calculated by dividing the volume 

of water added for irrigation by the area of the irrigation plot, and adding this to the 

precipitation from the 5-Points weather station for every day that irrigation was carried 

out. The volume of water added per event was 10 U.S. gallons, or 0.0378541 cubic 
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meters, while the irrigation outlet area was 0.25 square meters. Thus, the simulated 

precipitation in meters is 0.1514 meters, or 151.4 mm. This Figure was based from the 

highest recorded single day precipitation event for the Socorro precipitation records. This 

Figure was added to the daily precipitation recorded for the irrigation days, and then the 

SPI was calculated from this amended record. This irrigation Figure may seem to be quite 

high, but it is debatable as to whether all of the water was used by the plant or infiltrated 

to depth and remained in situ. Potential evapotranspiration is quite high in the region, and 

various grass and sundry vegetation could be seen at the base of the irrigated shrub. This 

vegetation also used the irrigation water along with the shrub. The presence of vigorous 

stands of creosote on mesic dunes in the southwest suggests that they can survive 

occasional high soil moisture (Smith, 1997). This site is taken as a reference site with 

excessive irrigation, to ensure that the plant is not subject to drought stress throughout the 

study period, even though the exact amount of water actually used by the plant is not 

known. 
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3. RESULTS AND ANALYSIS OF FIELD DATA 
 

3.1 Correlation between SPI and PDI data 
 

For this section of the research, weekly PDI measurements provided by the 

National Oceans and Atmosphere Administration (NOAA) from March 2002-March 

2004 were correlated with the SPI measurements calculated from the weather station 

precipitation data at time lags from 0 weeks to 12 weeks (3 months). These are presented 

in tables 2 and 3. SPI measurements were calculated from the 5 Points weather station 

precipitation data for one through thirty week periods, while PDI measurements were 

calculated by the NOAA for the New Mexico Central Valley region. There were 104 

weekly observations in each measurement set. The results show that correlations between 

the PDI and all SPI values became more significant both as the time lags increased and as 

the SPI period increased. A graphical representation of the correlation data is shown in 

Figure 3-1. Each cluster represents correlations from 1-week SPI through 30-week SPI. 

PDI-SPI Correlations, with 1 through 30 week SPI
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Figure 3-1: Graph of linear correlations coefficients for 1-week through 30-week SPI with weekly 
PDI, over no lag through to 12 weeks lag. 
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Table 2: Correlation coefficients of weekly PDI values vs. SPI values derived for 5 Points weather 
station, from no lag to six weeks lag. 

 No Lag 
One 

Week 
Lag 

Two 
Week 
Lag 

Three 
Week 
Lag 

Four 
Week 
Lag 

Five 
Week 
Lag 

Six Week 
Lag 

1-Week SPI -0.014** 0.025** -0.006** 0.024** 0.025** 0.092** 0.13** 
2-Week SPI -0.006** 0.006** -0.013** 0.008** 0.08** 0.146** 0.174** 
3-Week SPI -0.015** 0** -0.004** 0.067** 0.138** 0.187** 0.235* 
4-Week SPI -0.016** 0.006** 0.054** 0.125** 0.18** 0.246* 0.301 
5-Week SPI 0.001** 0.06** 0.108** 0.173** 0.239* 0.305 0.355 
6-Week SPI 0.05** 0.107** 0.157** 0.226* 0.291 0.354 0.406 
7-Week SPI 0.094** 0.15** 0.208* 0.274 0.337 0.401 0.463 
8-Week SPI 0.133** 0.193* 0.251** 0.317 0.38 0.453 0.491 
9-Week SPI 0.171** 0.23* 0.289 0.354 0.427 0.479 0.525 
10-Week SPI 0.209* 0.271 0.329 0.405 0.458 0.515 0.567 
11-Week SPI 0.246* 0.306 0.372 0.43 0.487 0.547 0.589 
12-Week SPI 0.278 0.346 0.397 0.457 0.517 0.569 0.603 
13-Week SPI 0.318 0.371 0.424 0.487 0.541 0.586 0.617 
14-Week SPI 0.343 0.399 0.456 0.513 0.56 0.602 0.628 
15-Week SPI 0.372 0.431 0.484 0.534 0.577 0.614 0.644 
16-Week SPI 0.402 0.459 0.505 0.552 0.591 0.63 0.651 
17-Week SPI 0.433 0.483 0.527 0.569 0.61 0.639 0.659 
18-Week SPI 0.459 0.506 0.545 0.59 0.621 0.649 0.667 
19-Week SPI 0.484 0.526 0.568 0.602 0.632 0.658 0.673 
20-Week SPI 0.506 0.552 0.582 0.615 0.643 0.667 0.675 
21-Week SPI 0.532 0.568 0.597 0.628 0.654 0.671 0.685 
22-Week SPI 0.551 0.585 0.612 0.641 0.659 0.682 0.702 
23-Week SPI 0.568 0.6 0.626 0.646 0.67 0.7 0.714 
24-Week SPI 0.585 0.616 0.633 0.658 0.689 0.713 0.738 
25-Week SPI 0.602 0.625 0.646 0.679 0.703 0.74 0.753 
26-Week SPI 0.613 0.641 0.669 0.695 0.733 0.756 0.766 
27-Week SPI 0.628 0.664 0.686 0.725 0.75 0.771 0.772 
28-Week SPI 0.654 0.683 0.718 0.744 0.766 0.779 0.775 
29-Week SPI 0.676 0.719 0.741 0.764 0.779 0.786 0.78 
30-Week SPI 0.714 0.744 0.764 0.779 0.787 0.793 0.783 

 

* = Correlation has p-value significant between 5% and 1%  

**= Correlation p-value greater than 5% (no statistical significance) 

All other correlations have p-values less than 1% and are significant. 
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Table 3: Correlation coefficients of weekly PDI values vs. SPI values derived for 5 Points weather 
station, from seven weeks lag to twelve weeks lag. 

 
Seven 
Week 
Lag 

Eight 
Week 
Lag 

Nine 
Week 
Lag 

Ten 
Week 
Lag 

Eleven 
Week 
Lag 

Twelve 
Week 
Lag 

1-Week SPI 0.144** 0.22* 0.275 0.282 0.296 0.359 
2-Week SPI 0.23* 0.296 0.342 0.36 0.399 0.405 
3-Week SPI 0.295 0.347 0.39 0.427 0.429 0.452 
4-Week SPI 0.352 0.402 0.453 0.456 0.473 0.502 
5-Week SPI 0.409 0.468 0.488 0.51 0.535 0.552 
6-Week SPI 0.471 0.505 0.538 0.565 0.576 0.582 
7-Week SPI 0.504 0.548 0.586 0.601 0.604 0.602 
8-Week SPI 0.541 0.589 0.612 0.62 0.618 0.607 
9-Week SPI 0.58 0.613 0.63 0.634 0.624 0.618 
10-Week SPI 0.606 0.633 0.645 0.643 0.639 0.624 
11-Week SPI 0.621 0.645 0.651 0.653 0.639 0.621 
12-Week SPI 0.631 0.649 0.659 0.652 0.636 0.617 
13-Week SPI 0.64 0.662 0.663 0.653 0.635 0.609 
14-Week SPI 0.656 0.667 0.665 0.654 0.631 0.596 
15-Week SPI 0.661 0.671 0.667 0.65 0.619 0.59 
16-Week SPI 0.667 0.674 0.665 0.64 0.614 0.59 
17-Week SPI 0.673 0.676 0.658 0.639 0.618 0.59 
18-Week SPI 0.678 0.672 0.66 0.646 0.621 0.605 
19-Week SPI 0.675 0.676 0.669 0.649 0.636 0.612 
20-Week SPI 0.684 0.689 0.676 0.667 0.645 0.616 
21-Week SPI 0.7 0.699 0.695 0.677 0.651 0.615 
22-Week SPI 0.711 0.72 0.705 0.684 0.65 0.612 
23-Week SPI 0.733 0.73 0.712 0.683 0.647 0.608 
24-Week SPI 0.744 0.739 0.712 0.681 0.645 0.603 
25-Week SPI 0.756 0.741 0.712 0.681 0.641 0.591 
26-Week SPI 0.761 0.743 0.713 0.678 0.631 0.574 
27-Week SPI 0.762 0.744 0.711 0.669 0.613 0.558 
28-Week SPI 0.765 0.743 0.701 0.652 0.598 0.539 
29-Week SPI 0.766 0.736 0.687 0.638 0.581 0.515 
30-Week SPI 0.76 0.723 0.674 0.622 0.557 0.487 

 

* = Correlation has p-value significant between 5% and 1%  

**= Correlation p-value greater than 5% (no statistical significance) 

All other correlations have p-values less than 1% and are significant. 
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In Figure 3-1, there is a general increase of correlation coefficients up to the 5-week lag, 

and then a gradual decline afterwards. The double peaks apparent in the later lag periods 

should also be noted. This graph suggests that the weekly PDI value at any given instant 

is dependent upon the cumulative precipitation for up to 30 weeks previously in this 

region. However, the weekly PDI value may be affected more strongly by the amount of 

precipitation accumulated, rather than the length of time over which the precipitation 

accumulated. A representative linear fit of the highest correlation is shown in Figure 3.2. 
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Figure 3-2: 30-Week SPI vs. PDI, with PDI lagged 5 weeks behind SPI. 

 
These results not only show the significance of precipitation to the PDI values, but also 

show the slow response of the PDI to real-time conditions. Since the greatest correlation 

was with a lag of 5 weeks and an SPI scale of 30 weeks, we can say that the weekly PDI 

is dependent upon precipitation up to 36 weeks before the week under consideration in 
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this region. These results agree with Guttman (1998) whose research on phase 

relationships between the PDI and SPI indicated that precipitation is the dominant factor 

in the PDI, and that for periods less than a year (52 weeks) the PDI lags behind the SPI.  

Timescale graphs for some of the drought index data are reproduced in Figures 3-

3 through 3.10. 
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Figure 3-3: 1-Week SPI values for 5-Points Weather Station from Jan 1999 to Sept 2004 
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Figure 3-4: 2-Week SPI values for 5-Points Weather Station from Jan 1999 to Sept 2004 
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Figure 3-5: 3-Week SPI values for 5-Points Weather Station from Jan 1999 to Sept 2004 
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Figure 3-6: 4-Week SPI values for 5-Points Weather Station from Jan 1999 to Sept 2004 
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Figure 3-7: 6-Week SPI for 5-Points Weather Station from Jan 1999 to Sept 2004 
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Figure 3-8: 12-Week SPI for 5-Points Weather Station from Feb 2002 to Sept 2004 
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Figure 3-9: 16-Week SPI for 5-Points Weather Station from Mar 1999 to Sept 2004. 
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Figure 3-10: Weekly PDI for West-Central New Mexico from Feb 2002 to Sept 2004 

 
In Figures 3-3 through 3-10, we see that the shorter SPI timescales have a lot of variance 

and do not show much of a pattern. However, as the timescale increases, a clearer pattern 

begins to emerge and smoother trends can be seen which better identify drought 

conditions. The SPI graphs from the 6-Week SPI onwards show more clearly when 

drought periods begin and end, beginning when the values fall below 0 and ending when 

they go above 0. The PDI follows the same rule. The graphs show that for most of the 

period under consideration, the region has been in moderate to severe drought stress, with 

more negative values than positive values. However, different timescales show varying 

degrees of drought conditions; the 16-week SPI in Figures 3-9 shows that the last days of 

the period are in near-normal conditions, but the 12-week SPI in Figure 3-8 shows a 

moderately-to-very dry condition. 
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3.2 Comparison of Rain-sheltered Vegetation with Control 
Vegetation 

 
The vegetation indices trend with time is indicated below for both the mixed and 

Irrigated Site. Outliers and faulty data were removed where present. T-Tests of mean 

difference being equal to 0 vs. not 0 were done with the null hypothesis being no 

difference between the drought and natural data sets, while the alternative hypothesis was 

that there was a difference between the drought and natural data sets. The T-value limit 

showing a statistical difference was 2.00 with a p-value ≤0.05 (95% certainty). Positive 

T-values greater than 2 indicated that the control data set mean value was greater than the 

drought data set mean, while negative T-values less than -2 indicated that the drought 

data set mean was greater than the control data set mean. Graphs presented were created 

in Microsoft Excel or Minitab 14, and statistical analysis was done using Minitab 14 

software. 

3.2.1 Rain-sheltered Site Vegetation Indices 

 

Figure 3-11: Rain-sheltered Site Shrub NDVI time series 
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Figure 3-11 shows the calculated NDVI for the creosote shrubs at the Rain-

sheltered Site, both normal and rain-sheltered. The values are generally similar to each 

other, and follow similar trends. The extreme jumps at the beginning are possibly 

outliers. Both sets of values trend upwards throughout the summer and fall of 2003 as a 

result of the monsoon rainfall, although 2003 was overall a dry year and the control 

creosote shrubs were also under drought conditions for the most part. The mean NDVI 

for the normal shrubs was 0.688676 with a standard deviation of 0.062883, while the 

mean NDVI for the rain-sheltered shrubs was 0.671884 with a standard deviation of 

0.073738. Paired T-Tests of mean difference being equal to 0 vs. not 0 on the control and 

rain-sheltered NDVI measurements differences gave a T-value of 1.43. Thus, we cannot 

statistically show a difference between both sets of measurements. 

 

Figure 3-12: Rain-sheltered Site Grass NDVI time series 
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grass mean NDVI as 0.17218 with a standard deviation of 0.076233, and the rain-

sheltered grass mean NDVI as 0.121607 with a standard deviation of 0.028051. Paired T-

test results gave a T-value of 3.97, which indicates a virtual certainty that the rain-

sheltered and natural grass NDVI are statistically different. The spikes in NDVI value are 

a possible response to monsoon rainfall, as well as seasonal variation. Similar spikes are 

seen in the other datasets, and suggest that the grass responds more quickly to water 

availability than the shrubs do. 

 

Figure 3-13: Shrub NDWI time series 
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standard deviation of 0.054896, while the rain-sheltered shrub mean NDWI was -

0.011957 with a standard deviation of 0.02758. Paired T-tests gave a T-value of 2.57, and 

the confidence interval was between 0.00543 and 0.047552. Thus, we conclude that there 

is a statistical difference between both data sets. This is expected, as the water-stress 

absorption is expected to be less for the rain-sheltered shrub as compared to the control 

shrub. 

 

 
Figure 3-14: Grass NDWI time series. 

