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ABSTRACT

The objective of this modeling study is to investigate the 3D electromagnetic

induction problem for a single transmitter/receiver sonde approaching a fault within a

hydrocarbon reservoir. The fault-bounded reservoir is modeled as an anomalous

quarterspace embedded within a relatively conductive one siemens/meter homogeneous

formation. Its electromagnetic response is computed in the frequency domain using a

truncated perturbation expansion about the response of the reservoir-free formation. The

first term of the expansion is derived considering an adjoint equation approach. Higher-

order terms can be found similarly but are not considered here.
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INTRODUCTION

The primary objective of geophysical well logging for petroleum is to identify potential

reservoir rocks by determining their porosity and permeability, and the nature and

volume of fluids present. Water saturation and porosity measurements can provide

distinguishing traits of hydrocarbon-bearing formations. Archie (1942) developed

empirical equations, used in petroleum work today, to relate resistivity measurements of

a formation to its porosity and water saturation. Known as Archie’s law, it is expressed as

€ 

FF = aφ−m , (1)

where FF is known as the formation factor (the ratio of the formation resistivity to the

pore fluids), 

€ 

φ  is the porosity, m is the cementation factor and a is a constant that varies

with rock type. Formations saturated with oil have a higher resistivity versus formations

saturated with saline water; therefore high resistivity readings can denote hydrocarbon-

bearing formations.

An induction sonde (Figure 1) is a tool designed to measure formation resistivity in

boreholes. A multi-component induction sonde consists of a transmitter and receiver coil,

typically with offsets of one to three meters. For higher resolutions, multiple transmitter

and receiver coils may be used. As the induction sonde is lowered into the borehole, a

time-varying magnetic field produced by the transmitter coil induces eddy currents in

conductive formation. These eddy currents in turn induce secondary magnetic fields

measured in the receiver coil in an electromagnetic field. These secondary fields are

direct indicators of the formation conductivity (Telford et al., 1990).

Doll (1949) developed the first commercial induction tool in the late 1940’s for the

Schlumberger Well Surveying Corporation. Doll derived an approximate model for tool
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response based on his “geometrical factor” concept in which non-interacting eddy

currents are induced in the formation. The eddy currents are considered to be concentric

with the simplest configuration in which the transmitter and receiver close are together

(one meter offset), with the transmitter and receiver dipoles in the direction of the tool

orientation (Moran and Kunz, 1962, Dyck, 1988).

There has been extensive work in developing computer codes to model induction tool

logs. Codes have been developed to model the layered earth (Anderson and Gianzero,

1983), a layered earth at dip (Anderson, et al., 1986) and with anisotropic conductivity

(Moran and Gianzero, 1979; Anderson, et al., 1995). Recent advances in modeling at

Sandia National Laboratories include modeling low frequency electromagnetic induction

in a fully 3D anisotropic earth (Weiss and Newman, 2002; 2003). A more extensive

history of induction well logging and computer modeling in log interpretation can be

found in Anderson (2001).

The objective of our modeling study is to investigate the 3D electromagnetic

induction problem for a single transmitter/receiver sonde approaching a fault within a

hydrocarbon reservoir. The fault-bounded reservoir is modeled as an anomalous

quarterspace embedded within a relatively conductive one siemens/meter homogeneous

formation. Its electromagnetic response is computed in the frequency domain using a

truncated perturbation expansion about the response of the reservoir-free formation. The

first term of the expansion is derived considering an adjoint equation approach.

For a uniformly conducting wholespace, an analytic solution is available to calculate

the electric and magnetic fields around the receiver from dipole sources at the transmitter

(Ward and Hohmann, 1988). A quantity of physical interest we will look at is the
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sensitivity, ∂H ∂σ  or how the magnetic field changes at the receiver in response to

perturbations from the wholespace conductivity. For an inhomogeneous case as in our

quarterspace fault model (Figure 2a), electric and magnetic fields around the receiver

cannot be calculated analytically due to the geometry of the problem. However, the

magnetic sensitivities at the receiver can be obtained by an exact solution to the

associated adjoint problem (McGillivray et al., 1994). Thus, a first order approximation

is given by the series expansion σσ ∂∂Δ+ HHH o~ -- an expression that is easy and

fast to calculate because it is based on simple analytic formulae.

In the most general case, the adjoint approach used here also applies to the case

where σ  is a tensor, and thus represents an anisotropic conductivity. We began this

research with an anisotropic code (Weiss, 2002) and features of the anisotropic case will

be discussed in Appendix A. However, for simplicity at analysis and minimization of

computer routines, only the isotropic case is considered here.

SENSITIVITY COMPUTATION

For a uniformly conducting wholespace, an analytic solution exits for the electric and

magnetic fields at the receiver arising from a point magnetic dipole source at the

transmitter (Ward and Hohmann, 1988). Multiple sources are handled through

superposition, however, for an inhomogeneous case as in our quarterspace fault model

(Figure 1a), the electric and magnetic fields around the receiver cannot be calculated

analytically due to the geometry of the problem.

A quantity of physical interest is the sensitivity,   

€ 

∂
r 

H ∂σ , or the variation of the fields

at the receiver due to a conductivity perturbation in the media. McGillivray et al. (1994)
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present a derivation to compute the sensitivities (or Frechet derivatives) needed to solve

the inverse problems in electromagnetic induction. The magnetic sensitivities can be

obtained by an approximation (the adjoint method) by solving two boundary-value

problems. The primary problem is first solved beginning with Maxwell’s equations:

  

€ 

∇×
r 
E = −iωµ

r 
H +

r 
M ( )s

,

∇×
r 

H = σ + iωε( )
r 
E +

r 
J s ,

  (2)

where   

€ 

r 
E  and   

€ 

r 
H  are the electric and magnetic field strengths,   

€ 

r 
M s  and   

€ 

r 
J s  are the

magnetic and electric current densities respectively, 

€ 

µ  is the magnetic susceptibility, ε  is

the electrical permittivity, σ is the conductivity and

  

€ 

r 
B = µ

r 
H + µ

r 
M s ,

r 
J = r 

σ 
r 
E +

r 
J s ,

r 
D = ε

r 
E .

  

The above are Maxwell’s equations in the frequency domain where all fields are assumed

to have the time dependence 

€ 

eiωt , with angular frequency 

€ 

ω .

The conductivity ( )xrσ  can be expanded in terms of a set of basis functions ( )xj
r

ψ

  

€ 

σ
r x ( ) = σ j

j=1

M

∑ ψ j
r x ( ) , (3)

where jσ are real constants.   

€ 

σ (r x )  is then specified by an M-vector ( )Mσσσσ ,...,. 21=
r

.

For example, in a layered model it would be convenient to choose the basis as

     
  

€ 

ψ j (
r x ) =

1 x ∈ layer j
0 x ∉ layer j
 
 
 

.

Thus 

€ 

σ j  represents the layer conductivities. Clearly other choices of )(xj
r

ψ are available

(e.g. sines and cosines, spherical harmonics, Tchebyshevs, etc.) and the selection of the
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right basis is dependent upon the problem at hand. For now, we retain the general form,

Eq.(3) and proceed with the derivation of σ∂∂H
r

.

In the inverse problem, McGillivray et al. compute the sensitivities 

€ 

Gik = ∂di ∂σ k( ) ,

where id  is the ith datum, by computing kE σ∂∂
r

and kH σ∂∂
r

. Substituting Eq.(3) into

Eq.(2) and differentiating with respect to kσ  produces the sensitivity equation for the

electric field:

  

€ 

∇×
∂

r 
E 

∂σ k

= −iωµ
∂

r 
H 

∂σ k

+
∂

r 
M s
∂σ k

 

 
 

 

 
 .

Since sM
r

does not depend on σ , i.e. ( ) ( )σ,xMxMM sss

rrrrr
≠= , then

.
kk

H
i

E

σ
ωµ

σ ∂

∂
−=

∂

∂
×∇

rr

(4a)

Likewise, the sensitivity equation for the magnetic field is determined by differentiating

the second equation in Eq.(2) to obtain

( ) ( ) .
k

s

kkk

JE
iEi

H

σσ
ωεσωεσ

σσ ∂

∂
+

∂

∂
++








+

∂

∂
=

∂

∂
×∇

rr
r

r

Since sJ
r

does not depend on σ , i.e. ( ) ( )σ,xJxJJ sss

rrrrr
≠= , then

( ) .
kkk

E
iE

H

σ
ωεσ

σ
σ

σ ∂

∂
++









∂

∂
=

∂

∂
×∇

rr

From 

€ 

σ = σ kψkk=1

m
∑ =σ1ψ1 +σ 2ψ2 + ...+σ mψm ,  we have

                                               

€ 

∂σ
∂σ k

=ψk ,

which yields 
  

€ 

∇×
∂

r 
H 

∂σ k

=ψk

r 
E + σ + iωε( ) ∂

r 
E 

∂σ k

. (4b)
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Our goal is to derive equations from which we can compute   

€ 

∂
r 

H ∂σ k ,  ∂
r 
E ∂σ k using

only equations of the form in Eq.(2). We then consider an auxiliary problem similar to

Eq.(2) in which all the fields are replaced by   

€ 

r 
E →

r ˜ E , etc…

  

€ 

∇×
r ˜ E = −iωµ

r ˜ H +
r ˜ M ( )

s

∇×
r ˜ H = σ + iωε( )

r ˜ E +
r ˜ J s

(5)

where the electric and magnetic sources   

€ 

r ˜ J s ,  
r ˜ M s have not yet been defined. With the use

of the vector identity,

  

€ 

r 
∇ ⋅

r 
A ×

r 
B ( ) =

r 
B ⋅

r 
∇ ×

r 
A ( )−

r 
A ⋅

r 
∇ ×

r 
B ( ) , (6)

Eq.(4a), Eq.(4b) and Eq.(5) can be combined to form

  

€ 

r 
∇ ⋅

r ˜ E × ∂
r 

H 
∂σ k

−
∂

r 
E 

∂σ k

×
r ˜ H 

 

 
 

 

 
 

   =
r ˜ M s ⋅

∂
v 

H 
∂σ k

+ ˜ J s
∂

r 
E 

∂σ k

−
v ˜ E ⋅

r 
E ψk

r x ( ).
(7)

Note that 

€ 

iωµ and 

€ 

σ + iωt cancel identically. Integrating over the domain D and using

the divergence theorem gives

  

€ 

r ˜ E × ∂
r 

H 
∂σ k

−
∂

r 
E 

∂σ k

×
r ˜ H 

 

 
 

 

 
 

∂D
∫ ⋅

r n ds

    =
r ˜ M s ⋅

∂
r 

H 
∂σ k

+ ˜ J s ⋅
∂

r 
E 

∂σ k

−
r ˜ E ⋅

r 
E ψk

r x ( )
 

 
 

 

 
 

∂D
∫  dv.

