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ABSTRACT

An understanding of the occurrence and sources of arsenic in ground water of the
Middle Rio Grande Basin (MRGB), central New Mexico, is essential to the establishment of
drinking-water supplies that will consistently meet the new standard of 10 micrograms per
liter established by the U.S. Environmental Protection Agency for arsenic in drinking water.
New chemical data from 288 ground-water sites, supplemented by historical data from the
U.S. Geological Survey and the City of Albuquerque, show that arsenic concentrations in
ground water exceed 10 micrograms per liter across broad areas of the basin. The data
indicate that arsenic concentrations in the MRGB are determined primarily by the source and
geochemical origin of ground water rather than by chemical processes within the basin. One
primary source of arsenic to the basin is related to volcanic activity in the Jemez Mountains
to the north, where dilute recharge water likely flows through rocks that have been altered by
contact with geothermal fluids. The other primary source is mineralized water of deep origin
that mixes with shallower ground water in several locations around the MRGB, particularly
along major structural features. Values of pH that exceed 8.5, where present, appear to cause
desorption of arsenic from metal oxides. Analysis of normative salt assemblages calculated
using the computer program SNORM (Bodine and Jones, 1986) indicates that MRGB ground
waters associated with carbonate-rock dissolution and weathering of calcic lithologies tend to
have smaller arsenic concentrations than ground waters associated with hydrothermal

systems or with the weathering of sodium-dominated siliceous rocks.
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INTRODUCTION

An understanding of the occurrence, behavior, and sources of As in ground water
of the Middle Rio Grande Basin (MRGB) of central New Mexico (fig. 1) is essential to
the establishment of drinking-water supplies that will consistently meet the new standard
of 10 pg/L established by the U.S. Environmental Protection Agency (U.S. EPA) for As
in drinking water (Federal Register, January 22, 2001). The more than 700,000 residents
of the MRBG between Cochiti Lake and San Acacia currently (2001) rely almost
exclusively on ground water from the Santa Fe Group aquifer system for drinking-water
supplies. Arsenic has been detected in ground water of the basin in concentrations
exceeding 600 ug/L. Concentrations greater than 10 pug/L are common across large areas,
including population centers. Of the 92 wells currently used by the City of Albuquerque
to supply drinking water to more than 450,000 basin residents, just over half meet the
new U.S. EPA standard for As (City of Albuquerque, 2000). Capital expenses for
compliance with the new standard for the City of Albuquerque alone have been estimated
at 150 million dollars (Soussan, 2001). Greater knowledge of the distribution and source
of elevated As concentrations in ground water of the basin will enhance the ability of
water suppliers to locate water sources meeting the U.S. EPA standard and to choose
appropriate treatment options in areas where the As content of the available water supply

exceeds the standard.
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Figure 1.--Selected features of the Middle Rio Grande Basin and vicinity.



The ability to investigate the occurrence and behavior of As in ground water of
the MRGB has been enhanced by collection of water samples from 288 wells and springs
and 15 surface-water sites between 1996 and 1998 as a part of the U.S. Geological
Survey (USGS) MRGB study of ground-water chemistry to better characterize the
ground-water flow system of the basin (Plummer and others, 1997a and b, 1998, 1999,
and 2001a and b), hereafter referred to as the “MRGB study.” Samples were collected for
a wide variety of constituents, including major- and minor-element chemistry, isotopic
composition, and dissolved-gas content. In addition to greatly increasing the number of
ground-water sites for which As and other chemical data are available, the MRGB study
has enhanced understanding of the ground-water flow system in the basin. Improved
knowledge of recharge sources and flow paths and of chemical processes occurring in

ground water of the basin permit better characterization of As sources and behavior.

Purpose and Scope

The purpose of this investigation is to establish the spatial distribution of As in
ground water of the MRGB and to determine the primary processes controlling its
occurrence. In particular, I mapped As concentrations across the basin and with depth in
the aquifer. Then I characterized the occurrence of As in relation to important aspects of
the ground-water system, including source waters, flow paths, and hydrogeologic units. I
also characterized the occurrence of As in relation to other measured chemical
parameters, including major- and minor-element chemistry and isotopic composition of
ground water. These relationships were then used to determine the primary hydrologic
features and physical and chemical processes controlling the distribution of As in ground

water of the basin.



Previous Investigations

The geohydrologic framework of the MRGB has been the subject of numerous
previous investigations. Thorn and others (1993) summarized the geohydrology of the
MRGB (otherwise known as the Albuquerque Basin) and cited most publications that
have contributed to the current knowledge. Kelley (1977) and Lozinsky (1988) provided
detailed studies of the geology of the basin, including structure and stratigraphy, and
Hawley and Haase (1992) focused particular attention on the hydrogeology of the Santa
Fe Group aquifer system in the Albuquerque area. Investigations of ground-water
resources within the basin were conducted by Spiegel (1955) for Socorro County, Titus
(1963) for Valencia County, and Bjorklund and Maxwell (1961) for Bernalillo and
Sandoval Counties.