As seen in Figure 3-14, the grass NDWI follows similar trends through time for 

both shrubs, although there is an apparent outlier on August 31 2003 for the natural grass 
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0.032657, while the rain-sheltered grass NDWI was -0.151144 with a standard deviation 

of 0.0256. The T-test value was 3.97, so we conclude that these datasets are statistically 

different. Here also, we continue to see a lower water-absorption in the rain-sheltered 

vegetation which causes a lower mean value for this index. 
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Figure 3-15 represents the VIN time series, and shows that the VIN trends 

similarly to the NDVI data. The mean VIN for the natural shrubs was 5.69521 with a 

standard deviation of 1.431 and the mean VIN for the rain-sheltered shrubs was 5.38550 

with a standard deviation of 1.512. T-test analysis gave a T-value of 1.21, indicating that 

there was no statistical difference between both sets of data.  

 

Figure 3-15: Rain-sheltered Site Shrub VIN time series   
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more. The mean Natural Grass VIN was 1.43779 with a standard deviation of 0.245, 

while the mean Rain-sheltered grass VIN was 1.279 with a standard deviation of 0.0743. 

Paired T-Tests of mean difference being equal to 0 vs. not 0 gave a T-value of 3.89, 

which shows that there is a significant statistical difference between both data sets.  
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Figure 3-17 represents the Rain-sheltered Site shrub SAVI which also follows the trends 

of the shrub NDVI and VIN. The mean Natural Shrub SAVI was 0.466792 with a 

standard deviation of 0.0659, while the mean Rain-sheltered shrub SAVI was 0.456564 

with a standard deviation of 0.0712. Paired T-Tests of mean difference being equal to 0 

vs. not 0 gave a T-value of 1.49, so we cannot reject the null hypothesis. 

 

Figure 3-16: Rain-sheltered Site Grass VIN time series 
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Figure 3-17: Rain-sheltered Site Shrub SAVI time series 

 

 

Figure 3-18: Rain-sheltered Site Grass SAVI time series 
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NDVI and similar indices over time. The mean for the Natural Shrub ARVI was 0.5786 

with a standard deviation of 0.07125, while the mean for the Rain-sheltered shrub ARVI 

was 0.0529 with a standard deviation of 0.08763. The calculated T-value was 2.05 with p 

of 0.049, which is just over the threshold of accepting the alternate hypothesis and 

concluding that there is a significant difference between both sets of measurements.   

 

Figure 3-19: Rain-sheltered Site Shrub ARVI time index 
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calculated T-value was 4.36 with a virtual certainty that both data sets were different 

from each other. 
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Figure 3-20: Rain-sheltered Site Grass ARVI time series data 

 

Figure 3-21: Rain-sheltered Site Shrub RVSI Time Series 
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between both sets of data. This is borne out in the T-test results, as the mean Natural 

Shrub RVSI is 0.2425 with a standard deviation of 0.0422, while the mean Rain-sheltered 

shrub RVSI is 0.2413 with a standard deviation of 0.0475. The calculated T-value was 

0.19, so we accept the null hypothesis that there is no difference in this set of data. 

 

Figure 3-22: Rain-sheltered Site Grass RVSI 
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sheltered shrub WBI was 0.99319 with a standard deviation of 0.012. The calculated T-

value was 10.87, making it a certainty that the alternate hypothesis was valid and there is 

a difference between both data sets. 

 

 
Figure 3-23: Rain-sheltered Site Shrub WBI values 
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season and decreasing in the fall. The mean control shrub RVI was 0.1856 with a 

standard deviation of 0.04234, while the mean rain-sheltered shrub RVI was 0.1991 with 

a standard deviation of 0.051576. The calculated T-value was -1.77 with a p-value of 

0.085, which is close but not enough to reject the null hypothesis. 

 
Figure 3-24: Rain-sheltered Site Grass WBI time series 

 
Figure 3-26 represents the Rain-sheltered Site grass RVI values. The rain-

sheltered grass data appears to be rather constant throughout the time series, while the 

control grass RVI data has more variation but still seems to be lower than the rain-

sheltered grass data. The mean control grass RVI is 0.712962 with a standard deviation of 

0.10689, while the mean rain-sheltered grass RVI was 0.78423 with a standard deviation 

of 0.044255. The calculated T-value was -3.99, so we accepted the alternate hypothesis 

that there is a difference between both data sets, and we note that the drought mean is 

actually greater than the control mean. 
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Figure 3-27 represents the Rain-sheltered Site shrub NDGI data. The mean 

control shrub NDGI was 0.080245 with a standard deviation of 0.0478, while the mean 

rain-sheltered shrub NDGI was 0.056576 with a standard deviation of 0.048931. The T-

test on mean difference gave a value of 4.33, so we accepted the alternate hypothesis. 

 

 
Figure 3-25: Rain-sheltered Site Shrub RVI time series 

 
Figure 3-28 represents the Rain-sheltered Site grass NDGI time series. The mean 

control grass NDGI was –0.07233 with a standard deviation of 0.0244, while the rain-

sheltered grass NDGI was -0.08439 with a standard deviation of 0.021768. T-Tests of 

mean difference being equal to 0 vs. not 0 gave a value of 3.87, so we reject the null 

hypothesis and accept the alternate hypothesis that there is a difference between both data 

sets. 
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Figure 3-26: Rain-sheltered Site Grass RVI time series 

 
 

 

 
Figure 3-27: Rain-sheltered Site Shrub NDGI time series 
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Figure 3-29 represents the Rain-sheltered Site shrub NDRI datasets. The mean 

control shrub NDRI was -0.080245 with a standard deviation of 0.0478, while the mean 

rain-sheltered shrub NDRI was -0.056576 with a standard deviation of 0.0489. The T-test 

of mean difference value was -4.33, so we reject the null hypothesis and conclude that the 

drought data set is greater than the control data. 

 
Figure 3-28: Rain-sheltered Site Grass NDGI time series 

 
Figure 3-31 represents the Rain-sheltered Site shrub NDI. The mean natural shrub 

NDI is 0.287733 with a standard deviation of 0.06259, while the mean rain-sheltered 

shrub NDI is 0.255925 with a standard deviation of 0.063861. The T-test value of the 

mean difference was 2.88, so we accepted the null hypothesis that there was a difference 

between both shrubs with this data. 
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Figure 3-29: Rain-sheltered Site Shrub NDRI time series 

  

 
Figure 3-30: Rain-sheltered Site Grass NDRI time series 
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Figure 3-31: Rain-sheltered Site Shrub NDI time series 

  

 
Figure 3-32: Rain-sheltered Site Grass NDI time series 
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 Figure 3-32 shows the Rain-sheltered Site grass NDI data. The mean control grass 

NDI was -0.204745 with a standard deviation of 0.075612, while the mean drought NDI 

was -0.262386 with a standard deviation of 0.048273. T-Tests of mean difference being 

equal to 0 vs. not 0 gave a T-value of 4.87, so we accept the alternate hypothesis that 

there is a difference between both datasets. This is probably due to a higher water 

absorption in the control shrub vegetation in the middle infrared region for both the shrub 

and grass NDI data. 

 
Figure 3-33: Rain-sheltered Site Shrub MSAVI time series 

 
 Figure 3-33 shows the Rain-sheltered Site shrub MSAVI data. The shrub MSAVI 
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MSAVI is 0.44844 with a standard deviation of 0.095113. The T-test for mean difference 

was 1.44, so we accept the null hypothesis in this case that there is no difference. 

 Figure 3-34 shows the Rain-sheltered Site grass MSAVI data. The rain-sheltered 

grass MSAVI is close to a constant trend, while the control grass varies a lot. The mean 

control grass MSAVI is 0.070874 while the mean rain-sheltered grass MSAVI is 0.0482. 

The T-test for mean difference was calculated as 3.69, so we reject the null hypothesis. 

 
Figure 3-34: Rain-sheltered Site Grass MSAVI time series 
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was 0.74 with a p-value of 0.461, so we cannot statistically show a difference between 

both data sets. 
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Figure 3-35: Irrigated Site Shrub NDVI time series 
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Figure 3-36: Irrigated Site Shrub NDWI time series 
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Figure 3-37 presents the Irrigated Site VIN data. The VIN time series follows a 

similar trend to the NDVI time series. The mean watered shrub VIN was 5.98551 with a 

standard deviation of 1.539, while the mean control shrub VIN was 5.09543 with a 

standard deviation of 1.167. T-Tests of mean difference being equal to 0 vs. not 0 gave a 

T-value of 3.78, so we accept the alternate hypothesis. 

0

1

2

3

4

5

6

7

8

9

10

6/28/20
03

8/17/20
03

10/6/20
03

11/25/2
003

1/14/20
04

3/4/200
4

4/23/20
04

6/12/20
04

8/1/200
4

9/20/20
04

11/9/20
04

Date of Measurement

Ve
ge

ta
tio

n 
In

de
x 

Va
lu

e

Watered Shrub VIN
Control Shrub VIN

 
Figure 3-37: Irrigated Site Shrub VIN time series 

 
Figure 3-38 presents the Irrigated Site Shrub SAVI data. The SAVI time series 

data seems to have a steady trend, and has an apparent outlier for the first measurement. 

When the first measurements were removed from analysis, the mean watered shrub SAVI 

was calculated as 0.487946 with a standard deviation of 0.05522, while the mean control 

shrub SAVI was 0.44692 with a standard deviation of 0.047847. The T-Tests of mean 

difference being equal to 0 vs. not 0 gave a T-value of 5.95, so we rejected the null 

hypothesis and accepted the alternate hypothesis. 

 



 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6/28/20
03

8/17/20
03

10/6/20
03

11/25/2
003

1/14/20
04

3/4/200
4

4/23/20
04

6/12/20
04

8/1/200
4

9/20/20
04

11/9/20
04

Date of Measurement

Ve
ge

ta
tio

n 
In

de
x 

Va
lu

e

Watered Shrub SAVI
Control Shrub SAVI

 
Figure 3-38: Irrigated Site Shrub SAVI time series  
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Figure 3-39: Irrigated Site Shrub ARVI time series 
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 Figure 3-39 presents the Irrigated Site shrub ARVI data. The trend here is similar 

to the other infrared/red band indices. The mean watered shrub ARVI was 0.588456 with 

a standard deviation of 0.071676, while the mean control shrub ARVI was 0.543671 with 

a standard deviation of 0.070231. T-Tests of mean difference being equal to 0 vs. not 0 

gave a T-value of 4.01, so we reject the null hypothesis and accept the alternate 

hypothesis. 
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Figure 3-40: Irrigated Site Shrub RVSI time series 

 
 Figure 3-40 presents the Irrigated Site shrub RVSI date. The RVSI indices follow 

a mostly constant trend. The first data measurements were outliers and were removed. 

When the outliers were removed, the mean watered shrub RVSI was 0.257172 with a 

standard deviation of 0.046424, while the mean control shrub RVSI was 0.239774 with a 

standard deviation of 0.043068. T-Tests of mean difference being equal to 0 vs. not 0 

gave a T-value of 4.23, so we accepted the alternate hypothesis that there is a difference 

between both datasets. 
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Figure 3-41 shows the Irrigated Site shrub WBI data. The WBI series has a much 

smaller numerical range than the other indices but still shows a statistical difference. The 

watered shrub WBI mean was 1.00905 with a standard deviation of 0.00888, while the 

control shrub WBI was 0.99467 with a standard deviation of 0.00987. T-Tests of mean 

difference being equal to 0 vs. not 0 gave a T-value of 8.76, so we reject the null 

hypothesis and accept the alternate hypothesis. 
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Figure 3-41: Irrigated Site Shrub WBI time series 

 
Figure 3-42 shows the Irrigated Site shrub RVI data. The mean watered shrub 

RVI was 0.176765 with a standard deviation of 0.040198, while the mean control shrub 

RVI was 0.206863 with a standard deviation of 0.049. T-tests done on the mean 

difference gave a T-value of -3.67, so we accept the alternate hypothesis and note that the 

control data is larger than the Irrigated Site data.  
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Figure 3-42: Irrigated Site Shrub RVI time series 
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Figure 3-43: Irrigated Site Shrub NDGI time series 

 
 Figure 3-43 shows the Irrigated Site shrub NDGI data. The time series is highly 

variable, but both datasets follow similar trends in increasing and decreasing (until the 
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final few measurements). The mean watered shrub NDGI is 0.087942 with a standard 

deviation of 0.0561, while the mean control shrub NDGI is 0.05144 with a standard 

deviation of 0.0387. T-Tests of mean difference being equal to 0 vs. not 0 gave a T-value 

of 5.42, so we accept the alternate hypothesis. 
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Figure 3-44: Irrigated Site Shrub NDRI time series 

 
Figure 3-44 shows the Irrigated Site shrub NDRI data. The NDRI is the inverse of 

the NDGI, so its values are just the negative of the NDGI values. The mean watered 

shrub NDRI is -0.087942 with a standard deviation of 0.0561 while the mean control 

shrub NDRI is -0.05144 with a standard deviation of 0.0387. T-Tests of mean difference 

being equal to 0 vs. not 0 gave a T-value of -5.42, so we accept the alternate hypothesis 

and note that the control shrub has a higher value than the rain-sheltered shrub. 

Figure 3-45 shows the Irrigated Site shrub NDI data. The NDI time series has an 

outlier measurement on Oct 12, which was deleted from the statistical analysis. The mean 

watered shrub NDI was 0.316796 with a standard deviation of 0.098367, while the mean 
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control shrub NDI was 0.263625 with a standard deviation of 0.076207. The T-test of 

mean difference = 0 vs. not 0 gave a T-value of 3.54, so we accept the alternate 

hypothesis. 
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Figure 3-45: Irrigated Site Shrub NDI time series  

 
Figure 3-46 shows the watered Site shrub MSAVI data. The MSAVI does not 

vary as much as the SAVI and similar indices. The mean watered shrub MSAVI was 

0.498018 with a standard deviation of 0.090793, while the mean control shrub MSAVI 

was 0.449215 with a standard deviation of 0.085908. T-Tests of mean difference being 

equal to 0 vs. not 0 gave a T-value of 6.17, so we accepted the alternate hypothesis that 

the difference between both data sets was not 0. 
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Figure 3-46: Irrigated Site Shrub MSAVI time series 

3.3 Correlation between Vegetation Indices and Drought Indices 
 
 The major hypothesis of this thesis is that there is some correlation between 

drought conditions and vegetation index values. It is also possible that other factors such 

as temperature, relative humidity and vapor pressure may have had an effect on the 

vegetation and thus on the vegetation indices calculated. Also, the effect of drought and 

precipitation may be visible for a time-lag period, so time-lags from no lag to 5 weeks lag 

were considered in the analysis. Using Minitab 14, correlation coefficients were 

calculated for all indices and SPI values, along with correlation between mean 

temperature, mean relative humidity and mean vapor pressure to examine which 

vegetation index may have been affected by these meteorological variables and thus 

would provide a useful multi-regression analysis. The values for these meteorological 

variables come from the 5-Points weather station daily record. It was found that the mean 
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temperature had a moderately significant correlation with the rain-sheltered Site shrub 

SAVI and MSAVI, while the mean RH had a moderately significant correlation with the 

shrub and grass WBI. The vapor pressure only had a slight correlation with the grass 

WBI. For the watered shrub, the mean RH had a slight correlation with the NDVI and 

ARVI, but there were no other correlations. The correlation data used was for 2002-2003. 