(8)

The desired result is obtained when the left hand side can be shown to be equal to zero,

which depends on the extent of the boundary. As the boundary 

€ 

∂D  extends to infinity,

the LHS can be shown to approach zero, while for the case of a finite domain the LHS is

again zero if the primary and auxiliary problems have the same boundary conditions

(McGillivray et al, 1994). In both cases, setting the LHS of Eq.(8) to zero yields
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€ 

r ˜ M s ⋅
∂

r 
H 

∂σ k

+ ˜ J s
∂

r 
E 

∂σ k

 

 
 

 

 
 

D
∫  dv =

r ˜ E ⋅
r 
E  ψk

r x ( )
D
∫  dv. (9)

This is the central equation from which the sensitivities can be computed.

Consider the following example that forms the basis for the research presented in this

work; a point magnetic dipole of strength m located at   

€ 

r x 0, pointing in the x-direction, and

no electric current density   

€ 

r ˜ J s = 0 . This gives rise to a magnetization vector

  

€ 

r ˜ M s =δ
r x − r x 0( ) ˆ x . Substituting these expressions into Eq.(9) yields an equation for the

sensitivity of the x-component of the magnetic field,

  

€ 

∂H x
r x 0( )

∂σ k

=
r ˜ E ⋅

r 
E ψk

D
∫ r x ( )dv  (10)

where the integration is over the region with the perturbed conductivity. For the

quarterspace fault model considered in this work (Figure 2a), we consider a region with a

uniform conductivity 0σ  and a region beyond the fault boundary corner with a perturbed

conductivity 

€ 

σ 0 +Δσ  (with coordinates 

€ 

−∞ < x <∞,  y > 0,  z > 0). In Eq.(11) we take

€ 

k =1,   

€ 

ψk=1(
r x ) ≡1, 

€ 

σ k=1 =σ 0 +Δσ  and rewrite this equation as

  

€ 

∂H x
r x 0( )

∂σ
=

r ˜ E (r x ) ⋅
r 
E (r x )  

D
∫ dv . (11)

Thus, for the calculation of the sensitivity 

€ 

∂H x ∂σ in Eq.(11) we need to calculate

two electric fields, a primary field   

€ 

r 
E  and an auxiliary field or adjoint field   

€ 

r ˜ E , and then

integrate their dot product over the region beyond the fault boundary corner where the

conductivity is perturbed. For the primary problem we need to compute the electric field

  

€ 

r 
E  produced by a point magnetic dipole source (pointing in some arbitrary orientation)

located at the transmitter T of the sonde (Figure 2). For the auxiliary problem we need to
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compute the adjoint electric field   

€ 

r ˜ E  for a fictitious magnetic dipole source located at the

receiver R, and pointing in the direction for which we want to compute the sensitivity of

the magnetic field. For Eq.(11) this magnetic dipole would be oriented along the x-

direction. In general, to compute 

€ 

∂Hi ∂σ , this fictitious magnetic dipole source located

at R would point along the ith direction, where 

€ 

i = (x, y, z) . The sensitivity computed in

Eq.(11) is in general, the value of 

€ 

∂Hi ∂σ measured at the position   

€ 

r x 0 of the receiver R.

Once the sensitivity of the magnetic field is computed, we can estimate the value of the

magnetic field beyond the fault boundary corner due to a change in the conductivity, to

first order in 

€ 

Δσ , as

  

€ 

Hi(
r x ,σ ) ≈ Hi (

r x ,σ 0 )+
∂Hi (

r x 0 )
∂σ

Δσ . (12)

We now want to develop analytic formulas for the electric fields that will be used in

the calculation of the sensitivities by means of Eq.(11). In our initial study we began with

a code developed for the anisotropic wholespace (Weiss, 2002) in which the region

beyond the fault boundary corner had different values for the horizontal and vertical

conductivities, 

€ 

σ h ,

€ 

σ v respectively. Equations for the electric and magnetic fields in the

frequency domain produced from a point magnetic dipole source were derived from the

work of Moran and Gianzero (1979). However, to test the code and interpret the results,

we primarily studied the isotropic case in which 

€ 

σ h =σ v ≡σ . Since one of the goals of

this research was to develop a fast running program that could be used for rapid on-site

analysis, we decided to develop a code for the isotropic case directly. The isotropic code

had the advantage of using much simpler analytic formulas that required much less

computation compared to the full anisotropic code. In the following we will discuss the

formulas for the electric and magnetic fields produced by a point magnetic dipole for an
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isotropic conductivity, and return in Appendix A for a more complete discussion of the

anisotropic formulas.

We consider Maxwell’s equations with no electric charge or current density

  

€ 

ρ = 0,  
r 
J s = 0 , but a non-zero magnetic current density 

€ 

M s .  Gauss’s law then becomes

  

€ 

r 
∇ ⋅

r 
E = 0, (13)

which can be exactly satisfied by a electric vector potential   

€ 

r 
F  such that

  

€ 

r 
E = −

r 
∇ ×

r 
F . (14)

From the remaining Maxwell’s equations it can be shown that   

€ 

r 
F  satisfies the following

equation (Ward and Hohmann, 1988)

         

€ 

∇2
r 
F + k2

r 
F = −iωµ

r 
M , (15)

where 

€ 

ω  is the angular frequency of the fields and 

€ 

µ = 4π ×10−7  is the magnetic

permeability of free space. For a magnetization   

€ 

r 
M  for a point magnetic dipole of

strength m located at the origin and pointing in the x-direction   

€ 

r u x

  

€ 

r 
M = mδ x( )δ y( )δ z( ) ˆ x , (16)

Eq.(15) has the solution

  

€ 

r 
F r r ( ) =

iωµm
4πr

eikr ˆ x . (17)

In Eq.(17) k is the complex wavevector given by 

€ 

k2 = µεω2 − iµσω  where 

€ 

ε  is the

dielectric permittivity and 

€ 

µε =1/c2  where c  is the speed of light. For geological

materials at frequencies below 

€ 

105 Hz one can assume 

€ 

µεω2 << µσω  (Ward and

Hohmann, 1988) so that the wavevector can be taken as

€ 

k2 = −iµσω,   or   k = 1− i( )  µσω
2

 . (18)
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By applying Eq.(14) we obtain our expression for the electric field

  

€ 

r 
E = iωµm

4πr2 ikr +1( )e−ikr z
r

ˆ y − y
r

ˆ z 
 

 
 

 

 
 . (19)

The above expression for the electric field is utilized in the sensitivity calculation Eq.(11)

for both the primary electric field   

€ 

r 
E  with the point magnetic dipole located at the

position of the transmitter T, and for the auxiliary field   

€ 

r ˜ E , with the fictitious point

magnetic dipole located at the position of the receiver R and pointing in the direction for

which component of the magnetic sensitivity will be computed (for e.g. if this fictitious

magnetic dipole points in the z-direction then the sensitivity 

€ 

∂Hz /∂σ  is computed in

Eq.(11)).

From the spatial dependence 

€ 

eikr  of the electric field in Eq.(19), the complex nature

of the wavevector in Eq.(18) implies that   

€ 

r 
E  will have both oscillatory (Re(k)) and

decaying (Im(k)) components. If we define the skin depth as

ωµσ
δ

2
=  , (20)

the electric field can be seen to have a far field spatial dependence that varies essentially

as

€ 

E(r) ~ e−r δ

r
cos r δ( )  . (21)

In this work we consider a range of frequencies from 

€ 

1 to  106  Hz. Using 

€ 

ω = 2πf and a

representative value of the conductivity 

€ 

σ = 0.25 S/m, Eq.(20) produces the following

values for the skin depth 

€ 

δ
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which illustrates that the skin depth decreases with increasing 

€ 

ω  and 

€ 

σ . Figure 3

illustrates Eq.(21) for the radial dependence of the magnitude of the electric field as a

function of skin depth 

€ 

δ  for 

€ 

f = 20,000  Hz and 

€ 

σ = 0.25 S/m.

ALGORITHM SUMMARY

To design a code to implement the adjoint method algorithm Eq.(11), for the magnetic

field sensitivities 

€ 

∂Hi ∂σ , we first began with a Fortran 77 code (Weiss, 2002) that

calculated the electric and magnetic fields for a homogeneous conductivity for an

anisotropic wholespace model in the frequency domain (Moran and Gianzero, 1979). The

code was modularized and the driver code converted to Fortran 95. We then extended the

code to compute the primary   

€ 

r 
E  and auxiliary electric fields   

€ 

r ˜ E  in order to calculate the

sensitivities for an anisotropic quarterspace fault model that incorporated different

conductivities 

€ 

σ h ,  σ v for the horizontal and vertical directions. As discussed earlier, the

code was then rewritten and simplified to handle the isotropic case directly. This led to a

significant speedup in the overall execution time of the code, and a more direct

interpretation of the results.