Subsequent to publication of the report by Thorn and others (1993), numerous
additional studies of the geohydrologic framework of the MRGB have been conducted,
many of which are part of a multi-disciplinary 5-year effort by the USGS and other
agencies to improve understanding of the area’s water resources. Included in the USGS
program are investigations of fault locations and lithologic variations using high-
resolution aeromagnetic data and estimation of mountain-front recharge using
environmental tracers. Although publications of final results do not currently (2001) exist
for all of these studies, abstracts detailing their objectives and progress can be found in
Cole (2001). An additional publication that was not a part of this 5-year effort is the
predevelopment water-level map of the MRGB by Bexfield and Anderholm (2000).

Several investigations have focused on the geochemistry of ground water in the

MRGB. Anderholm (1988) presented a detailed study of the geochemical data available



for the basin at that time and the implications of geochemistry for recharge sources and
for chemical processes occurring in the aquifer. Logan (1990) conducted a similar type of
study for the Albuquerque area using geochemical data then available, from primarily
municipal-supply wells. Bexfield and others (1999) summarized data that had been
collected over a 10-year period by the City of Albuquerque from its drinking-water
supply wells and Bexfield and Anderholm (in press) discuss the implications of those
data for the ground-water system of the Albuquerque area. As mentioned previously, the
MRGB study has added substantially to the quantity of available chemical data.
Preliminary results of the investigation, including implications for recharge sources and
flow paths, are given in Plummer and others (1997a and b, 1998, 1999, and 2001a and b)
and Sanford and others (1997, 1998, and 2001a and b).

The presence of As in water and sediments of the MRGB has long been
recognized as a problem and has been the subject of previous investigations. CH2M Hill
(1990 and 1991) conducted a study of As under contract to the City of Albuquerque. The
investigators compiled ground-water quality data for the basin from the City of
Albuquerque, the State of New Mexico, and the USGS. The availability of As data was
limited primarily to the vicinity of Albuquerque, and largely to total (as opposed to
dissolved) As concentrations from City of Albuquerque water-supply wells. Based on the
spatial distribution of As and correlations between As and other water-quality parameters,
the investigators concluded that As probably was from deep sources in most of the basin;
they also recognized the volcanic center in the Jemez Mountains north of the basin as a
source of As-rich water (CH2M Hill, 1990 and 1991). During a subsequent study through

the University of Houston, As speciation was performed on ground water from 87 City of



Albuquerque wells; the study showed that most wells contained only As (V), although
some wells contained significant As (III) (Bill Lindberg, City of Albuquerque, written
commun., 2000).

Chapin and Dunbar (1994) used existing water-quality data to characterize the
regional occurrence of As in selected geothermal areas, in ground water of the MRGB
and the Socorro area, and in surface water of the Rio Grande throughout New Mexico.
They discussed the potential roles of volcanic and potassium metasomatised rocks in
increasing the As content of surface and ground water. In particular, they emphasized that
volcanic rocks can be intensely altered by local hydrothermal systems, leading to
dramatic increases in As content. They also discussed ground-water inflow as a likely
source of As to regional surface water, and sorption of As onto sediments (particularly
Fe, Mn, and Al oxides) as a likely method of removal of As from surface water.

Stanton and others (2001a and b) examined sediment and rock samples from cores
at three different locations in the MRGB for content and potential mobility of As. They
concluded that most As in the core was associated with acid-extractable amorphous and
crystalline oxides, primarily Fe oxides, but that most As available to ground water was

present as the “anion-exchangeable” fraction sorbed on Fe oxides and clays.



DESCRIPTION OF THE STUDY AREA

The MRGB is located in the Basin and Range physiographic province of Central
New Mexico (fig. 1). The basin, which is located in the Rio Grande rift, covers about
3,060 mi® (7930 km?) and contains basin-fill deposits up to about 14,000 ft (4,300 m)
thick (Thorn and others, 1993). The boundaries of the basin have been defined by the
extent of Cenozoic deposits. The basin is partly surrounded by mountain ranges, which
include the Jemez Mountains to the north, the Sandia, Manzanita, Manzano, and Los
Pinos Mountains to the east, and the Joyita Hills and Ladron Peak to the south (fig. 1).
Lower topographic relief occurs along the west side of the basin, which is bounded by the
Lucero and Nacimiento uplifts and the Rio Puerco fault zone. Within the basin, piedmont
slopes extend from the eastern mountain fronts toward the main drainage, the Rio
Grande, which is inset in a terraced valley and has a flood plain up to about 4.5 mi (7.2
km) wide. Land-surface altitude above sea level ranges from about 4,700 ft (1,400 m) at
the southern end of the basin to more than 6,300 ft (1,900 m) at the northern end.