Linear regression graphs and meteorological correlation coefficients are presented in 

Appendix C. 

3.3.1 Rain-sheltered Site Correlation Analysis with No Time Lag 
  
 Figures 3-47 to 3-50 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming no time lag between SPI and the rain-sheltered Site vegetation indices. 

For most of the indices, the correlation strength increases with increasing SPI timescale 

up to the 14-week mark and then decrease afterwards to give a bell-curved shape. This is 

clearly seen with the NDVI, VIN, SAVI, ARVI and MSAVI for both the grass and shrub 

data. The shrub RVSI followed a different trend, with a small decrease from the 1-week 

to 4-week SPI, and then increasing relatively steadily until the 30-week SPI. The shrub 

and grass RVI had a negative bell curve shape. The NDWI and WBI results for both the 

shrub and grass did not have any apparent significance to the SPI data, while the NDGI 

and NDI correlations were not significant enough to warrant further analysis. For some of 

the analyses, it was seen that the grass indices had a strong quadratic correlation with the 

SPI index. For the PDI, only the grass WBI had a significant correlation. The maximum 

correlations for the shrub NDVI in Figure 3-47 was with the 14-week SPI, with a 

coefficient of 0.818. For the grass NDVI, it was with the 17-week SPI with a coefficient 

of 0.726. The VIN values also had maximum correlations with the 14 and 17-week SPIs 
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for shrub and grass data respectively, with values of 0.848 for shrub and 0.715 for grass. 

The shrub SAVI had a maximum correlation at the 19-week SPI, with a value of 0.796, 

while the ARVI followed the NDVI and VIN in having maximum correlations with the 

14-week SPI for the shrub and 17-week SPI for the grass. The values were 0.826 for the 

shrub and 0.734 for the grass.  
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Figure 3-47: Linear correlations between SPI scales and measured NDVI, NDWI and VIN, no lag. 
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Figure 3-48: Linear correlations between SPI scales and measured SAVI, ARVI and RSVI, no lag. 
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Figure 3-49: Linear correlations between SPI scales and measured WBI, RVI and NDGI, no lag. 
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Figure 3-50: Linear correlations between SPI scales and measured NDRI, NDI and MSAVI, no lag. 

From these correlation results, it is seen that the plant vegetation indices for the 

most part reflect the effect of precipitation up to 17 weeks preceding the current 

measurement, since the best correlations occur within those SPI timescales with no lag 

considered. Since most of the SPI data calculated by other agencies (for example, the 

Colorado Drought Center) is calculated on a monthly scale, the 12-week (3-month) SPI 

was chosen as a reference SPI for use in satellite image analysis as shown in chapter 4. 

The 12-week SPI was significant for most of the correlations with NDVI measurements, 

with a correlation coefficient of 0.778 with the shrub NDVI and a correlation coefficient 

of 0.609 with the grass NDVI. The better correlations with other SPI timescales and 

shrub vegetation index data are probably due to higher temporal resolution. 
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3.3.2 Rain-sheltered Site Correlation Analysis with One Week Lag 
 

Figures 3-51 to 3-54 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a one-week time lag between SPI and the rain-sheltered Site vegetation 

indices. If we examine the maximum correlation coefficients for most of the vegetation 

indices with one week’s lag, we see that they occur with the SPI timescale that is one 

week less than the maximum correlation value with no time lag. For example, the 

maximum NDVI correlation occurs with the 13-week SPI, instead of the 14-week SPI. 

The trends are similar to the no-lag correlation trends. 
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Figure 3-51: Linear Correlations between SPI scales and NDVI, NDWI and VIN, one week lag. 
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Figure 3-52: Linear Correlations between SPI scales and SAVI, ARVI and RSVI, one week lag. 
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Figure 3-53: Linear Correlations between SPI scales and WBI, RVI and NDGI, one week lag. 
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Figure 3-54: Linear Correlations between SPI scales and NDRI, NDI and MSAVI, one week lag 

3.3.3 Rain-sheltered Site Correlation Analysis with Two Weeks Lag 
 

Figures 3-55 to 3-58 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a two-week time lag between SPI and the rain-sheltered Site vegetation 

indices. The shift in maximum correlation timescales continues with the two week lag as 

seen in Figures 3-72 through 3-75. While the best correlations for the NDVI-based 

indices is with the 9-week SPI for the shrub, the 13-week SPI and similar scales are 

almost as high. The grass NDVI still has its highest correlation at the 15-week SPI scale, 

just two weeks less than the 17-week SPI of the no-lag measurements.  
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Figure 3-55: Linear Correlations between SPI scales and NDVI, NDWI and VIN, two weeks lag. 
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Figure 3-56: Linear Correlations between SPI scales and SAVI, ARVI and RSVI, two weeks lag. 
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Figure 3-57: Linear Correlations between SPI scales and WBI, RVI and NDGI, two weeks lag. 
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Figure 3-58: Linear Correlations between SPI scales and NDRI, NDI and MSAVI, two weeks lag.  
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3.3.4 Rain-sheltered Site Regression Analysis with Three Weeks Lag 
 
 Figures 3-59 to 3-62 show the correlation coefficients of SPI vs. all 12 vegetation 

indices assuming a three-week time lag between SPI and the rain-sheltered Site 

vegetation indices. The highest shrub correlations for the NDVI and ARVI are with the 8-

week and 11-week scales, still showing a response to an increase in lag by shifting with a 

given lag-increase. In general, most of the bell-curve trends seen are now becoming more 

left-skewed in their distribution, while the RSVI is showing declines in the higher SPI 

scale values compared to its shape with no time lag. The grass data had a stronger 

correlation with the NDVI and similar indices at this lag interval, when compared to the 

other lag intervals.  
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Figure 3-59: Linear Correlation coefficients between various SPI scales and NDVI, NDWI and VIN, 
three weeks lag. 
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Figure 3-60: Linear correlation coefficients between various SPI scales and SAVI, ARVI and RSVI, 
three weeks lag. 
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Figure 3-61: Linear correlation coefficients between various SPI scales and WBI, RVI and NDGI, 
three weeks lag. 
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Figure 3-62: Linear correlation coefficients between various vegetation indices and NDRI, NDI and 
MSAVI, three weeks lag. 

3.3.5 Rain-sheltered Site Regression Analysis with Four Weeks Lag 
 

Figures 3-63 to 3-66 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a four-week time lag between SPI and the rain-sheltered Site vegetation 

indices. The most significant correlation occurs with the 5-week SPI for most shrub 

indices and the 13-week SPI for most grass indices. Also, the left-skew trend from the 

previous lag-time continues when examining the overall shape of the coefficient 

histograms.  
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Figure 3-63: Linear correlation coefficients of SPI and NDVI, NDWI and VIN, four week lag. 
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Figure 3-64: Linear correlation coefficients of SPI and SAVI, ARVI and RSVI, four week lag. 
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Figure 3-65: Linear correlation coefficients between SPI and WBI, RVI and NDGI, four week lag. 
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Figure 3-66: Linear correlation coefficients between SPI and NDRI, NDI and MSAVI, four week lag. 
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3.3.6 Rain-sheltered Site Regression Analysis with Five Weeks Lag 
 

Figures 3-67 to 3-70 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a five-week time lag between SPI and the rain-sheltered Site vegetation 

indices. The most significant correlations for the NDVI and similar indices were with the 

5-week SPI, and correlations began to decrease after about the 10-week period. For the 

previous lag periods, significant correlations did not begin appearing until the 4-week SPI 

time scale, so the SPI time scale correlation with vegetation indices has a significant 

response to lag time. However, this can be interpreted as a result of the amount of 

precipitation received by this region over the time considered, instead of just a function 

of the time lag. This can be seen more clearly when we investigate the watered Site data. 
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Figure 3-67: Linear correlation coefficients between SPI and NDVI, NDWI and VIN, five weeks lag. 
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Figure 3-68: Linear correlation coefficients between SPI and SAVI, ARVI and RSVI, five weeks lag 
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Figure 3-69: Linear correlation coefficients between SPI and WBI, RVI and NDGI, five weeks lag. 
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Figure 3-70: Linear correlation between SPI and NDRI, NDI and MSAVI, five weeks lag.  

3.3.7 Irrigated Site Regression Analysis with no lag 
 
 The watered Site SPI was calculated by adding the simulated rainfall total as 

described in chapter 2 to the actual rainfall as recorded at the 5 Points weather station. 

Figures 3-71 and 3-72 show the correlation coefficient of SPI vs. all 12 vegetation indices 

assuming no time lag between SPI and the irrigated Site vegetation indices. Compared to 

the correlations shown at the control Site, the values here are highest in the shorter SPI 

time scales. The maximum correlation for the NDVI and most of the other indices occurs 

at the 4-week SPI mark and then decreases in significance from there, with negative 

correlations occurring after the 20-week period for most of the vegetation indices. The 

exception is the RSVI, which has mostly negative correlations after the 1-week SPI 

measurement. This is in stark contrast to the rain-sheltered Site no-lag results, where the 

highest correlations were at the mid-range SPI scales. None of the negative correlation 



 114

coefficients in Figures 3-110 and 3-111 are statistically significant, and the trend most 

likely does not have any real-world significance. Linear regressions of the most 

significant correlations are presented in Appendix C. 

3.3.8 Irrigated Site Regression Analysis with one week lag 
 

Figures 3-73 and 3-74 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a one-week time lag between SPI and the irrigated Site vegetation 

indices. The only significant correlations for most of the indices with a one-week lag 

occur in the two-week and three-week SPI timescales. The trend of decreasing and 

increasing correlations as the SPI timescale increases is also shown here, but as with the 

no-lag SPI the values are not statistically significant and most likely do not have any real-

world significance. 
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Figure 3-71: Linear Correlation graphs of various SPI scales vs. various vegetation index values for 
the irrigated Site, no lag. 
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Figure 3-72: Linear Correlation graph of SPI vs. vegetation indices for the irrigated Site, no lag 
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Figure 3-73: Linear Correlation coefficients between various SPI scales and vegetation indices, one 
week lag. 
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Figure 3-74: Linear Correlation coefficients between various SPI scales and vegetation indices, one 
week lag 

3.3.9 Irrigated Site Regression Analysis with two week lag 
 

Figures 3-75 and 3-76 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a two-week time lag between SPI and the irrigated Site vegetation 

indices. The values here are much lower than before for most of the indices, and no 

significant correlations occur after the 3-week SPI for any of the vegetation indices. The 

trend of steadily decreasing correlations with increasing SPI timescale continues as well 

(and steadily increasing for the RVI and NDRI). 
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Figure 3-75: Linear correlations between SPI and NDVI, NDWI, VIN, SAVI, ARVI and RSVI, two 
weeks lag 
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Figure 3-76: Linear correlations between SPI and WBI, RVI, NDGI, NDRI, NDI and MSAVI, two 
weeks lag. 
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3.3.10 Irrigated Site Regression Analysis with three week lag 
 
 Figures 3-77 and 3-78 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a three-week time lag between SPI and the irrigated Site vegetation 

indices. The main significant correlation for the NDVI and similar indices is with the 

one-week SPI; there is a huge drop after this measurement and most of the other 

correlations are negative and insignificant statistically. The NDGI is the main exception 

to this rule, as it steadily increases to a negative correlation of -0.4 which is barely within 

the statistical significance limit.  
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Figure 3-77: Linear correlation coefficients between SPI and NDVI, NDWI, VIN, SAVI, ARVI and 
RSVI, watered Site, three weeks lag. 
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Watered Site Correlations, 3-Week Lag
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Figure 3-78: Linear correlation coefficients between SPI and WBI, RVI, NDGI, NDRI, NDI and 
MSAVI, watered Site, three weeks lag. 

3.3.11 Irrigated Site Regression Analysis with four weeks lag 
 

Figures 3-79 to 3-80 show the correlation coefficient of SPI vs. all 12 vegetation 

indices assuming a four-week time lag between SPI and the Irrigated Site vegetation 

indices. The significant correlations in the four week lag measurements are negative 

correlations, but this is most likely a statistical result rather than an actual response. 

3.3.12 Irrigated Site Regression Analysis with five week lag 
 
 Figures 3-124 to 3-125 show the correlation coefficient of SPI vs. all 12 

vegetation indices assuming a five-week time lag between SPI and the Irrigated Site 

vegetation indices. The results here are very similar to those stated in the four week lag 

results, with the only significant correlations being negative ones (except for the NDRI 

and RVI). These most likely have no significant real-world cause or explanation. 
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Watered Site Correlations, 4-week lag
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Figure 3-79: Linear correlation coefficients between SPI and NDVI, NDWI, VIN, SAVI, ARVI and 
RSVI, Irrigated Site, four weeks lag. 
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Figure 3-80: Linear correlation coefficients between SPI and WBI, RVI, NDGI, NDRI, NDI and 
MSAVI, Irrigated Site, four weeks lag. 
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Watered Site Correlations, 5-week lag
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Figure 3-81: Linear correlation coefficients between SPI and NDVI, NDWI, VIN, SAVI, ARVI and 
RSVI, 5 weeks lag. 
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Figure 3-82: Linear correlation coefficients between SPI and WBI, RVI, NDGI, NDRI, NDI and 
MSAVI, Irrigated Site, 5 weeks lag. 
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4. SATELLITE IMAGE ANALYSIS OF DROUGHT STRESS 
 

4.1 Application of Derived Algorithms 
 
 One of the goals of this research is to upscale the relationships derived from field 

measurements to wider regions using satellite images. Satellite images of the central New 

Mexico region were acquired from the Sevilleta National Wildlife Refuge data archives 

and NASA, and analyzed using the results developed from the previous chapters. The 

satellite images used were from the ASTER sensor, which has a higher resolution than 

the Landsat sensor does. While the field data was originally processed using Landsat 7 

band specifications (described in chapter 2), the Landsat sensor has the same bandwidths 

as the ASTER sensor for red and green bands, while the ASTER near-infrared band 

wavelength is from 780 nm to 860 nm, compared to 760 to 900 nm for Landsat 7. The 

ASTER satellite data ordered for this study are atmospherically corrected surface 

reflectance preprocessed by the EOS. All images were processed using ERDAS Imagine 

8.6 and ArcGIS 9, while spectral un-mixing results were processed using ENVI 4.0. 