The integration indicated in Eq.(11) over the three-dimensional region beyond the

fault boundary corner was performed with a nested fourth order extended Simpson

algorithm. For one dimension the extended Simpson rule for N equally spaced points is

given by (Press et al., 1992)

f (Hz)

€ 

δ  (meters)
20,000 7.1
2000 22.5
200 71.1
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€ 

f x( )
xmin

xmax

∫ dx =
Δx
3

f1 + 4 f2 + 2 f3 + 4 f4 +L2 fN−2 + 4 fN−1 + fN[ ] +O 1 N 4( )  , (22)

which is fourth order accurate. Eq.(22) is no harder to calculate than the second order

accurate extended trapezoid or midpoint rule that essentially sums up the function values

€ 

fi = f (xi ) at each of the grid points and multiplies by the spacing 

€ 

Δx , and offers the

advantage of two more orders of accuracy.

For the integration over the 3D region of the fault boundary corner indicated in

Eq.(11), we used a nested set of 1D extended Simpson integrations as illustrated below:

€ 

Set  fx (1: Nx ) = 0;    fy(1: Ny ) = 0;    fz (1: Nz ) = 0
do  k =1, Nz

      do  j =1, Ny

  do   i =1, Nx

                     compute  f xi , yj , zk( )  and store in  fx (i)
              enddo
               fy( j) =1D Simpson integration of  fx (i)  values
      enddo
       fz (k) =1D Simpson integration of  fy( j)  values
enddo

f x, y, z( )dxdydz =∫∫∫  1D Simpson integration of  fz (k)  values

The advantage of nesting 1D integrations is that we only require three 1D arrays

€ 

fx ,  fy,  fz  of lengths 

€ 

Nx ,  Ny,  Nz  respectively to store intermediate values, as opposed

to one prohibitively large 3D array. For a fixed value of y and z the function values

€ 

f xi , y, z( )  are computed along the x-direction and stored in the 1D array 

€ 

fx . Upon

completion of the computation of these function values along a 1D line in the x-direction,
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Eq.(22) is used to perform the integral in the y-direction, whose result is stored as an

element of the 1D array 

€ 

fy . After a complete set of function values along a 1D line in the

y-direction is computed, Eq.(22) is again invoked to perform integration along the z-

direction, whose value is stored as an element of 

€ 

fz . The net result after cycling through

all the x and y grid points is a 1D array 

€ 

fz  that contains the results of the integration of

€ 

f x, y, z( )  over each x-y plane. One more use of Eq.(22) then results in the final integral of

€ 

f x, y, z( )  over the entire region of interest.

The 3D integration over the quarterspace region was computed from the corner of the

fault boundary to some arbitrary upper limit. An adaptive integration algorithm was

developed to automatically determine the minimum upper limit necessary to produce

convergent results.  From the Eq.(22), the electric and magnetic fields decay as

€ 

E, H ~ e−r δ

r
         δ =  skin depth ~ ρ

f
,

where r is the radial distance from the origin (where the transmitter T is located), 

€ 

ρ =1 σ

is the resistivity and f is the frequency in Hertz. Therefore, the upper limit of the

quarterspace integration is frequency dependent. Low frequencies fall off as ~1/r while

high frequencies fall off very rapidly. For frequencies above 103 Hz the upper limit of

each dimension of the quarterspace integration was initially set to one skin depth. For

frequencies below 103 Hz, this upper limit was initially set to one-half skin depth, since

lower frequencies correspond to a larger spatial region over which the integration had to

be performed. After a computation of ∂H ∂σ  was performed, the upper limits of the

quarterspace region were extended by some fraction of the current skin depth and another

calculation of ∂H ∂σ  was performed. The computation of the sensitivity ∂H ∂σ  was
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considered to have converged when the relative error between two successive sensitivity

values was less than some user-defined tolerance, set to 10-3 in this work. The rough

initial approximation of the upper limits of the region of integration, in terms of some

number of skin depths, is of practical importance since integration beyond the minimum

distance necessary for convergence is computationally expensive, increases run time and

adds little to the value of the sensitivity.

The majority of the research presented in this work concerns the magnetic

sensitivities computed in the frequency domain. For analyzing the sensitivities in the time

domain we incorporated an inverse Fourier sine transform code developed by Hanstein

(2003) to compute 

€ 

∂Hi t( ) ∂σ ,

€ 

∂Hi t( )
∂σ

=
2
π

∂Hi ω( )
∂σ

sin ωt( )dω
0

∞

∫ .  (23)

In the usual Cooley-Tukey implementation of the Fast Fourier transform (FFT) (Press,

1992) one is required to use equally spaced frequencies. However, the frequency range of

the sensitivities span six decades, so this would be impractical. The code developed by

Hanstein utilizes a Fast Hankel transform with modified weight coefficients that allows

one to use a fixed number of frequencies per decade (either 10 or 15). The right hand side

of Eq.(23) is then implemented as

€ 

∂Hi t( )
∂σ

= wj

∂Hi ω j( )
∂σj=1

N

∑ , (24)

where the filter coefficients wj and frequencies ωj are computed by a least squares fit to

known transform pairs, similar to the algorithms described in Anderson (1975) and

Guptasarma and Singh (1997) for Hankel transforms. Results of both magnetic

sensitivities in both the frequency and time domain are presented in the next section.
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SENSITIVITY RESULTS

For the quarterspace fault model (Figure 2a), sensitivities were first calculated for two

tool locations, one above and one below the fault boundary in the y-z plane using the

anisotropic code with 

€ 

σ h =σ v ≡σ . Receiver locations at 0, 30, 45 and 60 degrees

respectively from the vertical z-axis were used with a one-meter offset between the

transmitter and the receiver (Figure 2b). For these cases, we used the adjoint method by

calculating   
r 
E  with a z-magnetic directed dipole at the transmitter and   

r ˜ E  with a x-directed

magnetic dipole at the receiver.

Figure 4 shows the frequency domain sensitivity plots (a) above and (b) below the

fault boundary corner. The absolute values of the sensitivities were plotted for 34

frequencies from 1 Hz to 1 MHz. We find that for various tool locations the values of

sensitivities peak around 100 kHz, and approach zero for very low or very high

frequencies. Peak values are maximum for vertical receiver positions (along the z-axis),

and decrease, as the receiver is oriented more horizontally (along the y-axis) for both the

above and below cases due to the fact that the transmitter position for the below case was

only one meter below the fault boundary corner.

Figure 5 shows the time domain sensitivity plots (a) above and (b) below the fault

boundary corner over a dynamic range of four decades of the instrument strength. The

cusps at t < 20 µs indicate a sign change in σ∂∂H . Note that the magnitude of the

perturbation covers four decades in signal strength. Note, also, that the effect of the

quarterspace is more clearly discerned in the frequency domain (Figure 4) as the

magnitude of the peak amplitudes.

In Figures 6 and 7, the absolute values of the sensitivities were calculated for the
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frequency and time domain for tool locations around the fault boundary corner from zero

to 20 meters, in five-meter intervals in the y-z plane. Receiver locations at 0, 30, 45, 60

and 90 degrees respectively from the vertical z-axis were used with a one-meter offset

between the transmitter and the receiver. For these cases, we used the adjoint method by

calculating a magnetic dipole at the transmitter in the direction of the receiver and an x-

directed magnetic dipole at the receiver.

In the frequency domain sensitivity plots illustrated in Figure 6, we show three

representative plots of the sensitivities around the fault boundary corner at a five-meter

distance. We again find that the values of sensitivities for the five tool locations peak

around 100 kHz around the fault boundary corner, and approach zero for very low or very

high frequencies. A symmetry of response can be seen in these sensitivity plots. In the

upper right quadrant, the peak values of the sensitivities for each tool location increased

as the sonde was rotated more towards the vertical (i.e. z-axis), whereas in the lower left

quadrant, the peak values of the sensitivities for each tool location increased as the sonde

was rotated more towards the horizontal (i.e. y-axis).

The time domain sensitivity plots (Figure 7) around the fault boundary corner show a

dynamic range of five decades of the instrument strength. The cusps (or zero crossings) at

t <20 ms indicate a sign change in 

€ 

∂H ∂σ . A symmetry of response can also be seen in

the time domain sensitivity plots. Figure 8 illustrates the frequency and time domain plots

relative to the fault boundary corner.

In the frequency domain sensitivity plots in Figure 9, we calculate the absolute value

of 

€ 

∂H ∂σ  for various 

€ 

Δy,Δz( )  pairs over the region of the model from zero to 20 meters

in the y-z plane, in five-meter intervals around the fault boundary corner for tool locations
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at 

€ 

θ  = 0˚, 45˚, and 90˚. Note the symmetry of response for the various tool locations. For

the (a) vertical sonde (

€ 

θ  = 0˚), the peak values of the sensitivities decrease as the sonde is

parallel to the z-axis of the fault boundary corner, whereas for (c) the horizontal sonde (

€ 

θ

= 90˚), the peak values of the sensitivities decrease, as the sonde is parallel to the y-axis

of the fault boundary corner.

In the time domain sensitivity plots in Figures 10, we also calculate 

€ 

∂H ∂σ t( )  for

various 

€ 

Δy,Δz( )  pairs over the region of the model from zero to 20 meters, in five-meter

intervals around the fault boundary corner, but for tool locations at 

€ 

θ  = 0˚, 30˚, and 45˚.