Most land in the MRGB is classified as rangeland, while forest and urban and
agricultural land also are significant (Thorn and others, 1993). Urban areas include the
City of Albuquerque, which is the largest city in New Mexico. In 2000, the population of
the Albuquerque metropolitan area was about 712,700 people (U.S. Census Bureau,
2001). All of the communities in the basin rely primarily on ground water for domestic

and industrial uses. Agricultural land is located primarily in the Rio Grande flood plain,



where depth to water generally is less than about 25 ft (7.6 m) (Anderholm, 1997). Most
agriculture is irrigated with surface water that is diverted from the Rio Grande into a
system of canals. Riverside and interior ground-water drains in the flood plain prevent

ground-water levels from rising closer than several feet below land surface.

Climate

The climate of the MRGB generally is categorized as semiarid, although the
climate in parts of the surrounding mountains ranges to humid continental (Thorn and
others, 1993). As a result of altitude differences, precipitation in the region varies widely
with location. Between 1961 and 1990, mean annual precipitation varied from about 8.5
in. (22 cm) for weather stations at lower elevations within the basin (table 1 and fig. 2) to
more than 19.0 in. (48.3 cm) for at weather stations in surrounding areas of higher
elevation. Mean annual snowfall ranged from 4.0 in. (10 cm) at Bernardo to 61.4 in. (156

cm) at Sandia Park.

Table 1.--Climatic data from selected stations in the Middle Rio Grande Basin and vicinity, 1961-90
[From National Oceanic and Atmospheric Administration digital data]

Station Mean January Mean July Mean annual
elevation, in temperature, temperature, temperature, Mean annual Mean annual

feet above in degrees in degrees in degrees  precipitation, snowfall, in
Station name sea level Fahrenheit Fahrenheit Fahrenheit in inches inches
Albuquerque WSFO AP 5,309 34.3 78.6 56.3 8.88 11.4
Sandia Park 7,019 30.3 69.5 49.9 19.11 61.4
Bernardo' 4,735 36.1 77.4 56.8 8.45 4.0
Mountainair 6,520 32.0 70.8 51.3 13.65 27.9

'Station began operation in 1962; data used in calculations were for 1962-90.

At lower elevations, most precipitation falls between the months of July and
October (fig. 3a). Precipitation during this time comes primarily from high-intensity

thunderstorms of relatively short duration. Most winter precipitation is from lower-
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intensity storms of longer duration. Winter storms make a greater contribution to annual
precipitation at higher elevations, although the months of July through September in
these areas tend to be wettest (fig. 3b). Total annual precipitation at any particular
location can be quite variable from year to year. At Albuquerque, total annual
precipitation between 1961 and 1990 ranged from 4.99 to 13.11 in. (12.7 to 33.3 cm); at
Sandia Park, the range was 10.41 to 28.59 in. (26.44 to 72.62 cm). Annual potential
evaporation in the region is substantially greater than annual precipitation, ranging from
less than 50 in. (130 cm) in the eastern part of the basin to more than 60 in. (150 cm) in
the southern and central parts of the basin (Thorn and others, 1993). Mean annual
temperatures for weather stations in the region range between 49.9 and 56.8 degrees
Fahrenheit (°F), or 9.9 to 13.8 degrees Celsius (°C) (table 1). For 1961-90, mean monthly
temperatures at Albuquerque ranged from 34.3 °F (1.3 °C) in January to 78.6 °F (25.9

°C) in July.

Surface Water

Rio Grande
The main surface drainage for the MRGB is the Rio Grande, which extends the

entire length of the basin (fig. 1). The headwaters of the Rio Grande are located in the
San Juan Mountains of southwestern Colorado. Where it enters the MRGB, the Rio
Grande has a drainage area of about 14,900 mi’ (38,600 km?).

Within the basin, the configuration of the river and its seasonal discharge patterns
have been altered by man-made structures. Prior to regulation, the Rio Grande probably
was a perennial, braided river that migrated back and forth across the flood plain, with its

discharge reflecting seasonal snowmelt and storm events (Crawford and others, 1993).
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Periodic flooding resulted in the emplacement of a system of levees and jetty jack works
during the 1920°s-50’s to confine the river to a single channel. Also during this time
period, the existing system of irrigation canals in the valley was improved and levees and
interior and riverside drains were constructed.

Substantial irrigation diversions both upstream and downstream of Albuquerque
affect the discharge of the Rio Grande. Since 1973, discharge has been regulated by
Cochiti Dam at the north end of the basin. Regulation has resulted in greater discharge
throughout the irrigation season and an otherwise more even seasonal distribution of
discharge than would be expected under “natural” conditions (fig. 4). For water years
1974-98', the mean annual discharge of the Rio Grande at Albuquerque was about 1,450
ft'/s (41.1 m’/s) (Ortiz and others, 1999).