Vegetation index images were then developed from the band reflectance images using 

algebraic calculations based on the formulae presented in Chapter 3. Finally, SPI maps 

were developed using formulae derived from the correlation equations with the 

vegetation indices presented in Chapter 3. 

 One of the better correlations discovered between vegetation indices and SPI was 

that between the 12-Week SPI and the Grass NDVI with no lag considered. The 

regression graph for this relationship is reproduced in Figure 4-1. This relationship was 
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not as strong as that between the 17-Week SPI and Grass NDVI, as seen in Figure 4-2. 

However, the 12-Week SPI was chosen as a comparison with other SPI maps from other 

agencies which used a 3-month SPI scale. It is hypothesized that at the 12-week/3-month 

scale, there is a greater seasonal effect on the part of the vegetation which may have an 

effect on the relationship to SPI, as suggested by Ji and Peters (2003).  
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Figure 4-1: Linear Regression of Grass NDVI vs. 12 Week SPI, no lag 
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Figure 4-2: Linear Regression of Grass NDVI vs. 17 Week SPI, no lag 

The linear regression equation for the Grass NDVI vs. the 12-Week SPI was: 

 Grass NDVI 0.1614 0.04346*12-Week SPI= +    (66) 

The theory behind this regression is that precipitation (represented by SPI in all scales) 

causes a response in vegetation (represented by the NDVI and other vegetation indices). 

Solving equation (66) for 12-Week SPI since we have values for NDVI, we get equation 

(67): 

 12-Week SPI 23.00966*Grass NDVI 3.71376= −    (67) 

This relationship was used in satellite data analysis. The shrub regression analysis was 

much stronger, as seen in Figure 4-3.  
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Figure 4-3: Linear Regression of Shrub NDVI vs. 12-Week SPI, no lag 

 
Equation (68) presents the SPI-Shrub NDVI relationship: 

 12-Week SPI= 17.50393839*Shrub NDVI – 12.36303168  (68) 

4.2 Land Cover Classification and Linear Spectral Un-mixing 

4.2.1 Previous Land Cover Classifications and Vegetation Index 
Classifications 

 
One issue that presented itself in creating these maps was that of classification of 

the ground surface. While the measurements and correlations in this thesis are for 

creosote shrub and black gramma grass, the pixels with a satellite image will often have a 

mixture of soil, grass and shrub targets as well as additional components or vegetation 

species not considered in this research. Furthermore, soil is a main component in the 

satellite images, and while soil reflectance measurements were collected along with the 

shrub and grass measurements, they were not expected to have a significant relationship 

with SPI values. An examination of soil and SPI correlations is presented in Appendix C 

in Figures A-1 through A-12. 
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The first solution investigated to the pixel mixing and land cover classification 

issue was to use a previously defined land cover map as a basis for classification. The 

land cover map used was acquired from http://rgis.unm.edu and was a land-cover map of 

New Mexico produced in 2000 from a Landsat Mosaic. It was created by the USGS, and 

is reproduced in Figure 4-4 showing the Sevilleta National Wildlife Refuge land cover. 

This map states that the majority of the SNWR is covered in shrubland with a small 

amount of grassland and patches of evergreen forest in mountainous regions, as well as 

some outcrops of rocks and the Rio Grande. However, field observations were taken at 

the points indicated in the diagram, and photos of some of these observations are 

reproduced in Figures 4-5 through 4-7. These photos indicate that a great majority of the 

regions classified as shrubland by the land-cover map are in reality dominated by grasses. 

Even in the regions where shrub dominates, soil and grass would have a large effect on 

the pixel value at ASTER and LANDSAT resolutions. This can be seen in the NDVI 

images processed using ASTER data, seen in Figure 4-7. NDVI measurements of green 

vegetation are usually above the value 0.6, and most of the higher NDVI values in this 

region are found in the mountainous regions to the east of the refuge and the western tip, 

or near the Rio Grande which runs through the narrow section in the middle. This does 

not mean that creosote shrubs have a low NDVI, as the field measurements show that 

they have a regular NDVI value. It does indicate that shrubs are difficult to detect in 

satellite images of this scale because of the comparative small size of the shrubs, the lack 

of pure shrub pixels, and the strong background of soil and grass at this resolution.  
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Figure 4-4: Predicted Land cover map of the Sevilleta National Wildlife Refuge. 
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Figure 4-5: Photos of various regions of the Sevilleta Wildlife Refuge as represented in Figure 4-4. 
Photos A and B are from the northernmost measurement points. Photos C and D are from the 
eastern points.  All of these points are defined as “shrubland” on the USGS land cover map. 

 

 
Figure 4-6: Photo of the SNWR, in the shrub region. Canopy cover is  about 40-50% and soil will 
have a strong impact on imagery taken at altitude 
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 Figure 4-7: ASTER Surface Reflectance (upper image) and NDVI (lower image) at the SNWR for 
April 20, 2002. 
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One interesting observation made was the comparison of the NDGI values of soil, shrub 

and grass targets. As a reminder, the NDGI is the normalized difference between the red 

and green band reflectance (green –red/green + red). A graph of this comparison is shown 

in Figure 4-8. 
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Figure 4-8: Comparison of measured NDGI values for shrub(1), grass(2) and soil(3) targets. 

 
The graph indicates that shrub measurements tend to be greater than 0, grass 

measurements tend to be between -0.1 and 0, and soil measurements tend to be smaller 

than -0.1. This is not conclusive, and it must be taken into consideration that there are 

more components to pixels in the SNWR than these three components; but they are the 

three main components of the area and I thought it worthwhile to examine the NDGI 

variance over the region, shown in Figure 4-9. A general prediction that can be made is 

that all brown regions have soil/bare rock as the main ground component, while the 

greener regions are predominantly grass/shrub regions. However, these are just 
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predictions based upon personal knowledge of the region, and further study is needed to 

verify this. 

 
 
Figure 4-9: ASTER Surface Reflectance (upper image) and NDGI (lower image) at the SNWR for 
April 20, 2002. 
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4.2.2 Linear Spectral Un-mixing 
 
 Another approach that was applied was the use of linear spectral algorithms with 

the ENVI image analysis software to extract signal information from each pixel. Linear 

Spectral Un-mixing is based on the assumption that spectral mixing occurs when 

materials with different spectral properties are represented by a single pixel, and that 

“linear” indicates that there is no interaction between the materials. Pixels are unmixed 

using endmembers which are either known from field data collection/analysis of known 

pixel values, or are derived. The pixel reflectance is defined by equation (69): 

 
1

n

total i i
i

fρ ρ
=

=∑        (69) 

where totalρ  is the total reflectance of a pixel, if  is the fraction of endmember i in the 

pixel, iρ  is the reflectance of endmember i in the pixel, and n is the total number of 

endmembers in the pixel. The actual un-mixing is done using statistical analyses as is 

explained by the National Technical University of Athens, viewable at the following link: 

http://www.survey.ntua.gr/main/labs/rsens/DeCETI/SURREY/Page41.html: 

One can view a mixed pixel as an instantiation of the outcome of a random 
process. All pixels that come from the same mixed region then constitute an 
ensemble of outcomes of the same random process. In a similar way, the pixels 
that represent a single pure class are instantiations of the outcomes of the random 
process that creates the intra-class variability. In figure 10 then, the sets that 
represent the pure classes represent the distributions of three independent random 
variables, and the set that represents the mixed region represents the distribution 
of a linear combination of these variables. Bosdogianni, Petrou and Kittler used 
this idea to work out the proportions of the mixed region by trying to match the 
shapes of the distributions of the pure and the mixed pixels (Mixture models with 
higher order moments, P Bosdogianni, M Petrou and J Kittler, IEEE Trans. 
Geoscience and Remote Sensing,vol 35, pp 341-353, 1997). The shape of a 
distribution is expressed by the moments of the distribution: Its 1st moment (i.e. 
the mean), its 2nd moments (i.e. the elements of its covariance matrix), its 3rd 
moments etc. From the theory of random variables, we know the relationships 
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between the moments of the independent variables and the corresponding 
moments of any linear combination of them. This way an augmented set of 
equations is created and it can be solved in terms of the unknown mixing 
proportions. 

Linear Spectral Un-mixing is an active area of research in remote sensing. It has 

been investigated by Asner and Heidebrecht (2002) in the Jornada Experimental Range, 

New Mexico for comparison of multispectral and hyperspectral observations. Their 

research focused on using photosynthetic vegetation (PV), non-photosynthetic vegetation 

(NPV) and bare soil as endmembers, and they employed four different sensors: Airborne 

Visible/InfraRed Imaging Spectrometer (AVIRIS), Landsat 5 TM, MODIS, and ASTER 

imagery. For actual un-mixing, they developed a general probabilistic model called 

AutoMCU which uses a Monte Carlo approach to derive uncertainty estimates of the sub-

pixel cover fraction values. AutoMCU uses three spectral endmembers from field 

measurements to decompose each pixel using equation (66) in this thesis. Their 

comparison results indicated that the full optical spectrum (400-2500 nm) grossly 

underestimate PV and overestimate bare soil, but provide some measure of NPV 

presence. Asner and Heidebrecht concluded by stating their belief that the shortwave 

infrared 2 region (SWIR2, 2000 nm to 2300 nm) is one of the best ways to estimate the 

fractional cover of PV, NPV and bare soil in arid regions, since their measurements in 

this spectrum showed distinct differences between all endmembers.  

Qi et al (2002) has also investigated the use of the SWIR region of the spectrum, 

specifically using the Landsat sensor’s bands 5 and 7 based on the theory that when 

vegetation becomes senescent (dries up), the spectral responses in these regions will 

increase due to loss of water in leaf tissues. They proposed the Normalized Difference 

Senescent Vegetation Index (NDSVI), defined in equatiton (70): 
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 SWIR red

SWIR red

NDSVI ρ ρ
ρ ρ

−
=

+
      (70) 

Qi used this index to estimate a fractional senescent vegetation cover from Landsat 

images. He compared the Landsat product to field-based fractional cover, and found that 

the satellite estimates were very close to the field observations, with a 0.95 correlation 

coefficient. However, he did not state how the field observations were made, nor did he 

present data for them. Furthermore, since Qi’s research was based for rangeland studies, 

woody components such as shrubs were masked out of his biomass and forage cover 

estimates. For total accuracy, the application of equation (70) should include both shrub 

and rangeland, since the exclusion of shrubs automatically deprives the results of “total 

vegetation cover”. Since this thesis focused mostly on drought quantification and less on 

land cover classification, and since the existence of this index was not known to me until 

late into the completion of this thesis, the use of the NDSVI was not examined in this 

research. However, the NDI as defined in equation (43) of this thesis is similar to the 

NDSVI, using the infrared band in place of the red band. The correlation results for NDI 

and SPI values were not very significant, but it may have some application for land cover 

classification. The results of Asner and Heidebrecht’s work and Qi’s research provide a 

glimpse at a promising new aspect of field data classification and upscaling. Qi’s group, 

which is based at Michigan State University, has prepared a proposal to study this topic 

further which can be read at the following URL: 

http://foliage.geo.msu.edu/research/projects/nasa_usda/Final_NASA_proposal.pdf  .  

It is believed that Qi’s work and similar research in this area will be of great value for the 

research topic of this thesis, both for vegetation classification and further research of the 

index described in equation (72) as well as examining correlations between this index and 
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the SPI. In this thesis, linear spectral un-mixing was examined with two types of base 

image data; surface reflectance data and vegetation index data. The endmembers for each 

un-mixing analysis came from the mean field measurements of soil, shrub and grass. For 

the reflectance analysis, there were two methods examined. For the first method, the 

mean grass, soil and shrub reflectance were used directly as endmembers. For the second 

method, the grass mean was scaled by a factor of 0.7 and the shrub mean by a factor of 

0.3 to simulate their predicted pixel composition percentage, while soil remained 

unchanged. The vegetation index un-mixing was performed by creating a vegetation 

index image comprising of NDGI, NDRI, and NDVI values, and performing a linear 

spectral un-mixing of this image based on the endmember’s vegetation index values. The 

results of the surface reflectance un-mixing were moderately successful, and can be seen 

in Figures 4-11 through 4-13. It should be noted that the pixel components include more 

than those three targets. The results for the scaled un-mixing and vegetation index un-

mixing are used in the research but are not presented as images in this thesis. Also, the 

results from the grass and soil comparison give misleading results on the Rio Salado, 

which is visible as white sand in the original image but appears as high grass content in 

the un-mixing. This is probably due to differences in mineral content between the Salado 

sand and the Sevilleta soils. As a comparison, an unsupervised classification was 

performed in ERDAS 8.6 over the region using 4 classes, the results of which are shown 

in Figure 4-13. These figures provide a general idea of land-cover classification in the 

SNWR.    
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Figure 4-10: Linear Spectral Un-mixing Results from grass targets. 
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Figure 4-11: Linear Spectral Un-mixing from Shrub Target 
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Figure 4-12: Linear Spectral Un-mixing Soil Classification results 
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Figure 4-13: Unsupervised Classification results from ASTER image. 
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4.3 Drought Index Images 
 

Figure 4-14 presents a map of New Mexico’s climatic divisions, showing the 

locations of the SNWR and the Central Valley. Figures 4-15 through 4-18 show the 

predicted SPI from NDVI values, and compare them to the calculated SPI from the 

National Drought Mitigation Center (NDMC) as seen in the New Mexico Central Valley 

Climatic region. The NDMC’s national 3-Month SPI for the dates under review is 

presented in Figures 4-19 through 4-23. The Surface NDVI-SPI results were calculated 

from taking surface NDVI data and applying the linear grass regression equation 

(equation 65) for the 12-Week SPI to all pixels, assuming that grass was the dominant 

endmember. The reflectance un-mixing and vegetation index un-mixing SPI results were 

processed using equation 70: 

( )( ) ( )( )12 grass shrubWeekSPI f F GrassNDVI SPI f F ShrubNDVI SPI− = → + →  (70) 

where: 

( )F GrassNDVI SPI→  = equation (66) 

( )F ShrubNDVI SPI→ = equation (67) 

grassf  = sub-pixel fraction designated as grass by un-mixing results 

shrubf  = sub-pixel fraction designated as shrub by un-mixing results 

Thus, the total SPI of a pixel is the sum of the SPI results predicted for each target.  
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Figure 4-14: Climatic divisions of New Mexico. 
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Figure 4-15: SPI Calculations for April 20, 2002 

 

 
Figure 4-16: SPI Calculations for May 6, 2002 
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Figure 4-17: SPI Calculations, June 16, 2002 

 
Figure 4-18: SPI classifications for September 30, 2003. 
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Figure 4-19: 3-Month SPI throughout the USA for April 2002. 