The magnetic field sensitivity was calculated for 21 time steps, three early time points are

shown here. The same symmetry of response seen in the frequency domain around the

fault boundary corner is also evident in the time domain. The cusps (or zero crossings)

can clearly be seen in Figure 10b for 

€ 

θ  = 0˚, at t = 2.512 e-05 and for all tool locations in

Figure 10c at t = 3.981 e-05.

We then used two tool location cases (Figure 11) for the next set of runs: (11a) tool 1

using the adjoint method by calculating a magnetic dipole at the transmitter and receiver

in the direction of the tool orientation and (11b) tool 2, using the adjoint method by

calculating a magnetic dipole at the transmitter in the direction of the receiver and an y or

z-directed magnetic dipole at the receiver. In this case the x,y,z coordinates of the receiver

dipoles follow the absolute x,y,z coordinates of the fault boundary corner.

In Figures 12 through 16, the absolute values of the sensitivities were calculated for

the frequency domain for tool locations around the fault boundary corner from zero to 20

meters, with a higher resolution of one-meter intervals in the y-z plane. To calculate these

1281 points, we switched to a purely isotropic code, in which the analytic formulas were
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much simpler and which ran faster. Receiver locations at 0, 22.5, 45, 67.5 and 90 degrees

respectively from the vertical z-axis were used with a one-meter offset between the

transmitter and the receiver. Also, because of the one-meter offset between the

transmitter and the receiver, we can only show sensitivities within one meter of the fault

corner boundary. Closer measurements would place the receiver inside the area of

perturbed conductivity.

Figure 12 shows the higher resolution runs in the frequency domain for tool 1,

transmitter and receiver dipole in the direction of the tool orientation for frequency =

20,000 Hz and a wholespace conductivity = 0.25 S/m, for (a) the vertical sonde (

€ 

θ= 0˚),

(b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c) 45˚(

€ 

θ= 45˚), (d) 67.5˚(

€ 

θ= 67.5˚), and (e) the

horizontal sonde (

€ 

θ  = 90˚). Note again the similar symmetry of response as in the lower

resolution figures in the frequency domain of Figure 9 for (a) the vertical sonde (

€ 

θ  = 0˚),

the peak values of the sensitivities decrease as the sonde is parallel to the z-axis of the

fault boundary corner, whereas for (e) the horizontal sonde (

€ 

θ  = 90˚), the peak values of

the sensitivities decrease, as the sonde is parallel to the y-axis of the fault block.

For the second tool location, tool 2, where the transmitter dipole is in the direction of

the tool orientation and the receiver dipole in the y-direction with Frequency = 20,000

Hz, wholespace conductivity = 0.25 S/m, Figure 13 illustrates (a) the vertical sonde (

€ 

θ=

0˚), (b) the sonde dipping at 45˚(

€ 

θ= 45˚), and (b) the horizontal sonde (

€ 

θ  = 90˚). Note in

(a) when the transmitter and receiver dipoles are 90o apart (i.e. when the transmitter

dipole in the direction of the tool orientation, (

€ 

θ= 0˚) and the receiver dipole in the y-

direction) we observe a magnitude asymmetry that has a “keyhole” like appearance. In

Figure 14c, we observe this feature again when the transmitter dipole is in the direction of
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the tool orientation (

€ 

θ  = 90˚) and the receiver dipole is in the z-direction. We will further

discuss this feature in the next section.

Figure 15 and 16 show the higher resolution runs in the frequency domain for tool 1,

transmitter and receiver dipole in the direction of the tool orientation, wholespace

conductivity = 0.25 S/m, for frequency = 2000 Hz and frequency = 200 Hz. Note the

similar symmetry characteristics of Figure 12 at frequency 20,000 Hz.

INTERPRETATION OF SENSITIVITIES

Some of the features observed in the preceding section for the sensitivities

€ 

∂Hi(ω) ∂σ

in the frequency domain can be explained by examining the angular dependence of the

primary and auxiliary fields in computing the 3D integral over the fault boundary corner

in Eq.(11). The equation for the electric field   

€ 

r 
E  in Eq.(19) was derived for the specific

case of a point magnetic dipole pointing along the x-direction. We note that   

€ 

r 
E  has no

component along the x-direction itself, which reflects the well-known fact that “figure

eight” radiation pattern from a dipole source is oriented perpendicular to direction of the

dipole. The remaining non-zero components of this particular   

€ 

r 
E  have the form

  

€ 

r 
E mx ~ 0, z r,−y r( ), where the added superscript on the electric field is meant to indicate

that this electric field results from a magnetic dipole pointing along the x-direction, and

the 3-vector indicates the field components along the x , y and z directions. Using

spherical coordinates

€ 

x = r sinθ cosφ , 

€ 

y = r sinθ sinφ,  

€ 

z = r cosθ  where 

€ 

θ  is the polar

angle measured from the positive z-axis and 

€ 

φ  is the azimuthal angle measured from the

positive x -axis (see Figure 17), the angular dependence of   

€ 

r 
E mx is given by

  

€ 

r 
E mx ~ 0,cosθ,−sinθ sinφ( ) . Since the electric field was derived from the curl of the
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electric vector potential   

€ 

r 
E = −

r 
∇ ×

r 
F , we can easily infer the angular dependence of the

electric fields for point magnetic dipole sources oriented along the y and z directions:

  

€ 

r 
E mx ~ 0, z r,−y r( ) = 0,cosθ,−sinθ sinφ( )              for dipole  

r 
M = mδ r x − r x 0( )

r u x ,
r 
E my ~ − z r,0, x r( ) = −cosθ,0,sinθ cosφ( )             for dipole  

r 
M = mδ r x − r x 0( )

r u y,
r 
E mz ~ y r,−x r,0( ) = sinθ sinφ,−cosθ sinφ,0( )      for dipole  

r 
M = mδ r x − r x 0( )

r u z .

   (25)

The integrand of Eq.(11) involves the dot product of the primary and auxiliary

electric fields   

€ 

r 
E  and   

€ 

r ˜ E  integrated over the fault boundary corner

  

€ 

∂H x
r x 0( )

∂σ
=

r 
E (r x ) ⋅

r ˜ E (r x )  
D
∫ dv = dr r2

rmin

∞

∫ dθ
0

θmax

∫  sin2θ dφ
0

π

∫  
r 
E T (r x ) ⋅

r ˜ E R(r x ), (26)

where we have rewritten the integration over the domain D  in terms of spherical

coordinates, and added a subscript T and R to the fields   

€ 

r 
E  and   

€ 

r ˜ E  respectively, to indicate

the location of the magnetic dipole source associated with each field. The limits of

integration of the domain D, the quarterspace region beyond the fault boundary corner,

are given by

 

€ 

−∞ < x <∞,  0 < ymin ≤ y <∞,  0 < zmin ≤ z <∞,

where 

€ 

0, ymin , zmin( )  is the position of the origin of the fault boundary corner, in the y-z

plane, relative to the transmitter. From Figure 17 we observe that the integration over x is

equivalent to an integration over the azimuthal angle 

€ 

φ  from 0 to 

€ 

π .

Consider the case of tool 1 in which the sonde is oriented in the y-z plane at some

angle 

€ 

θ , and transmitter dipole is directed along the sonde. Since Maxwell’s equations

are linear, so that the fields add, the electric field   

€ 

r 
E T  produced from this dipole

orientation is the sum of the electric fields from a dipole oriented along the y-direction

and a dipole oriented along the z-direction, which we label as   

€ 

r 
E T
θ = sinθ  

r 
E T

my + cosθ  
r 
E T

mz .
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In addition, let us also consider a dipole located at the receiver R and pointing in the x-

direction that we label as   

€ 

r ˜ E R =
r ˜ E R

mx . For the computation of 

€ 

∂H x ∂σ , an inspection of the

angular dependences of the fields in Eq.(25) reveals that the integrand

  

€ 

r 
E T
θ ⋅

r ˜ E R = sinθ  
r 
E T

my + cosθ  
r 
E T

mz( ) ⋅
r ˜ E R

mx  of Eq.(26) has angular dependence that varies as

€ 

sinφ cosφ =1 2sin2φ  for the   

€ 

r 
E T

my ⋅
r ˜ E R

mx  term and as 

€ 

sinφ  for the   

€ 

r 
E T

mz ⋅
r ˜ E R

mx  term.

However, the integration of these functions over the range 

€ 

dφ
0

π

∫  yields exactly zero. Thus

we conclude that 

€ 

∂H x ∂σ ≡ 0 , as is computed numerically from the code. In Figure 18

we show the Re and Im parts of the integrand   

€ 

r 
E T
θ r x ( ) ⋅

r ˜ E R
r x ( ) for angles 

€ 

θ = 0°, 45°,90°( ).

We see that each plot is symmetric about zero, and therefore all positive contributions to

the integrand exactly cancel with the negative contributions. In the numerical code, we

obtain sensitivities with magnitudes 

€ 

≈ 10−21. For a receiver dipole oriented along the y or

z directions the integrand will pick up azimuthal terms such as 

€ 

cos2 φ =1 2 1+ cos2φ( )

and 

€ 

sin2 φ =1 2 1− cos2φ( )  that produce non-zero contributions when integrated over

€ 

dφ
0

π

∫ . Thus, the previous symmetry argument cannot be used to conclude much about

these other orientations.