The Rio Grande alternately gains and loses as it flows through the MRGB. At the
north end of the basin, ground-water inflow apparently adds to discharge in the river
between Cochiti Dam (mean annual discharge 1,444 ft*/s (40.89 m’/s) for water years
1971-98) and San Felipe (mean annual discharge 1,583 ft’/s (44.83 m’/s) for water years
1974-98), a river reach with no surface-water inflow except perhaps from arroyos during
large storm events (Ortiz and others, 1999). In the vicinity of Albuquerque, water is
known to seep into the aquifer from both the Rio Grande and its associated irrigation
system. Although the exact quantity of seepage is uncertain, ground-water temperature
profiles obtained beneath the river near Albuquerque by Bartolino and Niswonger (1999)
were used to estimate downward fluxes of about 0.058 to 0.12 ft/d (0.018 to 0.037 m/d).

Spiegel (1955) indicates that in Socorro County, at the south end of the basin, the inner

! The water year is the 12-month period from October 1 through September 30. The water year is
designated by the calendar year in which it ends and which includes 9 of the 12 months.
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valley of the Rio Grande gains ground water from the adjacent mesas, but the river
channel might actually lose water naturally due to evapotranspiration, in addition to loss
through irrigation diversions.
Tributaries

Although the Rio Grande is the only perennial stream in the MRGB, several
tributaries can contribute substantial flow to the Rio Grande, and can potentially
contribute substantial quantities of recharge to the underlying aquifer. Of the tributaries
for which detailed streamflow records are available, the Jemez River and the Rio Puerco
are among the largest. However, numerous ephemeral channels also can carry substantial
quantities of water to the Rio Grande during large storm events. In addition, man-made
channels such as ground-water drains and flood-diversion channels also are tributary to
the Rio Grande.

The Jemez River originates in the Jemez Mountains at the north end of the basin
(fig. 1), which exceed 11,000 ft (3,400 m) in elevation and have been the center of major
volcanic activity. In its upper reaches, the river is fed by both ground-water discharge,
including discharge from some geothermal springs, and snowmelt, which typically
contributes most of the discharge from March through June. At the Jemez River near
Jemez [Pueblo], the mean annual discharge for 1954-98 was 79.6 ft'/s (2.25 m’/s); on
average, about 70 percent of the total annual discharge was recorded from March through
June (Ortiz and others, 1999). Upstream of Jemez Pueblo, the river drains an area
consisting primarily of Precambrian crystalline rocks, Paleozoic sandstone, shale, and
limestone, and Tertiary and Quaternary volcanic rocks (Craigg, 1992). Shortly after

entering the MRGB, the Jemez River is joined by the Rio Salado, which drains
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Cretaceous, Jurassic, and Triassic rocks in a semiarid area west of the Sierra Nacimiento
(Craigg, 1992). From there, the Jemez River flows primarily southeast across basin-fill
sediments toward the Rio Grande. Seepage investigations conducted by Craigg (1992)
showed seasonal variations in the tendency for the Jemez River to lose or gain flow
between the Jemez River near Jemez streamflow gage and Santa Ana Pueblo (fig. 1).
During March the river generally gained throughout this reach, while during August
(when evapotranspiration is large) the river was a losing stream between Zia and Santa
Ana Pueblos.

Discharge of the Jemez River to the Rio Grande has been regulated since 1953 by
Jemez Canyon Dam (intended primarily for desilting and flood control); the mean
average discharge below the dam was 62.6 ft*/s (1.77 m’/s) for 1943-98. Where the
Jemez River meets the Rio Grande north of Bernalillo, its drainage area is about 1,050
mi’ (2720 km?) (Craigg, 1992).

The Rio Puerco enters the MRGB from the San Juan Basin to the northwest (fig.
1). Near its headwaters, the Rio Puerco drains Precambrian and Paleozoic rocks on the
west side of San Pedro Mountain, in the vicinity of Cuba, New Mexico. However, outside
of the MRGB, most of the drainage area of the Rio Puerco is underlain by Cretaceous
sedimentary rocks (Spiegel, 1955). Once within the basin, the river flows over primarily
Quaternary and Tertiary deposits. Risser and Lyford (1983) state that for the 1935-76
water years, a former streamflow gage (Rio Puerco at Rio Puerco) located about 6 mi (10
km) downstream from the confluence of the Rio Puerco and the Rio San Jose showed that
the Rio Puerco was dry about 50 percent of the time; the mean annual discharge was

about 58 ft*/s (1.6 m’/s). About 77 percent of the total annual discharge at the site
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occurred during the summer storm season of July through October. During the remainder
of the year, most of the flow was contributed by the Rio San Jose, which drains areas
underlain by Triassic, Jurassic, and Cretaceous rocks (Spiegel, 1955).

The Rio Puerco meets the Rio Grande just south of Bernardo, where its drainage
area is about 7,350 mi” (19,000 km?) and its mean annual discharge (at the Rio Puerco
near Bernardo) was 42.5 ft*/s (1.20 m’/s) for water years 1940-98. Records of discharge
for 1940-47 for the Rio Puerco at Rio Puerco and near Bernardo indicated that this reach
of the river lost an average of at least 5,800 acre-ft/yr (7,200,000 m*/yr) (Spiegel, 1955).