 
Figure 4-20: 3-Month SPI throughout the USA for May 2002 
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Figure 4-21: 3-Month SPI throughout the USA for June 2002  

 

 
Figure 4-22: 3-Month SPI throughout the USA for September 2003. 
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4.4 Validation 
 

The predicted values from Figures 4-15 to 4-18 for the SNWR 12-Week SPI 

using various classification methods gave diverse results depending on the method used. 

From the NDMC images, the Central New Mexico Valley climatic division had near-

normal 3-Month SPI conditions in April 2002, moderately dry 3-month SPI conditions in 

May and June 2002, and severely dry conditions in September 2003. Table 4 presents a 

25-pixel comparison of agreement with derived SPI results to the NDMC stated drought 

severity. 

Table 4: Percent Agreement of Derived SPI images with stated NDMC drought severity. 

Period of 
Interest 

NDMC 
RESULTS 

NDVI-to-SPI 
direct  

(using Grass 
Regression) 

SPI from 
Linear 

Spectral Un-
mixing 

SPI from 
Adjusted 

Linear 
Spectral Un-

mixing 

SPI from 
Vegetation 

Index Linear 
Spectral Un-

mixing 
Apr-02 Near-Normal 8% 76% 52% 100% 
May-02 Moderately Dry 6% 8% 12% 0% 
Jun-02 Moderately Dry 8% 8% 4% 0% 

Sep-03 Extremely Dry 
0% (72% with 

other dry 
ranges) 

4%(44% with 
other dry 
ranges) 

0% 0% 

 

These results are not very positive, and are quite diverse from each other. The 

differences can be explained from scale and SPI-calculations, in that the SPI from the 

NDMC is calculated from a much longer and more varied precipitation record than the 

SPI from the weather station. Also, the NDMC region is many times larger than the 

Sevilleta but may be incorporating much less weather stations to account for the region’s 

area, as it is stated that the resolution of western state SPI calculation is hampered by the 

presence of too few weather stations. The results from the unmixed data did not include 

soil effects as soil reflectance is not expected to be a significant predictor of SPI (see 
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appendix C). However, soil reflectance would still have a strong effect on satellite NDVI 

images which might affect the results of using NDVI; results for SAVI or similar data 

may be more consistent. It must also be noted that the use of relationships obtained from 

field-based vegetation indices may relate to satellite vegetation indices in different ways. 

Jackson and Huete (1991) stated that care must be exercised in comparing ground-based 

data with satellite-based data, since the band-response functions are different for each 

instrument, the fields of view are usually different and the data used may be either raw or 

transformed data. Ideally, vegetation indices calculated for one sensor should be 

correlated with the exact indices calculated for other sensors, if a data record is available. 
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5. DISCUSSION 
 

5.1 T-Test Discussion 
 

It is expected that if the rain-sheltered vegetation experienced physical changes to 

plant leaf structure which did not occur in the control vegetation, then these physical 

changes should affect the spectral response of rain-sheltered plants, and thus differences 

between drought-stress and control plant reflectance values and vegetation index values 

may be observed. The T-tests for grass show that 11 of the 12 vegetation indices datasets 

were statistically different when comparing both the rain-sheltered grass to the control 

grass. The only index which did not show any statistical difference between the rain-

sheltered and control grass was the RSVI. It was thus concluded that all of these 

vegetation indices except the RSVI can be used to distinguish and identify drought-

stressed grass regions, if compared to index measurements of normal grass reflectance. 

The control grass did not have as much chlorophyll as the shrub did, which helped to 

lower the red spectrum absorption; but the rain-sheltered grass was usually dead or near-

death and the cellular structure was also very degraded, thus providing very little 

reflectance in the infra-red spectrum. Table 5 summarizes the Rain-sheltered Site grass T-

test results.  

However, when investigating the T-test results comparing the rain-sheltered 

creosote shrubs to the control creosote shrubs, only 6 of the 12 indices show a statistical 

difference between datasets. The indices that showed a statistical difference were the 
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NDWI, WBI, ARVI, WBI, NDRI, NDGI and NDI, while the non-responsive indices 

were the NDVI, VIN, SAVI, MSAVI, RVSI and RVI. The responsive indices were the 

ones which either focused on water absorption such as the NDWI and WBI, or on 

chlorophyll absorption/reflectance such as the NDGI and NDRI, while the majority of 

non-responsive indices were those comprised infrared and red bands. However, the T-

values for the some of the infrared/red band indices were significant to a lesser degree 

than the stated 95% probability; the NDVI difference was significant to within 90% with 

a p-value of 0.1. The precipitation for the control vegetation was quite low over the given 

time period and was similar to the drought vegetation precipitation, and an irrigated shrub 

may have more of a detectable difference when compared to control vegetation. The 

differences in the water-absorption indices are probably due to the long-term drought 

stress imposed, rather than the precipitation difference over the reflectance measurement 

period. Table 6 summarizes the Rain-sheltered Site shrub T-test results.  

Since there is a distinct possibility that the control vegetation was also under a 

degree of drought-stress, the irrigated vegetation results should help to illustrate whether 

shrub reflectance data is affected for all indices by drought-stress/water availability. The 

t-tests on the irrigated plot showed that 11 of the 12 vegetation showed a statistical 

difference between the irrigated shrub and the control shrub, with the NDWI as the non-

responsive vegetation index. The intuitive reason for this is that the regular abundant 

supply of water helped to increase the irrigated shrub vigor and health, and this increased 

vigor showed itself in the plant leaf structure and the plant reflectance. However, further 

research may be required to see if an excess of water may actually have a negative effect 

on creosote or if the amount of water added was enough to be an excess, though as 
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mentioned by Smith (1997) that may not be the case. Table 7 summarizes the Irrigated 

Site shrub T-test results. 

These results indicate that rain-sheltered creosote bushes at this site are more 

resistant to the effects of stress than are rain-sheltered grasses at this site. It also shows 

which indices are better suited for examining drought-stress vs. normal conditions for 

both vegetation types. These results can be compared to similar research done by Everitt 

and Nixon (1986) on rangeland shrubs in Texas. Their study focused on two species of 

shrub: Texas persimmon (Diospyros texana) and lime pricklyash (Zanthoxylum fagara), 

and compared the reflectance of drought-stressed vs. non-stressed shrubs at five 

wavelengths: 550, 650, 850, 1650 and 2200 nm. These wavelengths are in the green, red, 

infrared and microwave (final two bands) respectively. Everitt and Nixon also compared 

leaf water content (LWC) and chlorophyll content at the time of reflectance 

measurement, and used the T-test with p≤0.05 indicating significance to test the 

differences between between canopy reflectances at the five wavelengths selected for 

study along with differences in LWC and chlorophyll content. Their non-stressed 

vegetation was located near Linn, TX, while the drought-stressed site was located near La 

Joya, TX. These sites are approximately 70 miles apart, but have similar native 

vegetation. The results from their study showed that there were significant differences at 

all five wavelengths between the drought-stressed and control shrubs. While these results 

do not corroborate well with the Rain-sheltered Site data, this may be because there was 

not that much difference between the drought-stressed and control vegetation due to 

creosote’s drought resistance and the similarity of precipitation between both the control 

and rain-sheltered plots (Pockman, personal correspondence). Everitt’s and Nixon’s 
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results do fit with the Irrigated site data and Rain-sheltered Site grass data which showed 

a clear difference between all of the band-derived vegetation indices. 

Table 5: T-Test results for Control Grass vs. Rain-Sheltered Grass, Rain-Sheltered site 

 Control 
Grass R.S. Grass Control 

Grass S.D.
R.S. Grass 

S.D.  T-Values P-Value 

NDVI 0.1722 0.1216 0.0762 0.0281 3.9700 0.0000 
NDWI -0.1259 -0.1517 0.0443 0.0255 3.4200 0.0020 
VIN 1.4378 1.2792 0.2451 0.0743 3.8900 0.0000 

SAVI 0.0858 0.0593 0.0403 0.0171 3.7600 0.0010 
ARVI 0.0450 -0.0079 0.0824 0.0305 4.3600 0.0000 
RSVI 0.1313 0.1222 0.0331 0.0268 1.6300 0.1110 
WBI 0.9555 0.9374 0.0123 0.0095 8.8600 0.0000 
RVI 0.7130 0.7842 0.1069 0.0443 -3.9900 0.0000 

NDGI -0.0723 -0.0844 0.0245 0.0218 3.8700 0.0000 
NDRI 0.0723 0.0844 0.0245 0.0218 -3.8700 0.0000 
NDI -0.2047 -0.2624 0.0756 0.0483 4.8700 0.0000 

MSAVI 0.0709 0.0482 0.0349 0.0149 3.6900 0.0010 

 

 

Table 6: T-Test results for Control Shrubs vs. Rain-Sheltered Shrubs, Rain-Sheltered site 

 Control 
Shrub R.S. Shrub Control 

Shrub S.D.
R.S. Shrub

S.D. T-Values P-Value 

NDVI 0.6887 0.6719 0.0629 0.0737 1.4300 0.1620 
NDWI 0.0145 -0.0120 0.0549 0.0275 2.5700 0.0150 
VIN 5.7092 5.4238 1.4904 1.5614 1.0200 0.3150 

SAVI 0.4688 0.4597 0.0686 0.0737 1.2300 0.2290 
ARVI 0.5789 0.5537 0.0740 0.0906 1.8400 0.0750 
RSVI 0.2448 0.2444 0.0429 0.0484 0.0700 0.9480 
WBI 1.0130 0.9942 0.0124 0.0134 9.0300 0.0000 
RVI 0.1859 0.1985 0.0440 0.0533 -1.5000 0.1430 

NDGI 0.0807 0.0580 0.0493 0.0514 3.6800 0.0010 
NDRI -0.0807 -0.0580 0.0493 0.0514 -3.6800 0.0010 
NDI 0.2913 0.2593 0.0643 0.0662 2.6300 0.0130 

MSAVI 0.4631 0.4523 0.0839 0.0880 1.1900 0.2450 
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Table 7: T-Test results for Irrigated Shrub vs. Control Shrub, Irrigated Site 

 Irrigated 
Shrub 

Control 
Shrub 

Irrigated 
Shrub S.D.

Control 
Shrub S.D. T-Values P-Value 

NDVI 0.7015 0.6598 0.0586 0.0664 3.7200 0.0010 
NDWI 0.0565 0.0229 0.1722 0.1534 1.9200 0.0670 
VIN 5.9855 5.0954 1.5390 1.1665 3.7800 0.0010 

SAVI 0.5041 0.4628 0.0984 0.0935 6.2300 0.0000 
ARVI 0.5885 0.5437 0.0717 0.0702 4.0100 0.0000 
RSVI 0.3115 0.2912 0.2807 0.2655 4.1400 0.0000 
WBI 1.0091 0.9947 0.0089 0.0099 8.7600 0.0000 
RVI 0.1768 0.2068 0.0402 0.0490 -3.6700 0.0010 

NDGI 0.0879 0.0514 0.0561 0.0387 5.4200 0.0000 
NDRI -0.0879 -0.0514 0.0561 0.0387 -5.4200 0.0000 
NDI 0.3379 0.2858 0.1445 0.1353 3.6100 0.0010 

MSAVI 0.4980 0.4492 0.0908 0.0859 6.1700 0.0000 

5.2 Vegetation Index-Drought Index Correlation Discussion 
 

The correlation results showed a clear connection between drought severity and 

natural vegetation spectral responses, with the significant correlations between various 

SPI timescales and shrub/grass NDVI, ARVI, SAVI, MSAVI, RSVI, VIN, NDGI, NDRI 

and RVI. These correlations indicate that the accumulated effect of precipitation is most 

likely the key factor in plant vigor. Tables 4 through 9 present the most significant linear 

correlation coefficients for each index during each lag period. It is observed that 

generally, the most significant correlations decreased in drought time scale with 

increasing lag. This indicates that it is the total accumulation of precipitation that has an 

effect on vegetation vigor, and not just the amount of time that elapses. The apparent 

three-week gap between the maximum correlations for shrub and grassland may be due to 

the grass being more sensitive to seasonal changes. These results are similar to Ji and 

Peters’ (2003) results, in that a correlation is seen between the vegetation indices and 

drought index for time series near the 3-month mark for shrubs and a few weeks after the 

three month mark for grass data for this data. Ji and Peters showed that the NDVI 

correlation was strongest for the 3-month SPI over his study regions, as described in the 
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literature review in chapter 1. It should be noted that while this thesis examined field-

based data over a one-year period, Ji and Peters examined monthly correlations over a 

12-year period, focusing on the months of May through October. For example, Ji and 

Peter’s correlations for May incorporated all May NDVI values and their equivalent SPIs 

for each year from 1989 through 2000, and so forth. Also, the precipitation record for 

which the SPI was calculated was from 1895-2000, a much more robust record than in 

the Sevilleta. The regression equations derived by Ji and Peters for their model using 

dummy variables for each month as seen in equation (57) were significant with p-values 

<0.0001 and R2=0.67. His grassland regression functions are presented in equation (71). 

( )
( )
( )
( )
( )

May          0.2772 0.0180

June          0.3588 0.0478

July           0.3462 0.1289

August       0.3282 0.0178

September 0.2772 0.0178

October     0.2054 0.0178

NDVI SPI

NDVI SPI

NDVI SPI

NDVI SPI

NDVI SPI

NDVI

= +

= +

= +

= +

= +

= + ( )SPI

    (71) 

where SPI is the 3-Month SPI. In contrast, the best linear grass regression with no time 

lag in this thesis was with the 17-Week SPI, which was also significant with the p-

value<0.0001 and R2=0.52. The regression function here was: 

 ( )0.1772 0.05465NDVI SPI= +      (72) 

where SPI=17-Week SPI. The normal NDVI (when SPI=0) of equation (72) is 86% of 

the smallest normal NDVI from equation (71), and 67% of the largest normal NDVI from 

equation (71). Also, the normal NDVI from equation (72) compares fairly well to the 

mean control grass NDVI calculated from the data record of this thesis over the period of 

record, which is 0.1587. However, the gradient of equation (72) is more than 5 times that 
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of all of the gradients in equation (71) except for July. The initial interpretation of this 

finding is that precipitation has a stronger effect on grasses in semi-arid regions than in 

the great plains region, but one must remember the different SPI scales in use, as well as 

the differences in scale and the fact that the field measurements in this thesis are over one 

year instead of a monthly series over a 12-year period. Even with these caveats, the 

results do not drastically contradict each other and are similar. 