Having discussed the symmetry related to the angle 

€ 

φ , we now consider features of

the sensitivities associated with the polar angle 

€ 

θ . In several of the y-z plane sensitivity

plots presented earlier we observe an asymmetry in the magnitude of 

€ 

∂Hi ∂σ  depending

on whether y>0 and z<0, or y<0 and z>0. Figure 19a illustrates such a magnitude

asymmetry that has a “keyhole” like appearance. This feature can be explained by

examining the integrand in Eq.(26) with respect to the angle 

€ 

θ .
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From Figure 19 and Eq.(26) we observe that the upper limit 

€ 

θmax  in the integral over

the angle 

€ 

θ , which is measured from the positive z-axis, depends on the relative position

of the fault boundary corner in relation to the location of the transmitter T (the origin of

coordinates,   

€ 

r x = 0 ). If T lies above the fault boundary corner as illustrated in Figure 19b,

then 

€ 

θmax = π 2 .  However, if T lies below the fault boundary corner as shown in Figure

19c, the maximum polar angle lies somewhere in the range 

€ 

π 2 ≤θmax < π .

When the transmitter is above the fault boundary corner 

€ 

0 ≤θ ≤ π / 2( )  the integration

over the functions 

€ 

sinθ  and 

€ 

cosθ  appearing in the integrand (which are greater than zero

in this range), produces only positive contributions. However, when the transmitter is

below the fault boundary corner 

€ 

0 ≤θ ≤θmax < π( ) , integrands containing 

€ 

cosθ  (which is

negative for 

€ 

θ > π / 2) can produce negative contributions, which can partially cancel the

positive contributions coming from the portion of integration over the range

€ 

0 ≤θ ≤ π / 2 .

Since 

€ 

θmax  never reaches 

€ 

π  (corresponding to the origin of fault boundary corner located

at 

€ 

z = −∞) these negative contributions can never exactly cancel the positive

contributions, as occurred in the integration over 

€ 

φ  for an x-directed receiver dipole as

discussed above. In fact, the larger the negative value of the z-coordinate of the fault

boundary corner as shown in Figure 19c, the larger the value of 

€ 

θmax , and thus the greater

the cancellation between positive and negative contributions of the integrand, leading to a

smaller value for the magnitude of the sensitivity (see the region y>0 and z<0 in Figure

19a). This explains the asymmetric “keyhole” feature seen in many of the 2D y-z

sensitivity plots.

As a final symmetry consideration, we note that for the case of the T and R dipoles

oriented in the same direction as illustrated in Figure 20a, the integrand of Eq.(26) is
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approximately 
  

€ 

r 
E T ⋅

r ˜ E R ≈
r 
E T

2
 as long as r is much greater than the offset between T and

R, which is one meter in this study. Under these conditions the integrand is nearly always

positive, and therefore cancellations that can arise from the integration over the angles 

€ 

θ

and 

€ 

φ  hardly occur. Therefore, the magnitude of the sensitivities should be largest for

this parallel dipole case, and this is what is observed numerically. It should be noted that

for the parallel dipole case, cancellations in the integrand   

€ 

r 
E T ⋅

r ˜ E R  can and do occur when

the fault boundary corner is close to the transmitter, since then angles 

€ 

θT ,φT  associated T

and the angles 

€ 

θR,φR as associated with R for a field point in the quarterspace region are

not quite the same. But as we integrate deeper into the quarterspace region, these angles

become nearly identical and any possible cancellations become negligible. The result we

see is that parallel dipole orientations at T and R produce the strongest magnitude

sensitivities.

The overall magnitude of the sensitivities can be addressed as we vary the frequency

€ 

ω . From Figure 21, where all the y-z plane sensitivity plots are shown on the same

colorbar scale, we see that the strongest magnitude sensitivities occur for the larger

frequencies. This results from Eq.(19) where the magnitude of the electric field   

€ 

r 
E  is seen

to be proportional to 

€ 

ω = 2πf . Thus the integrand   

€ 

r 
E T ⋅

r ˜ E R  in Eq.(26) for computing

€ 

∂Hi ∂σ  scales as 

€ 

ω2 . In Figure 21 we plot the magnitude of 

€ 

∂H ∂σ  for f = (2 x104, 2

x103, 2 x102) Hz and observe the peak intensities drop off by a factor of 102 for each

successive decrease of the frequency by a factor of 10.

We can obtain more information about the frequency dependence of the magnitude of

sensitivities by plotting the real and imaginary parts of 

€ 

∂Hi ∂σ . In Figures 22-25 the real
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and imaginary parts of the sensitivities are plotted for 90 frequencies from 1 Hz to 1

MHz. On a loglog plot, each of these curves show similar behavior of (1) a linear

dependence of the 

€ 

Re∂Hi ∂σ  and 

€ 

Im∂Hi ∂σ  for frequencies below ~104 Hz and (2) an

oscillatory behavior for frequencies above ~104 Hz. We can understand these behaviors

as follows. From Eq.(19) the electric field amplitude varies as 

€ 

E r( ) ~ω ikr +1( )e−ikr  where

the complex wavevector k is given by Eq.(18) 

€ 

k = 1− i( ) µσω 2 ≡ 1− i( ) δ , with 

€ 

δ  the

skin depth. Thus the oscillatory part of the sensitivity varies as 

€ 

exp −i µσω 2r( ). For

small frequencies, this factor is essentially one since the magnetic permittivity has a

numerical value of 

€ 

µ = 4π ×10−7 . As discussed above, the integrand   

€ 

r 
E T ⋅

r ˜ E R  of Eq.(26)

scales as 

€ 

ω2 . On the loglog plots of Figures 22-25 the slope of the linear portion of the

graphs is roughly 2 as it would be for an 

€ 

ω2  dependence (with any deviation from the

exact value of 2 coming from the other factors of k that appear in the integrand). For

higher frequencies, we note that 

€ 

µσω 2  becomes on the order of one for frequencies

~104 Hz (using a value of 

€ 

σ =1).  Above this frequency, the factor

€ 

exp −i µσω 2r( ) = cos µσω 2r( )− i sin µσω 2r( )

begins to exhibit oscillations as shown in Figures 22-25. The cusps in the oscillations are

due to the fact that we are plotting the absolute value of the sensitivities (since we are

using a loglog plot for the large range of values 10-15 – 10-6 that they exhibit).

This dependence of the sensitivities on the frequency in the form of the factor

€ 

µσω 2  is further justified when we note that a change of the conductivity 

€ 

σ  by a

factor of four in going from Figure 22a to Figure 22c produces twice as many

oscillations. From Eq.(26) 

€ 

∂Hi ∂σ  depends on the integration of   

€ 

r 
E T ⋅

r ˜ E R  over the fault
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boundary corner, so that there is no spatial dependence remaining. When we write that

€ 

∂Hi ∂σ  varies as 

€ 

exp −i2 µσω 2r( )  (the extra factor of two coming from the product of

the electric fields   

€ 

r 
E T ⋅

r ˜ E R  in the integrand) we can interpret r as some characteristic

distance, which can be taken as the distance to the fault boundary corner. In Figure 22a

and Figures 23a-c, 

€ 

r = 5 2 meters. In Figure 24, the distance to the fault boundary corner

has been doubled to 

€ 

r =10 2  meters, and exhibits twice as many oscillations as the

previous graphs. Thus we conclude that the real and imaginary parts of the sensitivities

vary with frequency approximately as

 

€ 

∂Hi ∂σ ~ω2 exp −i2 µσω 2rfbc( ), (27)

where rfbc is the distance to the fault boundary corner. Finally, in Figure 25 we show the

real and imaginary parts of the sensitivities vs. frequency for various tool locations.

Though there are slight differences in the magnitudes of the graphs, the overall features

are essentially the same, as discussed above.

Plotting the Integrand

In Figures 27 – 31, we plot the integrand   

€ 

r 
E T

r x ( ) ⋅
r ˜ E R

r x ( )  of Eq.(9) in the y-z plane for three

tool orientations as shown in Figure 26 for 20,000Hz. Figure 26 shows the orientation of

tool 1  (transmitter and receiver dipole in the direction of the tool orientation), for the

sonde (1) above (vertical 

€ 

θ = 0°), (2) dipping at 

€ 

θ = 45° above and to the right, and (3)

the horizontal and below, the fault boundary corner. Figures 27-29 plot the real,

imaginary and absolute value of the integrand for 

€ 

θ = (0°, 45°,90°) and position of the

fault boundary corner of   

€ 

r x = 0,−5,5( ),   

€ 

r x = 0,5,5( ) ,   

€ 

r x = 0,5,−5( ) meters, respectively.
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The vertical and horizontal sonde show a characteristic two-peaked feature, with both

peaks having the same sign. The position of the peaks are mirror images of each other

through the line y=z. The sonde dipping at 

€ 

θ = 45° shows a more symmetrical single

peaked feature, centered about the diagonal line y=z.

In Figure 30 we show the absolute value of the integrand for 

€ 

θ = (0°, 45°,90°). It

appears that as we rotate the sonde from zero to ninety degrees, the double peaked feature

at 0˚ (Figure 30a) merges into the single peaked feature at 45˚ (Figure 30b) and then

separates into a mirrored image double peak feature again at 90˚. From these figures we

note that the peaks are separated by roughly the radial distance to the fault boundary

corner, which is 

€ 

rfbc = 5 2 meters for this case. In Figure 31 we show the vertical sonde

at   

€ 

r x = 0,−5,5( ) in (a) and   

€ 

r x = 0,−10,10( ) in (b) corresponding to 

€ 

rfbc = 5 2  and

€ 

rfbc =10 2  respectively. We observe that in Figure 31b, the peaks are twice as far apart

(

€ 

≈ 10 2  meters) as in Figure 31a (

€ 

≈ 5 2  meters). This might possibly be related to

Eq.(27) above which for fixed frequency 

€ 

ω  and conductivity 

€ 

σ  has an oscillation

proportional to 

€ 

rfbc .