Tijeras Arroyo enters the MRGB just south of the Sandia Mountains (fig. 1). The
arroyo drains mainly Paleozoic and Precambrian rocks at elevations up to about 9,800 ft
(3,000 m) and has a drainage area of about 99.3 mi’ (257 km?) where it enters the basin
(Anderholm, 2000). Although flow in Tijeras Arroyo is perennial in some sections east of
the basin due to spring and ground-water discharge, water in the arroyo typically
infiltrates a short distance inside the basin boundary due to the increasing thickness of
basin-fill sediments. In response to storm runoff (particularly during the summer), the
arroyo intermittently flows to the Rio Grande. Streamflow gages located about 1,500 ft
(460 m) apart were operated near the mountain front for the periods April 1943-June
1949 and May 1989-September 1991. The data show that the mean annual discharge in
Tijeras Arroyo has decreased substantially from greater than 13 ft*/s (0.37 m®/s) during
1944-48 (U.S. Geological Survey, 1960) to less than 0.15 ft*/s (0.0042 m?/s) during 1990-
91 (data from the U.S. Geological Survey National Water Information System database),

possibly as the result of recent development in the watershed (Anderholm, 2000).
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Abo Arroyo enters the MRGB just south of the Manzano Mountains (fig. 1) and
has the largest watershed along the eastern edge of the basin (about 248 mi’, or 642 km?).
The arroyo drains mostly Paleozoic sedimentary rocks, along with some crystalline
Precambrian rocks (Anderholm, 2000). Data collected from a streamflow gage near the
mountain front for October1996-September 1997 show a small amount of perennial flow,
which infiltrates a short distance inside the basin boundary. Anderholm (2000) assumes a
discharge of about 0.35 ft*/s (0.0099 m’/s) in calculating the yearly base flow at the gage
site. Summer storms result in large flows that can account for over half the annual
discharge at the gage (Anderholm, 2000) and that periodically reach the Rio Grande.

Several additional ephemeral channels have the potential to contribute substantial
amounts of recharge to the aquifer and to periodically contribute substantial flow to the
Rio Grande. However, little generally is known about the amount and seasonality of
discharge of these channels within the margins of the MRGB. These channels include the

Santa Fe River, Galisteo Creek, Las Huertas Creek, Arroyo Tonque, and the Rio Salado

(fig. 1).

Geologic Setting

Tectonic Framework

For this study, the MRGB (or Albuquerque Basin) is defined as by Thorn and
others (1993) to include the Santo Domingo Basin and the Hagan Embayment (fig. 5). As
defined, the basin is about 100 mi (160 km) long and 35 mi (56 km) wide and is the third
largest basin in the Rio Grande rift. South of the Santo Domingo Basin, the MRGB
consists of two subbasins formed by a northern, eastward-dipping half-graben and a

southern, westward-dipping half-graben (Russell and Snelson, 1990). Recent geophysical
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studies (Heywood, 1992; Grauch and others, 1999) show the presence of a high in
isostatic residual gravity between the Santo Domingo Basin and the Calabacillas subbasin
(fig. 5) that corresponds to the Ziana anticline as delineated by Kelley (1977). A gravity
high also is indicated between the Calabacillas and Belen subbasins near their eastern
extents. These gravity highs are representative of transitional areas between subbasins
where the denser, relatively-low permeability rocks that underlie the Santa Fe Group rise
closer to the land surface (Grauch and others, 2001). These transitional areas are covered
by Santa Fe Group basin fill, but its thickness here can be less than 3,000 ft (910 m),
compared with more than 10,000 ft (3,050 ft) within the Santo Domingo Basin and the
two subbasins (Grauch and others, 1999 and 2001). The deep, inner portions of the
subbasins generally are also bordered on the sides by relatively shallow benches that step
up to the margin areas (Hawley and Haase, 1992). These include the Hubble and Laguna
benches (fig. 5).

The west side of the MRGB is bounded mainly by the Ladron Mountains, the
Lucero uplift, and the Rio Puerco fault zone (fig. 1). The Ladron Mountains in the
southwest consist mainly of Precambrian granitic and metamorphic rocks and some
Paleozoic rocks. The Lucero uplift tilts westward and is composed of Paleozoic
limestone, sandstone, and shale capped by late Cenozoic basalt flows (Hawley and
Haase, 1992). Faults separating the Lucero uplift from the basin juxtapose Pennsylvanian
rocks with Precambrian or Permian rocks in some areas and juxtapose Permian with
Triassic rocks in other areas (Anderholm, 1988). The Rio Puerco fault zone is a
northeast-trending fault belt that separates the basin from the Colorado Plateau. These

faults generally juxtapose Mesozoic rocks with Santa Fe Group deposits (Anderholm,
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1988). West of the fault zone, exposed rocks include Cretaceous sandstone and shale and
local Jurassic gypsum and clastic units (Hawley and Haase, 1992).