While the shrub and grass NDVI and other infrared/red band vegetation indices had 

their largest correlations around the 14-Week SPI (shrub) and  17-Week SPI (grass), the 

shrub RSVI values had their most significant correlation with the longer SPI time scales 

(30-week SPI with no lag, to 21-Week SPI with five weeks lag). This index uses the 

region of the spectrum between the red absorption and the infrared reflection, and may be 

representative of the long-term plant leaf structure. More research is needed to examine 

this index and possible uses of this long-term response. Tables 8 through 13 summarize 

the most significant correlations for each vegetation index at each lag period. 

When the correlations for the irrigated shrub were investigated, the most 

significant correlations were much lower than for the control site, and were with shorter 

SPI timescales (with the 5-week SPI timescale for no lag consideration). As the lag 

increased, the correlation also decreased and by the 4-week lag time, there were no 

significant correlations between the irrigation-affected SPI and the vegetation indices. 

The most significant correlations are presented in tables 14 through 19. This indicates 

that the time-lag element is incorporated into the SPI calculations depending upon the 

timeline under consideration and that the total amount of precipitation that the vegetation 

receives within a given time period is the most significant influence on plant vigor. It is 
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also possible that the creosote vegetation may have a negative reaction to excess 

precipitation. However, it is not the only influence, seasonal changes and other weather 

elements may play a part in the response as well. Seasonal variation was not taken into 

account for this research, but most of the precipitation in this region is seasonal in nature, 

falling in the monsoon period (between June and October) as well as winter precipitation. 

Seasonal variation is expected to play a significant role in the grass results (Wang et al, 

2001; Ji and Peters, 2003), but is not expected to have much effect on the creosote shrub 

data, as the grass is likely to be more active in summer than in winter. This is a topic that 

could be further studied and analyzed for this region, but much more data is required. 

Precipitation data was also quite short, and while the present data was utilized as best it 

could, a longer data set would have been much more useful and probably would have 

provided even more accurate results. 

5.3 Satellite Image Analysis Discussion  
 

The satellite interpretation of the correlation results were hampered by 

classification problems and upscaling issues. Although the direct NDVI-to-SPI 

conversion was based on the assumption of a majority of grass cover, the effect of soil 

would still be very strong and thus SPI values from this conversion would most likely be 

underestimated. While the general classification using linear spectral unmixing was 

moderately successful, the actual fractions derived are most likely underestimated for 

grass values, and overestimated for soil, similarly to Asner and Heidebrecht (20002). 

Further investigation can be done using vegetation index values calculated from a time 

series of satellite images, or by using smaller resolution images such as IKONOS and 

examining the classification results on those scales. Such a premise was initially explored 
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in this research, but was limited by the age of the available images (acquired in 2000) and 

by an apparent anomaly in the images which manifested itself during image processing. 

Asner and Heidebrecht’s previously discussed results are similar to the un-mixing results 

in this thesis, where grass (NPV) was shown as the most prevalent cover while shrubs 

(PV) were not represented much. The fraction values derived in this thesis for shrub 

presence had a lot of negative values as well, and so while the results were adequate for a 

general classification, they were not well-suited for precise land-cover definitions. 

Table 8: Most Significant Correlations for 
Vegetation Indices at Drought Plot, No Lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought 
Index 

Shrub NDVI 0.818 14-Week SPI
Grass NDVI 0.726 17-Week SPI
Shrub NDWI 0.19 12-Week SPI
Grass NDWI -0.364 1-Week SPI
Shrub VIN 0.848 14-Week SPI
Grass VIN 0.715 17-Week SPI

Shrub SAVI 0.796 19-Week SPI
Grass SAVI 0.522 17-Week SPI
Shrub ARVI 0.826 14-Week SPI
Grass ARVI 0.734 17-Week SPI
Shrub RSVI 0.755 30-Week SPI
Grass RSVI -0.577 9-Week SPI
Shrub WBI 0.37 PDI 
Grass WBI 0.736 PDI 
Shrub RVI -0.808 14-Week SPI
Grass RVI -0.727 17-Week SPI

Shrub NDGI 0.654 14-Week SPI
Grass NDGI 0.371 14-Week SPI
Shrub NDRI -0.654 14-Week SPI
Grass NDRI -0.371 14-Week SPI
Shrub NDI 0.411 14-Week SPI
Grass NDI -0.458 2-Week SPI

Shrub MSAVI 0.801 19-Week SPI
Grass MSAVI 0.478 17-Week SPI

 

 

 

Table 9: Most Significant Correlations for 
Vegetation Indices at Drought Plot, one week 

lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought 
Index 

Shrub NDVI 0.817 13-Week SPI
Grass NDVI 0.737 16-Week SPI
Shrub NDWI 0.229 4-Week SPI
Grass NDWI 0.24 28-Week SPI
Shrub VIN 0.838 13-Week SPI
Grass VIN 0.735 16-Week SPI

Shrub SAVI 0.828 18-Week SPI
Grass SAVI 0.57 16-Week SPI
Shrub ARVI 0.829 13-Week SPI
Grass ARVI 0.747 16-Week SPI
Shrub RSVI 0.774 30-Week SPI
Grass RSVI -0.546 8-Week SPI
Shrub WBI 0.318 PDI 
Grass WBI 0.723 PDI 
Shrub RVI -0.809 13-Week SPI
Grass RVI -0.733 16-Week SPI

Shrub NDGI 0.63 13-Week SPI
Grass NDGI 0.403 13-Week SPI
Shrub NDRI -0.63 13-Week SPI
Grass NDRI -0.403 13-Week SPI
Shrub NDI 0.457 14-Week SPI
Grass NDI 0.451 PDI 

Shrub MSAVI 0.832 18-Week SPI
Grass MSAVI 0.532 15-Week SPI
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Table 10: Most Significant Correlations for 
Vegetation Indices at Drought Plot, two weeks 

lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought 
Index 

Shrub NDVI 0.817 9-Week SPI
Grass NDVI 0.74 15-Week SPI
Shrub NDWI 0.219 10-Week SPI
Grass NDWI 0.271 27-Week SPI
Shrub VIN 0.808 12-Week SPI
Grass VIN 0.739 15-Week SPI

Shrub SAVI 0.766 17-Week SPI
Grass SAVI 0.584 15-Week SPI
Shrub ARVI 0.816 12-Week SPI
Grass ARVI 0.754 15-Week SPI
Shrub RSVI 0.69 29-Week SPI
Grass RSVI -0.598 6-Week SPI
Shrub WBI 0.257 PDI 
Grass WBI 0.706 PDI 
Shrub RVI -0.816 9-Week SPI
Grass RVI -0.735 15-Week SPI

Shrub NDGI 0.618 7-Week SPI
Grass NDGI 0.436 16-Week SPI
Shrub NDRI -0.618 7-Week SPI
Grass NDRI -0.436 16-Week SPI
Shrub NDI 0.454 12-Week SPI
Grass NDI 0.489 PDI 

Shrub MSAVI 0.77 17-Week SPI
Grass MSAVI 0.549 15-Week SPI

 

 

 

 

 

 

 

 

 

 

Table 11: Most Significant Correlations for 
Vegetation Indices at Drought Plot, three 

weeks lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought 
Index 

Shrub NDVI 0.815 8-Week SPI
Grass NDVI 0.674 14-Week SPI
Shrub NDWI 0.264 1-Week SPI
Grass NDWI 0.309 1-Week SPI
Shrub VIN 0.795 8-Week SPI
Grass VIN 0.66 14-Week SPI

Shrub SAVI 0.764 11-Week SPI
Grass SAVI 0.521 14-Week SPI
Shrub ARVI 0.802 8-Week SPI
Grass ARVI 0.694 14-Week SPI
Shrub RSVI 0.697 23-Week SPI
Grass RSVI -0.645 5-Week SPI
Shrub WBI 0.281 6-Week SPI
Grass WBI 0.688 PDI 
Shrub RVI -0.814 8-Week SPI
Grass RVI -0.678 14-Week SPI

Shrub NDGI 0.633 6-Week SPI
Grass NDGI 0.429 15-Week SPI
Shrub NDRI -0.633 6-Week SPI
Grass NDRI -0.429 15-Week SPI
Shrub NDI 0.476 11-Week SPI
Grass NDI 0.46 PDI 

Shrub MSAVI 0.766 11-Week SPI
Grass MSAVI 0.487 14-Week SPI
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Table 12: Most Significant Correlations for 
Vegetation Indices at Drought Plot, four 

weeks lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought 
Index 

Shrub NDVI 0.836 5-Week SPI
Grass NDVI 0.72 13-Week SPI
Shrub NDWI 0.247 2-Week SPI
Grass NDWI 0.201 25-Week SPI
Shrub VIN 0.817 5-Week SPI
Grass VIN 0.708 13-Week SPI

Shrub SAVI 0.792 10-Week SPI
Grass SAVI 0.597 12-Week SPI
Shrub ARVI 0.823 5-Week SPI
Grass ARVI 0.748 13-Week SPI
Shrub RSVI 0.707 22-Week SPI
Grass RSVI -0.665 4-Week SPI
Shrub WBI 0.345 5-Week SPI
Grass WBI 0.683 PDI 
Shrub RVI -0.834 5-Week SPI
Grass RVI -0.722 13-Week SPI

Shrub NDGI 0.67 5-Week SPI
Grass NDGI 0.54 14-Week SPI
Shrub NDRI 0.413 5-Week SPI
Grass NDRI -0.03 14-Week SPI
Shrub NDI 0.49 10-Week SPI
Grass NDI 0.447 PDI 

Shrub MSAVI 0.794 10-Week SPI
Grass MSAVI 0.568 12-Week SPI

 

 

Table 13: Most Significant Correlations for 
Vegetation Indices at Drought Plot, five weeks 

lag 

Vegetation 
Index 

Correlation 
Coefficient 

Drought  
Index   

Shrub NDVI 0.817 5-Week SPI 
Grass NDVI 0.708 5- and 9-Week SPI
Shrub NDWI 0.256 1-Week SPI 
Grass NDWI 0.192 24-Week SPI 
Shrub VIN 0.806 5-Week SPI 
Grass VIN 0.704 9-Week SPI 

Shrub SAVI 0.798 8- and 9-Week SPI
Grass SAVI 0.629 11-Week SPI 
Shrub ARVI 0.802 5-Week SPI 
Grass ARVI 0.733 9-Week SPI 
Shrub RSVI 0.734 21-Week SPI 
Grass RSVI 0.619 PDI 
Shrub WBI 0.31 4-Week SPI 
Grass WBI 0.695 30-Week SPI 
Shrub RVI -0.814 5-Week SPI 
Grass RVI -0.707 5-Week SPI 

Shrub NDGI 0.615 4-Week SPI 
Grass NDGI 0.52 9-Week SPI 
Shrub NDRI -0.615 4-Week SPI 
Grass NDRI -0.52 9-Week SPI 
Shrub NDI 0.459 9-Week SPI 
Grass NDI 0.425 PDI 

Shrub MSAVI 0.8 8- and 9-Week SPI
Grass MSAVI 0.606 11-Week SPI 
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Table 14: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, no lag 

Vegetation Index 
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI 0.689 4-Week SPI
WS Shrub NDWI -0.291 27-Week SPI
WS Shrub VIN 0.716 4-Week SPI

WS Shrub SAVI -0.38 30-Week SPI
WS Shrub ARVI 0.692 4-Week SPI
WS Shrub RSVI -0.414 24-Week SPI
WS Shrub WBI 0.379 4-Week SPI
WS Shrub RVI -0.68 4-Week SPI

WS Shrub NDGI 0.712 4-Week SPI
WS Shrub NDRI -0.712 4-Week SPI
WS Shrub NDI -0.362 30-Week SPI

WS Shrub MSAVI -0.34 4-Week SPI
 

Table 15: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, one-week 
lag 

Vegetation Index 
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI 0.68 2-Week SPI 
WS Shrub NDWI -0.252 30-Week SPI
WS Shrub VIN 0.665 3-Week SPI 

WS Shrub SAVI -0.355 30-Week SPI
WS Shrub ARVI 0.618 2-Week SPI 
WS Shrub RSVI -0.391 23-Week SPI
WS Shrub WBI -0.248 30-Week SPI
WS Shrub RVI -0.68 2-Week SPI 

WS Shrub NDGI 0.55 3-Week SPI 
WS Shrub NDRI -0.55 2-Week SPI 
WS Shrub NDI 0.333 3-Week SPI 

WS Shrub MSAVI 0.419 3-Week SPI 

 

 
 
 
 
 

Table 16: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, two 
weeks lag 

Vegetation Index
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI 0.652 2-Week SPI 
WS Shrub NDWI -0.274 30-Week SPI
WS Shrub VIN 0.642 2-Week SPI 

WS Shrub SAVI 0.436 2-Week SPI 
WS Shrub ARVI 0.589 2-Week SPI 
WS Shrub RSVI -0.35 21-Week SPI
WS Shrub WBI -0.245 30-Week SPI
WS Shrub RVI -0.651 2-Week SPI 

WS Shrub NDGI 0.512 2-Week SPI 
WS Shrub NDRI 0.346 2-Week SPI 
WS Shrub NDI -0.351 30-Week SPI

WS Shrub MSAVI 0.525 2-Week SPI 

 

Table 17: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, three 
weeks lag 

Vegetation Index
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI 0.4 1-Week SPI
WS Shrub NDWI -0.412 3-Week SPI
WS Shrub VIN 0.414 1-Week SPI

WS Shrub SAVI 0.462 1-Week SPI
WS Shrub ARVI 0.389 1-Week SPI
WS Shrub RSVI -0.318 21-Week SPI
WS Shrub WBI 0.389 1-Week SPI
WS Shrub RVI -0.394 1-Week SPI

WS Shrub NDGI 0.46 1-Week SPI
WS Shrub NDRI -0.46 1-Week SPI
WS Shrub NDI -0.371 26-Week SPI

WS Shrub MSAVI 0.503 1-Week SPI
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Table 18: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, four 
weeks lag 

Vegetation Index 
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI -0.324 30-Week SPI
WS Shrub NDWI -0.387 2-Week SPI
WS Shrub VIN -0.268 30-Week SPI