Sensitivities in Oblique Planes

So far in this study, we have only investigated the sensitivities in the y-z plane (or

perpendicular to the fault boundary corner). In this section we investigate the sensitivities

in oblique planes around the fault corner boundary. Figure 32 shows a map projection of

the fault boundary corner. Sensitivities in the oblique planes around the fault boundary

corner were calculated in the x-z plane (

€ 

φ  = 0˚), angled at 22.5˚ (

€ 

φ= 22.5˚), 45˚ (

€ 

φ= 45˚),

67.5˚ (

€ 

φ= 67.5˚), and in the y-z plane, (

€ 

φ  = 90˚).
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We used two tool location cases (Figure 33) for the next set of runs: (33a) tool 1

using the adjoint method by calculating a magnetic dipole at the transmitter and receiver

in the direction of the tool orientation and (33b) tool 2 for these runs, using the adjoint

method by calculating a magnetic dipole at the transmitter in the direction of the receiver

and an x, y or z-directed magnetic dipole at the receiver. In Figures 34 through 37 the

orientation of the dipole at the receiver (x,y,z directions) are relative to the sonde axis.

In Figures 34 through 38, the absolute values of the sensitivities were calculated for

oblique planes in the frequency domain for tool locations around the fault boundary

corner from zero to 20 meters, with a resolution of one-meter. Receiver locations at 0,

22.5, 45, 67.5 and 90 degrees respectively from the vertical z-axis were used with a one-

meter offset between the transmitter and the receiver. We used frequency = 20,000 Hz,

and wholespace conductivity = 0.25 S/m. Again, due to the one-meter offset between the

transmitter and the receiver, we can only show sensitivities within one meter of the fault

corner boundary to avoid placing the receiver inside the area of perturbed conductivity.

In Figure 34, the sensitivities were plotted for tool 1, transmitter dipole and receiver

dipole in the direction of the sonde for the horizontal sonde in the (a) x-z plane, (b) angled

at 22.5˚ (

€ 

φ= 22.5˚), (c) 45˚ (

€ 

φ= 45˚), (d) 67.5 ˚ (

€ 

φ= 67.5˚), and (e) 90˚ (

€ 

φ  = 90˚). Note

that as the horizontal sonde is rotated from the y-z plane (

€ 

φ  = 90˚) to the x-z plane (

€ 

φ=

0˚), the value of the sensitivities are similar until the sonde is rotated parallel to the fault

boundary corner in the x-z plane where we see a marked decrease in the values.

In Figure 35, we plot the sensitivities for tool 1, with the transmitter and receiver

dipole in the direction of the sonde, in the oblique plane angled at 

€ 

φ= 45˚ for (a) the

vertical sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c) 45˚(

€ 

θ= 45˚), (d)
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67.5˚(

€ 

θ= 67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚). The main point to note in these

oblique-plane sensitivity plots is that they are qualitatively similar to each other,

regardless the value of 

€ 

θ .

 Figure 36 shows the sensitivities in the oblique planes around the fault boundary

corner for tool 2 using a magnetic dipole at the transmitter in the direction of the receiver

and an x-directed magnetic dipole at the receiver for the horizontal sonde in (a) the x-z

plane (

€ 

φ  = 0˚), angled at  (b) 22.5˚ (

€ 

φ= 22.5˚), (c) 45˚ (

€ 

φ= 45˚), (d) 67.5˚ (

€ 

φ= 67.5˚), and

(e) in the y-z plane (

€ 

φ  = 90˚). As the sonde rotates from the x-z plane to the y-z plane, we

see that the sensitivities increase until they reach a maximum at 

€ 

φ= 45˚ and then decrease

until they approach zero in the y-z plane. We would expect these values to gradually

decrease from 

€ 

φ= 45˚ to 

€ 

φ  = 90˚, but instead we see an abrupt cut off at the 

€ 

φ  = 90˚. To

investigate this further, we calculated the sensitivities in the oblique planes in one degree

intervals around the fault boundary corner (Figure 37) for the horizontal sonde angled at

(a) 87˚ (

€ 

φ  = 87˚), (b) 88˚ (

€ 

φ  = 88˚), (c) 89˚ (

€ 

φ  = 89˚) from the x-z plane, and (d) in the y-

z plane, 90˚ (

€ 

φ  = 90˚). As the sonde rotates to the y-z plane, we see the sensitivity values

decrease, but again we see them abruptly cut off at 

€ 

φ  = 90˚. This implies that the sonde is

very sensitive to the fault when the sonde is perpendicular to the fault, but that the fault

boundary corner cannot be easily detected when the sonde is positioned in any of the

oblique planes. Recall that in the numerical code, the spatial resolution 

€ 

dx,dy,dz( )  was

one meter (the distance between the transmitter and the receiver). Increased resolution

might possibly reveal a more gradual decrease in the sensitivities as 

€ 

φ  approaches 90˚.

However, this would increase the execution time of the code, which impedes the goal of

developing a fast running code for rapid on-site analysis of induction log data.
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In Figure 38 we show the sensitivities for the horizontal sonde parallel to the fault

boundary corner (i.e. the x-z plane) with the receiver dipole in the (a) x-direction, (b) y-

direction, and (c) in the z-direction. We see a “keyhole” feature for an x-directed and z-

directed receiver dipole (though slightly more diffused), similar to what was observed in

the y-z plane and was discussed above in the Interpretation of Sensitivities section. As in

the y-z plane, we observe this feature when the transmitter dipole is in the direction of the

tool orientation (

€ 

θ = 90°) and the receiver dipole is perpendicular to the transmitter

dipole, Figure 19a. The new feature here is that the x-directed receiver dipole sensitivity

plot Figure 38a, is non-zero in the oblique plane, where it was exactly zero in the y-z

plane. For 

€ 

φ = 0 , parallel to the fault boundary corner, both the x-directed and z-directed

receiver dipoles produce “keyhole” features.

CONCLUSIONS

By modeling electromagnetic induction with the adjoint method, we are able to

quickly interrogate various geologic models with non-uniform conductivities. With this

method we are able to obtain good values of the sensitivities 

€ 

∂Hi(ω) ∂σ . We find that we

do not need to integrate very far into region beyond the fault boundary as the fields fall

off rapidly and the sensitivity estimates converge very quickly.

The numerical investigations discussed in this work were designed to address the

questions of optimal drilling strategy and tool orientation for detection of an isolated fault

block (i.e. rules of thumb for drilling around a fault block). From the results of this study

we have found the following:

1) The absolute values of the sensitivities plotted in the frequency domain for 1 Hz
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to 1 Mhz show that for various tool locations the values of sensitivities peak

around 100 kHz, and approach zero for very low or very high frequencies.

2) In the time domain the magnitude of the perturbation covers four decades in

signal strength for tool locations out to 20 meters from the fault boundary corner.

3) In the frequency domain the effect of the quarterspace is more clearly discerned

as the magnitude of the peak amplitudes.

4) The results demonstrate in the frequency and time domain that a vertical sonde is

most sensitive to the fault block when it approaches above rather than parallel to

the side. A horizontal sonde is most sensitive to the fault block when it

approaches to the side rather than above the fault block.

5) Some of the features observed for the sensitivities in the frequency domain can be

explained by examining the angular dependence of the primary and auxiliary

fields in computing the 3D integral over the fault boundary corner.

a. The ”Keyhole” feature. For the case when transmitter and receiver dipoles

are 90o apart, this feature can be explained by the relative position

(above/below) of the transmitter to the fault boundary corner.

b. The strongest magnitude of the sensitivities occurs when the transmitter

and receiver dipoles are in the same direction. The weakest magnitudes

occur when the transmitter and receiver dipoles are 90˚ apart.

c. Overall magnitude of the sensitivities can be addressed as we vary the

frequency. We observe the strongest magnitude sensitivities occur for the

larger frequencies, which results from the linear dependence of the electric

field amplitude on the frequency.
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6) We can obtain more information about the frequency dependence of the

magnitude of sensitivities by plotting the real and imaginary parts of 

€ 

∂Hi ∂σ .

a. We find a linear dependence of the real and imaginary parts for

frequencies below ~104 Hz and an oscillatory behavior for frequencies

above ~104 Hz.

b. A change of the conductivity 

€ 

σ  by a factor of four from 0.25 S/m to 1.00

S/m produces twice as many oscillations above ~104 Hz.

c. When the distance to the fault boundary corner is doubled, the real and

imaginary parts of the sensitivities also exhibit twice as many oscillations.

d. The above results can be explained by a consideration of the dependence

of the fault boundary corner skin depth on frequency and conductivity.

7) Sensitivities in oblique planes around the fault corner boundary show similar

symmetry of response for the various tool locations as in the plane perpendicular

to the fault boundary corner (the y-z plane).

8) For tool 1 (with the transmitter and receiver dipole in the direction of the sonde),

we find that as the horizontal sonde is rotated obliquely away from the

(perpendicular) y-z plane, the value of the sensitivities are similar until the sonde

is parallel to the fault boundary corner (the x-z plane) where we see a marked

decrease in the sensitivity values.

9) For tool 2 (with the magnetic dipole at the transmitter in the direction of the

receiver and an x-directed magnetic dipole at the receiver), we find that the

horizontal sonde is very sensitive to the fault boundary corner when the sonde is

oriented perpendicular to it. However, the fault boundary corner is not as easily
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detected when the sonde (regardless of orientation) is positioned in any of the

oblique planes.