The northern part of the basin is bounded primarily by the Nacimiento uplift and
the Jemez Mountains (fig. 1). The Nacimiento uplift in the northwest includes
Precambrian plutonic and metamorphic rocks overlain by Paleozoic and Mesozoic
sedimentary rocks (Hawley and Haase, 1992). Just east of the uplift are the Jemez
Mountains, a major Cenozoic volcanic center of mafic to silicic rocks. The northeast
section of the basin (east of the Jemez Mountains) is connected to the Espafiola Basin by
a narrow area referred to by Kelley (1977) as the White Rock channel.

The fault-line scarp of the uplifted blocks of the Sandia, Manzano, and Los Pinos
Mountains marks the distinct eastern boundary of the basin (fig. 1). These blocks consist
primarily of a core of west-facing Precambrian metamorphic and plutonic rocks that are
unconformably overlain by east-facing dip slopes of Paleozoic limestone and sandstone
(Anderholm, 1988; Hawley and Haase, 1992). In the southeast, the Precambrian,
Paleozoic, and Mesozoic rocks of the Joyita Hills bound the basin. To the south, the
Joyita uplift on the east and the Socorro uplift on the west converge, forming a
constriction between the MRGB and the Socorro Basin.

Besides the basin-bounding faults, numerous additional faults extend through
parts of the MRGB with a general north-south strike (fig. 6). Most of these faults offset
only relatively homogeneous Santa Fe Group deposits, although a few result in the
juxtaposition of geologic units that differ substantially in age and hydrologic properties
(Kelley, 1977). Although the effects of faults on the hydrologic system of the basin have

not been thoroughly characterized, the predevelopment water-level map of Bexfield and
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Anderholm (2000) indicates that faults near the basin margins that juxtapose different
geologic units can have an effect on predevelopment hydraulic heads. Another property
of faults that has not been well characterized in the MRGB is their potential to facilitate

upward flow of deep water into relatively shallow parts of the aquifer.

Santa Fe Group Aquifer System

The primary aquifer of the MRGB consists of the generally unconsolidated to
moderately consolidated basin-fill sediments of the Santa Fe Group. The Santa Fe Group
aquifer system is defined by Thorn and others (1993) as including both the Santa Fe
Group deposits, which are of Oligocene to middle Pleistocene age, and the more recent
(i.e., post-Santa Fe Group) flood-plain, channel, and basin-fill deposits of Pleistocene to
Holocene age that are in hydraulic connection with the Santa Fe Group deposits. For this
investigation, the Thorn and others (1993) definition is assumed whenever the term
“Santa Fe Group aquifer system,” or simply, “aquifer system” is used. Hawley and Haase
(1992) provide a detailed discussion of the hydrostratigraphic and lithofacies units of the
aquifer system in the general vicinity of Albuquerque, where the largest body of
information is available. The following discussion is largely from Hawley and Haase

(1992), except where otherwise specified.

Hydrostratigraphic Units

Santa Fe Group deposits, which range in thickness from about 3,000 to over
14,000 ft (about 910 to over 4,200 m), have been broadly divided into upper, middle, and
lower units based on depositional environment and age. As a whole, the group consists
primarily of alluvium from both nearby mountains and distant sources outside the basin,

but includes locally thick playa-lake and eolian deposits. The group also contains
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volcanic rocks and sediments that could be of significance for As concentrations in
ground water. The lower Santa Fe Group, which was deposited about 30 to 15 million
years ago and ranges in thickness from less than 1,000 to about 3,500 ft (less than 300 to
about 1,100 m), represents deposition in a relatively shallow, internally drained basin
prior to the substantial uplift of surrounding mountains. The unit consists largely of
piedmont-slope, eolian, and fine-grained basin-floor deposits. The basin-floor deposits
are primarily associated with playa lakes and compose poor aquifer materials.

The middle Santa Fe Group, which was deposited about 15 to 5 million years ago
and ranges from about 250 to 9,000 ft thick, represents the time of the most active
tectonism and highest sedimentation rates in the basin. Deposition of piedmont-slope
sediments continued and fluvial sediments were deposited on the basin floor as a result of
the transport of sediments into the basin by major fluvial systems from the north,
northeast, and southwest. These systems probably flowed into playa lakes in the southern
part of the basin. During this time, the Calabacillas and Belen subbasins filled to form a
single topographic basin. In the central part of the basin (near the City of Albuquerque),
the top of the middle Santa Fe Group has been delineated using a distinctive red-brown
clay layer that can be up to a few hundred feet thick. Connell and others (1998a) named
this layer the Atrisco member. The exact geographical extent of the layer is not known.