WS Shrub SAVI -0.453 30-Week SPI
WS Shrub ARVI -0.332 30-Week SPI
WS Shrub RSVI -0.564 8-Week SPI
WS Shrub WBI -0.283 1-Week SPI
WS Shrub RVI 0.332 30-Week SPI

WS Shrub NDGI -0.429 30-Week SPI
WS Shrub NDRI 0.429 30-Week SPI
WS Shrub NDI -0.405 2-Week SPI

WS Shrub MSAVI -0.426 2-Week SPI

Table 19: Most Significant Correlations for 
Vegetation Indices at Irrigated Plot, five 
weeks lag 

Vegetation Index
Most 

Significant 
Correlation 

Drought 
Scale 

WS Shrub NDVI -0.332 30-Week SPI
WS Shrub NDWI -0.327 30-Week SPI
WS Shrub VIN -0.274 30-Week SPI

WS Shrub SAVI -0.408 30-Week SPI
WS Shrub ARVI -0.338 30-Week SPI
WS Shrub RSVI -0.444 7-Week SPI
WS Shrub WBI 0.42 1-Week SPI
WS Shrub RVI 0.34 30-Week SPI

WS Shrub NDGI -0.432 30-Week SPI
WS Shrub NDRI 0.432 30-Week SPI
WS Shrub NDI -0.426 30-Week SPI

WS Shrub MSAVI -0.364 30-Week SPI
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6. CONCLUSIONS AND FUTURE WORK 
 
 

This thesis has examined the statistical differences between vegetation spectral 

reflectance data collected from rain-sheltered, irrigated and control vegetation plots using 

T-Tests, as well as possible correlations between vegetation indices and drought stress as 

interpreted by the Standardized Precipitation Index and Palmer Drought Index. The 

vegetation under study was creosote shrubs and gramma grass located in a rain-sheltered 

plot and a control plot, as well as an irrigated creosote shrub and a control creosote shrub 

at a separate location. Reflectance data was collected from these plots from January 2003 

to October 2004 on a bi-weekly basis (weekly during the month of August 2003) unless 

weather or instrument error intervened. The precipitation was obtained from the 5-Points 

weather station administered by the Sevilleta National Wildlife Refuge Long-term 

Ecological Research Center, from 1999-2004, and SPI data was calculated from this 

precipitation using a computer program downloaded from the National Drought 

Mitigation Center. PDI data was obtained from the National Climatic Data Center. The 

vegetation indices calculated were the NDVI, NDWI, VIN, SAVI, ARVI, RSVI, WBI, 

RVI, NDGI, NDRI, NDI and MSAVI.  

It was concluded from the T-test statistical analysis that there was an 91% success 

rate from analysis of these vegetation indices to examine the difference between irrigated 

and control creosote vegetation, and rain-sheltered and control grass. However, the 

success rate was only 50% for the difference between rain-sheltered and control creosote 
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shrubs. It can be inferred from these conclusions that creosote is more drought-resistant 

than gramma grass, and that vegetation indices can be used to detect drought-stressed 

vegetation when compared to reference measurements of healthy vegetation. 

It was also concluded that of the previously mentioned vegetation indices, the 

NDVI, VIN, SAVI, MSAVI and RVI, are good proxy indicators of weekly SPI drought 

severity as calculated from field reflectance data of shrubs and grasses collected at the 

Rain-sheltered Site and that time lags are incorporated in the SPI timescale. With no time 

lag, the most significant correlation for the shrub NDVI was 0.818 with the 14-Week SPI, 

and for the grass NDVI was 0.726 with the 17-Week SPI. The most significant 

correlation for the Shrub VIN with no time lag was 0.848 with the 14-Week SPI and 

0.715 for the Grass VIN with the 17-Week SPI. The most significant correlation for the 

Shrub SAVI was 0.796 with the 19-Week SPI, and 0.522 for the Grass SAVI with the 17-

Week SPI. The most significant correlation for the Shrub RVI was -0.808 with the 14-

Week SPI and -0.727 for the Grass RVI with the 17-Week SPI. The most significant 

correlation for the Shrub MSAVI was 0.801 with the 19-Week SPI and 0.478 for the 

Grass MSAVI with the 17-Week SPI. It was also concluded that creosote shrub 

vegetation indices are more strongly correlated with precipitation and SPI values than 

gramma grass vegetation indices. However, this conclusion is based upon field-

reflectance measurements, and it is more practical to use grass relationships for wider 

scale remote sensing measurements, until better methods of classification and spectral 

identity extraction are perfected and investigated due to the difficulty of identifying shrub 

regions with coarse resolution data. The PDI data is significantly correlated only with the 

grass WBI data with a correlation of 0.736, and in general is not very responsive or useful 
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for detection with most remote sensing measurements. Furthermore, it was concluded 

that the high correlation of the field data from the drought plot with longer drought time 

scales indicates that the total amount of precipitation is the most significant factor to 

semi-arid vegetation vigor, and not just the frequency of precipitation events. This is 

supported by the Irrigated Site data, which only had significant correlations with much 

shorter timescales. The most significant correlation for the Irrigated Shrub NDVI was 

0.689 with the 4-Week SPI; for the Irrigated Shrub VIN was 0.716 with the 4-Week SPI; 

for the Irrigated Shrub ARVI was 0.692 with the 4-Week SPI; for the Irrigated Shrub 

NDGI was 0.712 with the 4-Week SPI; and for the Irrigated Shrub NDRI was -0.712 with 

the 4-Week SPI. This may be due to the extra moisture it received compared to the 

control shrub and grass plot at the Rain-sheltered site.  

The results from the satellite up scaling were not very conclusive. Pixel analysis 

comparing results of NDMC SPI drought data and predicted drought data from linear 

regression of the 12-Week SPI and Shrub/Grass NDVI gave conflicting results, from 0% 

agreement to 72% agreement. This confliction is most likely due to the issues of land 

cover classification, spectral un-mixing, and synchronization of land-based spectral 

sensors and satellite-based spectral sensors. Some work has been done in this area 

(Maingi et al 2002; Skirvin et al, 2004, Asner and Heidebrecht, 2002, Qi et al, 2002) and 

should be reviewed for more insights on land cover classification and spectral un-mixing, 

particularly the use of the SWIR2 regions for un-mixing analysis. Also, the exact 

relationship between ground-based vegetation indices and satellite-based indices may 

need to be examined, in case there is a significant difference due to sensor construction or 

data acquisition methods. While the ground-based data in this thesis was corrected for 
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solar zenith angle and time of measurement, it is not always apparent whether or not 

satellite imagery is corrected in a similar manner. This data is for a one-year period, and 

the relationships may vary from year to year; so further data collection should be 

implemented to more fully document the temporal variance of vegetation spectral 

response. 

 There are significant areas of this research that can be explored more fully. One 

area is a continued/expanded collection of field data, both vegetation reflectance data and 

precipitation data to better identify long-term trends and clarify existing relationships 

between both. Also, seasonal effects should be considered to get more accurate results 

from existing relationships, and a longer-data collection period should more clearly 

discriminate between seasonal effects and random changes in value. Another possibility 

is the investigation of other vegetation indices for correlation with SPI drought values. 

The simplest method would be to use all possible differentiated ratios in available 

satellite bands, and investigate the responses of these ratios to time and precipitation, as 

well as to investigate any difference between rain-sheltered, irrigated and control 

vegetation. This would require investigation into the real-world causes of these responses 

and how the plant biology causes the changes in ratios. I limited this research to 

vegetation indices previously described by other scientists, but the potential for further 

statistical investigation is limitless. 

Another area which has potential for future work is the use of satellite imagery and 

drought analysis. This has been done extensively as presented in the literature review, but 

I think that analysis of satellite imagery time series over semi-arid regions on the same 

level as that done over prairie grasslands like Ji (2003) and Peters (2001) will produce 



 165

more accurate results of seasonal NDVI and other vegetation index responses of regional 

land cover. As previously stated, an investigation into the exact correlation between field-

measured vegetation indices and satellite-measured vegetation indices should better assist 

in creating SPI images along with better classification of remote sensing images. Finally, 

although it is not directly connected to this research, further study of image classification 

via vegetation indices and spectral un-mixing would be very beneficial in using field 

remote sensing results and is deserving of its own separate research, as can be seen in Qi 

et al (2002). 
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APPENDICES 
 
 
 The following appendices contain operation theory and instruction for the 

Analytical Spectral Devices Fieldspec Pro spectroradiometer, code for the Perlscript 

program used to process the radiance data measured in the field, correlations of soil 

vegetation indices with SPI measurements, and linear regression graphs of selected 

indices 
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Appendix A 
 
 
 
 The following is a description of the Analytical Spectral Devices Fieldspec Pro 

Spectroradiometer. This instrument was used to collect radiance data for this master’s 

thesis. The Fieldspec Pro is a highly portable general-purpose spectroradiometer useful 

for recording the absolute or relative measurements of electromagnetic energy in either a 

field or lab setting. The instrument uses a fiber-optic bundle to collect light. Inside the 

instrument, light is protected from the fiber optics onto a holographic diffraction grating 

where the wavelength components are separated and reflected for independent 

measurements by the detectors. Each detector converts incident photons into electrons 

that are stored, or integrated, until the detector is “read out”. At readout time, the 

photoelectric current for each detector is converted to a voltage and is digitized by a 16-

bit analog to digital converter. The digital data is then transferred directly to the 

computer’s main memory using the Enhanced Parallel Port on the controlling computer. 

The spectral data is then available for processing by the controlling software.  

 The Visible/Near Infrared (VNIR) portion of the spectrum, the 350-1050 nm 

wavelength domain, is most commonly measured by a 512-channel silicon photodiode 

array overlaid with an order separation filter. Each channel, an individual detector itself, 

is geometrically positioned to receive light within a narrow (1.4 nm) bandwidth. The 

VNIR spectrometer has a spectral resolution of approximately 3 nm at around 700 nm. 

The Shortwave Infrared (SWIR), also called the Near Infrared (NIR) portion of the 
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spectrum is acquired with two scanning spectrometers. These differ from the array used 

in the VNIR in that they measure wavelengths sequentially, rather than simultaneously. 

Each spectrometer consists of a concave holographic grating and a single 

thermoelectrically cooled indium gallium arsenide detector. The gratings are mounted 

about a common shaft which oscillates with a period of about 200 milliseconds. Unlike 

the VNIR, each SWIR spectrometer has only one detector, which is exposed to different 

wavelengths of light as the grating oscillates. The first spectrometer (SWIR1) measures 

light between about 900-1850 nm, while the second (SWIR2) measures light between 

about 1700-2500 nm. The controlling software automatically accounts for the overlap in 

wavelength intervals by using a preset wavelength within the common subset at which to 

place a “splice”. The sampling interval for each SWIR region is about 2 nm and the 

spectral resolution varies between 10 nm and 12 nm, depending on the scan angle at that 

wavelength.  

 Light energy is collected through a bundle of specially formulated optical fibers 

which are precisely cut, polished and sealed. The fiber optic cable has a conical view 

subtending a full angle of about 25 degrees. The raw data (raw DN for “digital numbers”) 

returned by the FieldSpec Pro are 16-bit numbers corresponding to the output of each 

element in the VNIR detector array and each 2 nm sample of the SWIR spectra. All other 

data types such as reflectance, radiance and irradiance are calculated by the software fro 

these raw digital numbers. Raw data is a function both of the characteristics of the light 

field being measured and of the instrument itself. Parameters such as the foreoptic 

transmission, fiberoptic transmission, grating efficiency and detector sensitivity all vary 

with wavelength. This results in a raw spectrum whose shape can be very different from 
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that of the radiance spectrum of the light field being measured. Because these parameters 

do not vary with time though, a linear relationship does exist between the raw spectra and 

the intensity of the light field being measured.  

 Recorded data is stored on the controlling computer’s hard drive for processing 

with ViewSpec Pro (the processing software specifically for this instrument). The data 

can be viewed in graphical format, statistically analyzed or converted into ASCII format 

for use with Microsoft Excel or other data processing software. 
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Appendix B 
 

 
Many computer programs were written or utilized to facilitate more rapid data 

processing for this thesis research. These included: 

• A Perl script written by Matt Richmond (formerly of New Mexico Tech) 

and modified by Geoffrey Marshall, which was used to calculate a single 

radiance value for all radiance measurements taken per target, while 

corrected for solar zenith angle and Julian day. 

• A C++ program from the National Drought Mitigation Center used to 

calculate SPI values over varying time scales. 

• Various macros written by Geoffrey Marshall in Microsoft Excel to 

calculate and manipulate spreadsheet values during data analysis. 

• Commercial software such as Minitab 14 for statistical analysis, Microsoft 

Excel for analysis and data manipulation, ViewSpec Pro for collecting 

radiance data from the spectroradiometer and converting said data to 

ASCII format, Microsoft Word, etc. 