In this study we have purposely considered a simple quarterspace model containing a

single region of perturbed conductivity in order to test the adjoint method and interpret

the forward model results. Our goal was to develop an analytic approach for rapid on-site

analysis of induction log data, which could be applied to geologic materials with

inhomogeneous conductivities. The work presented in this study forms a basis from

which further worthwhile avenues of investigations can be explored, including: (1)

comparing sensitivities computed with the adjoint method with 3D finite difference

results to determine the range of the change of conductivity; (2) calculating sensitivities

for the anisotropic case (vertical conductivity does not equal the horizontal conductivity);

(3) calculating sensitivities for cases with multiple non-interacting regions of different

conductivities; (4) calculating higher order derivatives in the Taylor series expansion

using the adjoint method and (5) investigating models with fluids in the fault zone.
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Figure 1: An induction sonde consisting of a transmitter and a receiver, designed to
measure formation resistivity in boreholes (Telford et al., 1990).
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(a)

(b)

Figure 2: (a) The quarterspace fault model. (b) Sensitivities are calculated for tool
locations above and below the fault boundary corner (FBC) in the y-z plane. Receivers
are located at 0, 30, 45, and 60 degrees respectively from the vertical z-direction.
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Figure 3: Illustration of the radial dependence of the magnitude of the electric field 

€ 

E r( )
Eq.(25), as a function of skin depth 

€ 

δ  for 

€ 

f = 20,000  Hz and 

€ 

σ = 0.25 S/m.

€ 

E r( ) vs 

€ 

r δ
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Figure 4: Sensitivities in the frequency domain in the y-z plane for a transmitter dipole in
the z-direction and receiver dipoles in the x-direction (a) above and (b) below the fault
boundary corner.

dHz/dσ
(A/S)

3.4

2.95

2.6

1.9

3.4

2.85

2.35

1.75
dHz/dσ
(A/S)

(a)

(b)



39

10-5 10-4 10-310-5

10-4

10-3

10-2

10-1

time (s)

Tilman Code, first time point (ta) = 10e-5, nmbr time pts (mt) = 11, rec = above

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees

10-5 10-4 10-310-5

10-4

10-3

10-2

10-1

time (s)

Tilman Code, first time point (ta) = 10e-5, nmbr time pts (mt) = 11, rec = below

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees

Figure 5: Time domain sensitivity plots in the y-z plane for a transmitter dipole in the z-
direction and receiver dipoles in the x-direction (a) above and (b) below the fault
boundary corner.

dHx/dσ(t)
(A/S)

6.5
3.5

dHx/dσ(t)
(A/S)

7
5

(a)

(b)



40

0 1 2 3 4 5 6 7 8 9 10
x 105

0

0.5

1

1.5

2

2.5

3 x 10-5

frequency (Hz)

Transmitter Dipole in Direction of Recevier,(0,-5,5),above fault boundary

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

0 1 2 3 4 5 6 7 8 9 10
x 105

0

0.2

0.4

0.6

0.8

1

1.2 x 10-6

frequency (Hz)

Transmitter Dipole in Direction of Recevier,(0,5,5),above fault boundary

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

0 1 2 3 4 5 6 7 8 9 10
x 105

0

0.5

1

1.5

2

2.5

3 x 10-5

frequency (Hz)

Transmitter Dipole in the Direction of Receiver,(0,5,-5),below fault boundary

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

Figure 6: Sensitivities in the frequency domain in the y-z plane for the transmitter and the
receivers (a) above (b) above and to the upper left and (c) below the fault block.

dHx/dσ
(A/S)

dHx/dσ
(A/S)

dHx/dσ
(A/S)

(a)

(b)

(c)



41

10-5 10-4 10-310-5

10-4

10-3

10-2

10-1

100

time (s)

Tilman Code, first time point (ta) = 10e-5, nmbr time pts (mt) = 11, rec = above

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

10-5 10-4 10-310-6

10-5

10-4

10-3

10-2

10-1

time (s)

Tilman Code, first time point (ta) = 10e-5, nmbr time pts (mt) = 11, rec = above

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

10-5 10-4 10-310-5

10-4

10-3

10-2

10-1

100

time (s)

Tilman Code, first time point (ta) = 10e-5, nmbr time pts (mt) = 11, rec = below

R1 = vertical
R2 = 30 degrees
R3 = 45 degrees
R4 = 60 degrees
R5 = 90 degrees

Figure 7: Sensitivities in the time domain in the y-z plane for the transmitter and the
receivers (a) above (b) above and to the upper left and (c) below the fault block.

dHx/dσ(t)
(A/S)

dHx/dσ(t)
(A/S)

dHx/dσ(t)
(A/S)

(b)

(a)

(c)



42

Figure 8: Sensitivities in the frequency and time domain in the y-z plane relative to the
fault boundary corner.
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 (a)       (b)        (c)

Figure 9: Symmetry of response shown for the various tool locations in the frequency
domain. Sensitivities in the y-z plane were calculated around the fault boundary corner
from zero to 20 meters, in five-meter intervals. For (a) the vertical sonde (

€ 

θ= 0˚), (b) for
the sonde dipping at 45˚(

€ 

θ= 45˚) and (c) the horizontal sonde (

€ 

θ  = 90˚).
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Figure 10: The symmetry of response shown in the time domain. Tool locations at 0˚, 30˚
and 45˚ are shown for a fixed time (a) t = 1.5 x10-5; (b) For t = 2.5 x 10-5, the cusps (or
zero crossings) can clearly be seen for the vertical sonde; and (c) at t = 3.9 x 10-5, the
cusps (or zero crossings) can also be seen for all tool locations.
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Figure 11: Tool locations around the fault boundary corner. Sensitivities in the frequency
domain were calculated for (a) tool 1, transmitter and receiver dipoles in the direction of
the tool orientation and (b) tool 2, transmitter dipole in the direction of the receiver and
an x,y, or z-directed magnetic dipole at the receiver. In the case the x,y,z coordinates of
the receiver dipoles follow the absolute x,y,z coordinates of the fault corner boundary.
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Figure 12: Higher resolution runs in the frequency domain for tool 1, transmitter and
receiver dipole in the direction of the tool orientation. Sensitivities in the y-z plane were
calculated around the fault boundary corner from zero to 20 meters, in one-meter
intervals. Frequency = 20,000 Hz, wholespace conductivity = 0.25 S/m, for (a) the
vertical sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c) 45˚(

€ 

θ= 45˚), (d)
67.5˚(

€ 

θ= 67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚).
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(c) (d)

(e)

10x A/S10x A/S

10x A/S 10x A/S

10x A/S

θ = 0˚ θ = 22.5˚

θ = 45˚ θ = 67.5˚

θ = 90˚



47

Figure 13: Higher resolution runs in the frequency domain for tool 2, transmitter
dipole in the direction of the tool orientation and receiver dipole in the y-direction.
Frequency = 20,000 Hz, wholespace conductivity = 0.25 S/m, for (a) the vertical sonde
(

€ 

θ= 0˚), (b) the sonde dipping at 45˚(

€ 

θ= 45˚), and (b) the horizontal sonde (

€ 

θ  = 90˚).

(a)

(b)

(c)

θ = 0˚

θ = 45˚

θ = 90˚

10x A/S

10x A/S

10x A/S



48

Figure 14: Higher resolution runs in the frequency domain for tool 2, transmitter
dipole in the direction of the tool orientation and receiver dipole in the z-direction.
Frequency = 20,000 Hz, wholespace conductivity = 0.25 S/m, for (a) the vertical sonde
(

€ 

θ= 0˚), (b) the sonde dipping at 45˚(

€ 

θ= 45˚), and (b) the horizontal sonde (

€ 

θ  = 90˚).
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Figure 15: Higher resolution runs in the frequency domain for tool 1, transmitter and receiver
dipole in the direction of the tool orientation. Frequency = 2000 Hz, wholespace conductivity
= 0.25 S/m, for (a) the vertical sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c)
45˚(

€ 

θ= 45˚), (d) 67.5˚(

€ 

θ= 67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚).
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Figure 16: Higher resolution runs in the frequency domain for tool 1, transmitter and receiver
dipole in the direction of the tool orientation. Frequency = 200 Hz, wholespace conductivity
= 0.25 S/m, for (a) the vertical sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c)
45˚(

€ 

θ= 45˚), (d) 67.5˚(

€ 

θ= 67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚).
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Figure 17. The integration over x is equivalent to an integration over the azimuthal angle

€ 

φ  from 0 to 

€ 

π .
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Figure 18: The integrand in the frequency domain for tool 2, transmitter dipole in the
direction of the tool orientation and receiver dipole in the x-direction. Frequency =
20,000 Hz, wholespace conductivity = 0.25 S/m, for the real and imaginary values for (a)
the vertical sonde (

€ 

θ = 0°), (b) the sonde dipping at 45˚ (

€ 

θ = 45°), and (c) the horizontal
sonde (

€ 

θ = 90°), in the y-z plane 5 meters away form the fault boundary corner.
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     Freq = 20,000 Hz, vertical sonde

                  Contribution to integral > 0 in this range

Contribution to integral < 0 when θmax is above π

Figure 19. The ”Keyhole” feature. For the case when transmitter and receiver dipoles are
90o apart, this feature can be explained by the relative position (above/below) of the
transmitter to the fault boundary corner.
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     Receiver dipole in the z-direction

      Receiver dipole in the y-direction

Figure 20. Strongest vs. weakest magnitudes of the sensitivities. (a) The strongest
magnitude of the sensitivities occurs when the transmitter and receiver dipoles are in the
same direction. (b) The weakest magnitudes occur when the transmitter and receiver
dipoles are 90˚ apart.

z

Fault
Boundary
Corner

Tz

y
Ry

x

z

Fault
Boundary
Corner

Tz

y

Rz

x

(a)

(b)