The upper Santa Fe Group, which was deposited about 5 to 1 million years ago
and generally is less than about 1,000 ft thick, consists largely of intertonguing
piedoment-slope and fluvial basin-floor deposits. During this time, the ancestral Rio
Grande system developed and was joined by two ancestral tributaries, the Rio San Jose

and Rio Puerco. Because the fluvial system was of fairly high energy, the ancestral river
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sediments that were deposited include thick zones of clean sand and pebble gravel and
compose some of the most productive aquifer materials in the basin. Santa Fe Group
deposition ended approximately 1 million years ago, when the Rio Grande and Rio
Puerco began to cut their present valleys.

Post-Santa Fe Group sediments were deposited during a series of river incision
and partial backfilling episodes. The river valley has been aggrading over about the past
10,000 to 15,000 years due to input of sediment from large tributaries. Younger basin and
valley fills include fan, pediment, inset-terrace, eolian, and floodplain deposits and
volcanics. Younger valley fill is up to about 130 ft thick and provides a connection
between the surface-water system and the underlying Santa Fe Group. Two volcanic
fields, the Albuquerque field and the Cat Hills field (fig. 6), were emplaced during
middle to late Pleistocene time.

More detail on the lithofacies units of the Santa Fe Group aquifer system can be
found in Hawley and Haase (1992), Thorn and others (1993), and Connell and others
(1999). A conceptual diagram of the extent of major lithostratigraphic units during the
Pliocene is shown in figure 7. The Sierra Ladrones Formation is subdivided into:
piedmont facies along the east and southwest margins of the basin, which contain only
rare volcanics; ancestral Rio Grande facies through the center of the basin, which contain
volcanic material derived from north of the basin; and ancestral Rio Puerco/Rio San Jose
facies in the southwest, which contain basaltic volcanic sediments derived from west of
the basin (fig. 7) (Connell and others, 1999; Sean Connell, NMBGMR, written commun.,
2001). Fluvial deposits of the ancestral Rio Jemez, which contain abundant silicic-

intermediate-basaltic volcanic sediments derived from the Jemez Mountains, comprise
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the Cochiti Formation and the northern part of the Arroyo Ojito Formation. Farther south,
the Arroyo Ojito Formation includes primarily fluvial deposits of the ancestral Rio
Puerco, which include basaltic volcanic material from sources west of the basin.
Horizontal hydraulic conductivity values assigned to aquifer materials for the
ground-water model of the MRGB constructed by Kernodle and others (1995) were based
on the descriptions of Hawley and Haase (1992). These values generally ranged from less
than 5 ft/d (1.5 m/d) for most of the lower and middle Santa Fe Group to more than 40

ft/d (12 m/d) for parts of the upper Santa Fe Group and post-Santa Fe Group alluvium.

Petrologic Data

Hawley and Haase (1992) discuss the composition and origin of sediments within
the Santa Fe Group deposits. Much of their information is from cores and cuttings
obtained from City of Albuquerque drinking-water supply wells. They found that
sandstone composition ranged from arkose to feldspathic litharenite. Framework grains
consisted of monocrystalline quartz, feldspar, and rock fragments, with lesser amounts of
biotite, muscovite, chlorite, and heavy minerals. Rock fragments were volcanic,
granitic/gneissic, sedimentary, and metamorphic, with volcanic fragments being most
abundant. Volcanic fragments consisted primarily of plagioclase-dominated porphyries
with lesser amounts of rhyolite. Below the northeast part of Albuquerque, sediments at
depths of about 200 to 3,200 ft were described as volcanic-rich, with glassy pumice being
present from about 200 to 400 ft. Hawley and Haase concluded that the glassy pumice
was probably derived from the Jemez volcanic field, while volcanic detritus likely
originated from southern Colorado and northern New Mexico, such as from the San Juan

volcanic field. Non-framework components of sandstones from all wells were principally
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detrital clay, zeolites, and calcite. Mudrocks that were sampled consisted primarily of
clay, with lesser amounts of sand and silt, and occasionally calcite cement. The principal
clay minerals present were smectite, illite, kaolinite, and interlayered illite/smectite. The
bulk composition of well cuttings was estimated to be approximately 60 percent granitic-
metamorphic detritus of Precambrian derivation, 30 percent volcanic detritus of middle
Tertiary derivation, and less than 10 percent sedimentary detritus of Paleozoic or
Mesozoic derivation.

Additional investigators, including Lozinsky (1988) and Stone and others (1998)
have documented petrographic data similar to those of Hawley and Haase (1992).
Lozinsky (1988) observed generally similar sandstone composition around the MRGB,
including in the northern, central, southeastern, and southwestern parts of the basin. He
found that monocrystalline quartz and plagioclase feldspar were the dominant detrital
grains, but that their percentages could vary spatially and vertically. Rock fragments were
primarily volcanic in all areas, although volcanic fragments were generally less numerous
in the northwest part of the basin. Lozinsky (1988) also noted that calcite generally was

the primary cement.