The Perl script is reproduced overleaf verbatim. The script shown was created for the 

Rain-sheltered Site data while taking into account daylight saving. Variations to this 

script included latitude and longitude differences for the Irrigated Site, and non-daylight 

saving time measurement periods. Microsoft Excel Macros can be found on the 

companion compact disks attached to this thesis containing the field data measurements. 
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---------------------------------------------------------------------------------------------- 

#!/usr/bin/perl -w 
 
print "Enter the julian day for this measurement: "; 
$jday = <STDIN>; 
$wave_min = 350; 
$wave_max = 2500; 
$Pi = 3.14159265358979; 
$Longitude = 106.733;                   #Approximate Longtitude 
of Study Region, Positive west of Greenwich 
$Latitude = 34.338;                     #Approximate Latitude 
of Study Region, Positive in Northern Hemisphere 
#$EPSILN = 0.016733;                     #Eccentricity of earth 
orbit 
$SINOB = 0.3978;                        #sine of obliquity of 
ecliptic 
$DPY = 365.242;                         #Days per year 
$DPH = 15;                              #Degrees per hour 
$RPD = $Pi/180;                         #Radians to degrees     
$DPR = 1/$RPD;                          #Degrees to radians 
$DANG = 2*$Pi*($jday-1)/$DPY;           #Angle measured 
from perihelion in radians which is taken as midnight Jan. 1  
       
$HOMP = 12+0.12357*sin($DANG)-
0.004289*cos($DANG)+0.153809*sin(2*$DANG)+0.060783*cos(2*$DANG);    
#HOMP = Hours of Meridian Passage or true solar noon                  
$ANG = 279.9348*$RPD+$DANG;          #ANG = Reference -EQ 
1.3A 
$SIGMA = ($ANG*$DPR+0.4087*sin($ANG)+1.8724*cos($ANG)-
0.0182*sin(2*$ANG)+0.0083*cos(2*$ANG))*$RPD; #SIGMA = Reference - EQ 
1.3B 
$SINDLT = $SINOB*sin($SIGMA);       #SINDLT = sine of 
Declination angle (EQ 1.2) 
$COSDLT = sqrt(1-$SINDLT*2);       #COSDLT = cosine of 
declination angle 
#----------------------------------------------------------------------
-------------------------------------- 
 
#initialize our hash to store wavelength data in 
for ($i = $wave_min; $i <= $wave_max; $i++) { 
        $bighash{$i} = 0; 
} 
 
 
####################### 
#begin script execution 
 
#OK, lets see what files exist in the current directory 
# If you want to always use the same directory, do: 
# chdir "whatever/directory"; 
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# first 
 
#now read the directory, and filter out anything that does not end in 
.txt 
#you may want to change the grep line to change the files it's looking 
for 
#you'll almost certainly want to do some filtering, as you probably 
have 
# "." and ".." entries in a directory 
 
opendir (DIRH, ".") or die "Can't read the current directory: $!"; 
@datafiles = grep {/.txt/} readdir DIRH; 
closedir DIRH; 
 
$totalfiles = $#datafiles + 1; 
print "reading $totalfiles files:\n"; 
 
foreach $file (@datafiles) { 
        $state = 0; 
        open (DATAFILE, "<$file") or die "Can't open datafile $file: 
$!"; 
 
        #this is a syntactically strange construct, but you'll find it 
        #in almost every perl script.  It reads one line from the file, 
        #and sets the variable $_ equal to it.  It quits looping at end 
of file 
        while (<DATAFILE>) { 
 
                if($_ =~ /Spectrum saved:.* (\d+):(\d+):(\d+)/) { 
                        $hour = $1; $minute = $2; $second = $3; 
                    #print "$hour $minute $second\n"; 
                    #convert to decimal 
                    $dec_time = $hour + ($minute / 60) + ($second / 
3600); 
                    #print "$dec_time\n"; 
                        if($state != 0) { 
                                print "this can't happen: got another 
time line\n"; 
                                exit -1; 
                        } 
                        $state = 1; 
                } 
 
                elsif($_ =~ /^(\d+)\s+([0-9\.Ee-]+)/) { 
                        $wavelength = $1; 
                        $raw_magnitude = $2; 
                        if ($state != 1) { 
                                print "got to data without getting 
time; aborting\n"; 
                                exit -1; 
                        } 
                        #print "wavelength: $1 magnitude: $2\n"; 
 
                        #at this point, you have $dec_time, so you can 
do whatever 
                        #processing you need to on the $raw_magnitude 
here 
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   #The SZA code was converted from a Fortran code for 
finding the cosine of Solar Zenith Angle 
       #Comments are taken directly from the original 
Fortran code comments 
   #Constants are defined globally in this code 
       #Reference for this code is from H.M. Woolf, NASA TM 
"On The Computation of Solar Elevation Angles and the Determination of 
Sunrise and Sunset Times" 
       #Add 7 hours to the time to convert it to GMT, or 6 
hours depending on Daylight Saving Time. 
   #DST begins on April 6, 2003 and ends October 26, 
2003    
   $Time = $dec_time + 6;                     #GMT at 
local time               
   $HANG = $DPH * ($Time - $HOMP) - $Longitude;       
#HANG = Hour Angle, a measure of the longitudinal distance to the sun 
from the point calculated       
   $COSZENITH = $SINDLT * sin($RPD * $Latitude) + 
$COSDLT * cos($RPD * $Latitude) * cos($RPD * $HANG);  #cosine of Zenith 
Angle        
                        $magnitude = $raw_magnitude/$COSZENITH; 
                        #accumulate the magnitude data 
                        $bighash{$wavelength} += $magnitude; 
                } 
        } #end of while loop 
        close DATAFILE; 
} #end of foreach loop 
 
#output data here in tab separated variable format: 
open(OUTFILE, ">output.xls") or die "can't open output file: $!"; 
 
for ($i = $wave_min; $i <= $wave_max; $i++) { 
        print OUTFILE "$i\t"; 
        printf OUTFILE "%.14E\n",  $bighash{$i}/$totalfiles ; 
} 
 
close OUTFILE; 
 
#all done! 
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Appendix C 
 
 
 This appendix contains correlation values from meteorological analyses, 

regression figures and other correlation graphs. Figures A-1 through A-12 represent 

linear correlations between soil vegetation indices (or ratio indices, since the soil is not 

vegetation) and SPI values. The only ratios that have significant correlations are the 

ARVI and WBI. The ARVI is probably responding to the soil reflectance in the blue 

spectrum, while the WBI is responding to the soil water content. 

Table 20: Linear Correlation /between Rain-sheltered site control vegetation and various 
meteorological variables I 

 Max 
Temp p-value Min Temp p-value Mean 

Temp p-value 

Shrub NDVI -0.229 0.283 -0.310 0.140 -0.270 0.201 
Grass NDVI -0.277 0.190 -0.343 0.101 -0.313 0.137 
Shrub NDWI -0.093 0.665 -0.165 0.441 -0.128 0.551 
Grass NDWI -0.210 0.324 -0.275 0.193 -0.242 0.254 
Shrub VIN -0.241 0.257 -0.319 0.128 -0.281 0.183 
Grass VIN -0.295 0.161 -0.354 0.089 -0.328 0.118 

Shrub SAVI -0.488 0.016 -0.532 0.007 -0.515 0.010 
Grass SAVI -0.370 0.075 -0.419 0.042 -0.398 0.054 
Shrub ARVI -0.244 0.250 -0.333 0.112 -0.289 0.170 
Grass ARVI -0.294 0.163 -0.377 0.070 -0.338 0.107 
Shrub RSVI -0.610 0.002 -0.602 0.002 -0.613 0.001 
Grass RSVI -0.348 0.096 -0.238 0.262 -0.297 0.158 
Shrub WBI -0.108 0.615 -0.215 0.313 -0.159 0.457 
Grass WBI -0.498 0.013 -0.537 0.007 -0.521 0.009 
Shrub RVI 0.224 0.292 0.307 0.145 0.267 0.208 
Grass RVI 0.265 0.210 0.336 0.109 0.303 0.150 

Shrub NDGI -0.004 0.986 -0.107 0.619 -0.053 0.806 
Grass NDGI -0.251 0.236 -0.413 0.045 -0.331 0.115 

Shrub RI 0.004 0.986 0.107 0.619 0.053 0.806 
Grass RI 0.251 0.236 0.413 0.045 0.331 0.115 

Shrub NDI -0.281 0.183 -0.394 0.057 -0.337 0.107 
Grass NDI -0.248 0.243 -0.311 0.139 -0.279 0.187 
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Shrub MSAVI -0.490 0.015 -0.532 0.007 -0.516 0.010 
Grass MSAVI -0.391 0.059 -0.433 0.035 -0.415 0.044 

Table 21: Linear Correlation /between Rain-sheltered site control vegetation and various 
meteorological variables II 

 Mean RH p-value Mean 
Vapor p-value 

Shrub NDVI 0.130 0.545 -0.131 0.542 
Grass NDVI 0.187 0.383 -0.157 0.463 
Shrub NDWI 0.194 0.363 0.023 0.916 
Grass NDWI 0.001 0.995 -0.209 0.326 
Shrub VIN 0.145 0.500 -0.146 0.497 
Grass VIN 0.164 0.444 -0.185 0.386 

Shrub SAVI 0.181 0.396 -0.385 0.063 
Grass SAVI 0.125 0.562 -0.322 0.125 
Shrub ARVI 0.134 0.533 -0.157 0.465 
Grass ARVI 0.175 0.413 -0.194 0.365 
Shrub RSVI 0.190 0.373 -0.526 0.008 
Grass RSVI -0.052 0.810 -0.418 0.042 
Shrub WBI -0.373 0.072 -0.410 0.047 
Grass WBI -0.180 0.401 -0.692 0.000 
Shrub RVI -0.124 0.564 0.129 0.548 
Grass RVI -0.203 0.342 0.138 0.521 

Shrub NDGI -0.022 0.919 -0.066 0.759 
Grass NDGI -0.062 0.773 -0.401 0.052 
Shrub NDRI 0.022 0.919 0.066 0.759 
Grass NDRI 0.062 0.773 0.401 0.052 
Shrub NDI 0.139 0.517 -0.218 0.305 
Grass NDI -0.138 0.520 -0.373 0.073 

Shrub MSAVI 0.183 0.391 -0.386 0.063 
Grass MSAVI 0.119 0.580 -0.350 0.093 
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Figure A-1: Linear Correlations between measured Soil ratios and SPI time scales, no lag. 
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Figure A-2: Linear Correlations between measured Soil ratios and SPI time scales, no lag. 
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Figure A-3: Linear Correlations between measured Soil ratios and SPI time scales, one week lag. 
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Figure A-4: Linear Correlations between measured Soil ratios and SPI time scales, one week lag. 
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Figure A-5: Linear Correlations between measured Soil ratios and SPI time scales, two week lag. 
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Figure A-6: Linear Correlations between measured Soil ratios and SPI time scales, two week lag. 
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Figure A-7: Linear Correlations between measured Soil ratios and SPI time scales, three week lag. 
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Figure A-8: Linear Correlations between measured Soil ratios and SPI time scales, three week lag. 
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Figure A-9: Linear Correlations between measured Soil ratios and SPI time scales, four week lag. 
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Figure A-10: Linear Correlations between measured Soil ratios and SPI time scales, four week lag. 
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Figure A-11: Linear Correlations between measured Soil ratios and SPI time scales, five week lag. 
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Figure A-12: Linear Correlations between measured Soil ratios and SPI time scales, five week lag. 



 182

  

12-Week SPI

Sh
ru

b 
V

IN

1.51.00.50.0-0.5-1.0-1.5-2.0

10

9

8

7

6

5

4

3

S 0.964385
R-Sq 66.3%
R-Sq(adj) 64.8%

Fitted Line Plot
Shrub VIN =  6.185 + 1.450 12-Week SPI

 

Figure A-13: Linear Regression between Shrub VIN and 12-week SPI, no lag 
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Figure A-14: Linear Regression between Shrub ARVI and 12-Week SPI 
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Figure A-15: Linear Regression between Grass ARVI and 12-Week SPI, no lag 
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Figure A-16: Linear Regression between Shrub MSAVI and 12-Week SPI, no lag 
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Figure A-17: Linear Regression between Grass WBI and Palmer Drought Index, no lag 
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Figure A-18: Linear Regression of Shrub NDVI and 12-week SPI, one week lag 
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Figure A-19: Linear Regression of Grass NDVI and 12-Week SPI, one week lag 
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Figure A-20: Linear Regression of shrub VIN vs. 12-week SPI, one week lag 
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Figure A-21: Linear Regression of Grass VIN vs. 12-Week SPI, one week lag 
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Figure A-22: Linear Regression of Shrub SAVI vs. 12-Week SPI, one week lag 
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Figure A-23: Linear Regression of shrub ARVI vs. 12-Week SPI, one week lag 
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Figure A-24: Linear Regression of Grass ARVI vs. 12-Week SPI, one week lag 
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Figure A-25: Linear Regression of Shrub RVI vs. 12-Week SPI, no lag 
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Figure A-26: Linear Regression of Grass RVI vs. 12-Week SPI, no time lag 
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Figure A-27: Linear Regression of Shrub MSAVI vs. 12-Week SPI, one week lag 
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Figure A-28: Linear Regression of Shrub NDVI vs. 12-week SPI, two weeks time lag 
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Figure A-29: Linear Regression of Grass NDVI vs. 12-Week SPI, two weeks lag 
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Figure A-30: Linear Regression of Shrub VIN vs. 12-Week SPI, two weeks lag 
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Figure A-31: Linear Regression of Grass VIN vs. 12-Week SPI, two weeks lag 
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Figure A-32: Linear Regression of Shrub SAVI vs. 12-Week SPI, two weeks lag 
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Figure A-33: Linear Regression of Shrub ARVI vs.  12-Week SPI, two weeks lag 
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Figure A-34: Linear Regression of Grass ARVI vs. 12-Week SPI, two weeks lag 
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Figure A-35: Linear Regression of Grass WBI vs. PDI, two weeks lag 
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Figure A-36: Linear Regression of Shrub RVI vs. 12-week SPI, two weeks lag 
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Figure A-37: Linear Regression of Grass RVI vs. 12-Week SPI, two weeks lag 
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Figure A-38: Linear Regression of Shrub MSAVI vs. 12-Week SPI, two weeks lag 
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Figure A-39: Linear Regression of Shrub NDVI vs. 12-Week SPI, three weeks lag 
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Figure A-40: Linear Regression of Grass NDVI vs. 12-Week SPI, three weeks lag 
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Figure A-41: Linear Regression of Shrub VIN vs. 12-Week SPI, three weeks lag 
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Figure A-42: Linear Regression of Grass VIN vs. 12-Week SPI, three week lag 
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Figure A-43: Linear Regression of Shrub ARVI vs. 12-Week SPI, three weeks lag 
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Figure A-44: Linear Regression of Grass ARVI vs. 12-Week SPI, three week lag 
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Figure A-45: Linear Regression of Grass WBI vs. PDI, three week lag 
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Figure A-46: Linear Regression of Shrub RVI vs. 12-Week SPI, three weeks lag 
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Figure A-47: Linear Regression of Grass RVI vs. 12-Week SPI 
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Figure A-48: Linear Regression of Shrub NDVI vs. 6-Week SPI, four week lag. 
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Figure A-49: Linear Regression of Grass NDVI vs. 12-Week SPI, four weeks lag 
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Figure A-50: Linear Correlation of 4-Week SPI and Shrub NDVI, no lag, Irrigated Site 
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Figure A-51: Linear Correlation of 4-Week SPI and Shrub VIN, no lag, Irrigated Site. 
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Figure A-52:Linear correlation plot between 4-Week SPI and Shrub ARVI, no lag, Irrigated Site 
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Figure A-53: Linear Regression of 4-Week SPI and Shrub NDGI, no lag, watered Site 
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Figure A-54: SNWR 4-Week SPI from all operational rain gauges/weather stations 
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Figure A-55: SNWR 8-Week SPI from all operational rain gauges/weather stations 
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Figure A-56: SNWR 12-Week SPI from all operational rain gauges/weather stations 
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Figure A-57: SNWR 16-Week SPI from all operational rain gauges/weather stations 
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Figure A-58: SNWR 20-Week SPI from all operational rain gauges/weather stations 
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Figure A-59: SNWR 24-Week SPI from all operational rain gauges/weather stations  
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