10x A/S

10x A/S



55

Figure 21: Overall magnitude of the sensitivities can be addressed as the frequency is
varied. The strongest magnitude sensitivities occur for (a) the larger frequencies.
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Figure 22: Real and imaginary sensitivity values in the frequency domain in the y-z plane
for the receiver dipole in the direction of the sonde, receiver angle = 90˚, x,y,z = (0,5,5)
above the fault boundary corner with conductivity (a) 0.25, (b) 0.75 and (c) 1.0 S/m.
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Figure 23: Real and imaginary sensitivity values in the frequency domain in the y-z plane
for the transmitter and receiver dipole in the direction of the sonde, receiver angle = 90˚,
with conductivity 0.25 for (a) above, (b) above and to the left and (c) below at a five
meter distance from the fault boundary corner.
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Figure 24: Real and imaginary sensitivity values in the frequency domain in the y-z plane
for the transmitter and receiver dipole in the direction of the sonde, receiver angle = 90˚,
with conductivity 0.25 for (a) above, (b) above and to the left and (c) below at a ten meter
distance from the fault boundary corner.
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Figure 25: Real and imaginary sensitivity values in the frequency domain in the y-z plane
for the transmitter and receiver dipole in the direction of the sonde with conductivity 0.25
for (a) the vertical sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c) 45˚(

€ 

θ=
45˚), (d) 67.5˚(

€ 

θ= 67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚) above the fault block.
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Figure 26: The integrand   

€ 

r 
E T

r x ( ) ⋅
r ˜ E R

r x ( )  of Eq.(13) was plotted for the frequency domain
for tool 1, transmitter dipole and receiver dipole in the direction of the tool orientation.
Frequencies 20,000 Hz, 200Hz and 200 Hz, wholespace conductivity = 0.25 S/m, for the
vertical sonde above, the sonde dipping at 45˚ above and to the right, and the horizontal
sonde below the fault boundary corner.
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Figure 27: The integrand in the frequency domain for tool 1, transmitter dipole and
receiver dipole in the direction of the tool orientation. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the vertical sonde in the y-z plane 5 meters away
form the FBC, showing (a) the real, (b) the imaginary and (c) the absolute values.
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Figure 28: The integrand in the frequency domain for tool 1, transmitter dipole and
receiver dipole in the direction of the tool orientation. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the sonde dipping 45˚ in the y-z plane 5 meters
to the above right of the FBC, showing (a) the real values, (b) the imaginary values, and
(c) the absolute values.
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Figure 29: The integrand in the frequency domain for tool 1, transmitter dipole and
receiver dipole in the direction of the tool orientation. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the horizontal sonde in the y-z plane 5 meters
below the fault boundary corner, showing (a) the real values, (b) the imaginary values,
and (c) the absolute values.
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Figure 30: The integrand in the frequency domain for tool 1, transmitter dipole and
receiver dipole in the direction of the tool orientation. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, in the y-z plane 5 meters away from the fault
boundary corner for (a) the vertical sonde, (b) the sonde dipping at 45˚, and (c) the
horizontal sonde.

(a)

(b)

(c)

€ 

θ = 0°

€ 

θ = 45°

€ 

θ = 90°



65

Figure 31: The integrand in the frequency domain for tool 1, transmitter dipole and
receiver dipole in the direction of the tool orientation. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the vertical sonde in the y-z plane (a) 5 meters,
and (b) 10 meters away from the fault boundary corner.
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(b)
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Figure 32: Map projection of the fault boundary corner. Sensitivities in the frequency
domain for tool 2, transmitter dipole in the tool orientation and receiver dipole with the
x,y,z coordinates relative to the sonde direction. Sensitivities in the oblique planes around
the fault boundary corner were calculated from zero to 20 meters, in one-meter intervals
in the x-z plane (

€ 

φ  = 0˚), angled at 22.5˚ (

€ 

φ= 22.5˚), 45˚ (

€ 

φ= 45˚), 67.5˚ (

€ 

φ= 67.5˚), and
in the y-z plane, (

€ 

φ  = 90˚).
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Figure 33: Tool locations around the fault boundary corner. Sensitivities in the frequency
domain were calculated for (a) tool 1, transmitter and receiver dipoles in the direction of
the tool orientation and (b) tool 2, transmitter dipole in the direction of the receiver and
an x,y, or z-directed magnetic dipole at the receiver. In this case the orientation of the
dipole at the receiver (x,y,z directions) are relative to the sonde axis.
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Figure 34: Sensitivities in the frequency domain for tool 1, transmitter dipole and receiver
dipole in the direction of the sonde. Sensitivities in the oblique planes around the fault
boundary corner were calculated from zero to 20 meters, in one-meter intervals.
Frequency = 20,000 Hz, wholespace conductivity = 0.25 S/m, for the horizontal sonde in
the (a) x-z plane, (b) angled at 22.5˚ (

€ 

φ= 22.5˚), (c) 45˚ (

€ 

φ= 45˚), (d) 67.5 ˚ (

€ 

φ= 67.5˚),
and (e) 90˚ (

€ 

φ  = 90˚).
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Figure 35: Sensitivities in the frequency domain for tool 1, transmitter dipole and receiver
dipole in the direction of the sonde. Sensitivities were calculated in the plane angled at

€ 

φ= 45˚. Frequency = 20,000 Hz, wholespace conductivity = 0.25 S/m, for (a) the vertical
sonde (

€ 

θ= 0˚), (b) the sonde dipping at 22.5˚(

€ 

θ= 22.5˚), (c) 45˚(

€ 

θ= 45˚), (d) 67.5˚(

€ 

θ=
67.5˚), and (e) the horizontal sonde (

€ 

θ  = 90˚).
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Figure 36: Sensitivities in the frequency domain for tool 2, transmitter dipole in the tool
orientation and receiver dipole in the x-direction with the x,y,z coordinates relative to the
sonde direction. Sensitivities in the oblique planes around the fault boundary corner were
calculated from zero to 20 meters, in one-meter intervals. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the horizontal sonde in the (a) x-z plane, (b)
angled at 22.5˚ (

€ 

φ= 22.5˚), (c) 45˚ (

€ 

φ= 45˚), (d) 67.5 ˚ (

€ 

φ= 67.5˚), and (e) 90˚ (

€ 

φ  = 90˚).
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Figure 37: Sensitivities in the frequency domain for tool 2, transmitter dipole in the tool
orientation and receiver dipole in the x-direction with the x,y,z coordinates relative to the
sonde direction. Sensitivities in the oblique planes around the fault boundary corner were
calculated from zero to 20 meters, in one-meter intervals. Frequency = 20,000 Hz,
wholespace conductivity = 0.25 S/m, for the horizontal sonde, angled at (a) 87˚ (

€ 

φ  =
87˚), (b)  88˚ (

€ 

φ  = 88˚), (c) 89˚ (

€ 

φ  = 89˚) from the x-z plane, and (d) in the y-z plane, 90˚
(

€ 

φ  = 90˚).
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Figure 38: Sensitivities in the frequency domain for tool 2, transmitter dipole in the tool
orientation and receiver dipole with the x,y,z coordinates relative to the sonde direction.
Sensitivities in the oblique planes around the fault boundary corner were calculated from
zero to 20 meters, in one-meter intervals. Frequency = 20,000 Hz, wholespace
conductivity = 0.25 S/m, for the horizontal sonde parallel to the FBC with the receiver
dipole in the (a) x-direction, (b) y-direction, and (c) in the z-direction.
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∂ 2π y

∂x2 +
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 ,

where 

€ 

M x , M y, M z are the components of the dipole source   

€ 

r 
M s .

The solution to the above set of coupled PDEs can be obtained in terms of simple

analytic functions (Moran and Gianzero, 1979) that we present below in Table 1, for the

three separate cases of the magnetic dipole pointing along the coordinate axes. Since

Maxwell’s equations are linear, the solutions for the Hertz potentials for an arbitrarily

oriented magnetic dipole can be built up from superposition. Once the scalar potential 

€ 

Φ

and the Hertz potential   

€ 

r 
π  are obtained from Table 1, the resulting electric and magnetic

fields are obtained from Eq.(B12) and Eq.(B13) by straightforward differentiation.

Table 1. Hertz vector for a magnetic dipole in a homogeneous anisotropic case.
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2 = iωµσ h
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s = x2 + y2 +λ2z2

€ 
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2 = iωµσ v

€ 

p = x2 + y2

For an x-directed dipole – source along x:
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4πλ
eikvs
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For an y-directed dipole – source along y:
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For an z-directed dipole – source along z:
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M z = M ,  M x = M y = 0
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APPENDIX B

The Numerical Code

The following numerical codes are attached in hard copy and electronic form for the

Sandia National Laboratories copy of this report only. Details concerning code

methodology, code execution and input files are contained in the driver code

README_mdisof1 file.

Fortran 95 codes:

mdisof1.f Driver code for the magnetic dipole isotropic

quarterspace model in the frequency domain

globals_mdisof1.f Globals module

integration_routines.f Fourth order Simpson integration module

mdisof1.in Input file

README_mdisof1 Read me file

Fortran 77 codes (Weiss, 2002) modified by Natek:

mdisof1_efield_routines.f Module to calculate the electric fields for the

anisotropic wholespace model

mdisof1_mfield_routines.f Module to calculate the magnetic fields for the

anisotropic wholespace model
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Matlab codes:

make_mdisof1_filename.m Matlab function to make mdisof1 input filenames

make_mdisof1_run_jobs.m Creates multiple mdisof1_xx_xx_xx.in files for the

mdisof1 code

plot_mdisof1_colorpatch_dHdsigma_ReIm.m

Creates colorpatch plots of the absolute values of

the sensitivities from the mdisof1 output file

mdisof1_all.out.