Ground-Water Flow System

The ground-water flow system of the MRGB between Cochiti and San Acacia is
quite complex and in some areas has not been particularly well characterized due to a
lack of data. Multiple sources of recharge to the ground-water system exist across the
basin. Land use, particularly the existence of irrigation and septic systems, has added to
the potential sources of recharge. Characterization of the flow system also has been

complicated by drawdown due to sustained ground-water pumping, especially in the
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vicinity of Albuquerque, which has altered directions of ground-water flow and probably
changed the rates of recharge occurring from various sources. The existence of faults that
juxtapose relatively permeable deposits with impermeable units also appears to affect
directions and rates of ground-water flow. Such faults also have been proposed as
possible conduits for the upward flow of relatively deep ground water (Bexfield and
Anderholm, in press).

A map of predevelopment water levels compiled by Bexfield and Anderholm
(2000) indicates that ground-water movement through the central part of the basin has
historically been oriented primarily north to south (fig. 8). Near the basin margins,
ground-water flow has historically been oriented primarily toward the central part of the
basin. On various predevelopment water-level maps of the region (Bjorklund and
Maxwell, 1961; Titus, 1961; Titus, 1963; Bexfield and Anderholm, 2000), a ground-
water trough is apparent west of the Rio Grande, from just south of the Jemez River
down to the area of Los Lunas (fig. 8). Previous investigators have theorized that the
presence of the trough indicates that there is a thicker sequence of more permeable
material in the area of the trough than in areas on either side (Kernodle and others, 1995),
but ground-water modeling results of Sanford and others (2001a) indicate the trough may
have developed as a result of the low quantity of recharge and its spatial distribution.

In the vicinity of Albuquerque, a steady increase in ground-water pumping since
about the mid-1940’s has resulted in substantial water-level declines of up to 160 ft (49
m) or more, as indicated by water-level data for 1992 (fig. 9). These declines have
resulted in ground-water movement being directed into the major pumping centers on the

east and west sides of the Rio Grande. Smaller-scale changes in ground-water flow
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directions likely have also occurred as a result of ground-water pumping in the vicinity of
other communities, such as Bernalillo, Los Lunas, and Belen.

Bexfield and Anderholm (in press) investigated water levels in deep nested
piezometers in the Albuquerque area and found that the direction and magnitude of
vertical gradients differed substantially around the city. Vertical gradients in piezometer
nests in the Rio Grande flood plain and west of the river were directed primarily
downward. In piezometer nests on the mesa east of the Rio Grande, vertical gradients
were directed primarily upward, except in the two shallowest completions of a nest
located near the mountain front. Seasonal differences in ground-water pumping affected
both the direction and magnitude of gradients in some piezometer nests. Because data are
not available from deep nested piezometers prior to sustained ground-water pumping, it is
not known how well these vertical gradients represent predevelopment conditions.

Many investigators have attempted to identify and quantify the major sources of
recharge to the ground-water system of the basin. Estimates of the quantity of recharge
contributed by various sources have been compiled in reports describing ground-water
models of the basin, such as Kernodle and others (1995). Estimates of the quantity of
mountain-front recharge along the east side of the basin range from about 11,150 to
71,630 acre-ft/yr (13,750,000 to 88,360,000 m3/yr) (Anderholm, 2000). No studies have
been performed specifically to estimate quantities of mountain-front recharge along the
Jemez Mountains in the northern part of the basin or the Ladron Mountains in the
southwest. Subsurface ground-water inflow from adjacent basins also occurs along the
margins of the MRGB, typically at fairly substantial depths. Along the northern margin

of the basin, ground water inflows from the Tertiary deposits of the upgradient Espafiola
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Basin and possibly from the Jemez volcanic deposits. Along the western margin, ground
water probably inflows from Mesozoic rocks of the San Juan Basin toward the north and
from Precambrian and Palezoic rocks toward the south. Deep ground water may also
inflow from Precambrian and Paleozoic rocks along the eastern margin of the basin, and
from Paleozoic and Mesozoic rocks in the area of the Hagan Embayment, but the
quantity of inflow in these areas is not clear.

As discussed above, water is known to seep to the ground-water system from the
Rio Grande and its tributary streams and arroyos, as well as from the irrigation system in
the Rio Grande flood plain. Kernodle and others (1995) estimated through use of their
ground-water model that about 79,000 acre-ft (9,700,000 m’) of water was contributed to
the aquifer system from the Rio Grande and associated canals during the year ending in
March 1994. The model also assumed substantial quantities of recharge from the Jemez
River, the Santa Fe River, Galisteo Creek, the Rio Puerco, Tijeras Arroyo, Abo Arroyo,
and the Rio Salado (fig. 1). Other sources that probably contribute to recharge,
particularly in the Rio Grande flood plain—where depths to water typically are less than
about 25 ft (7.6 m)—include excess irrigation water and septic systems.

Ground water discharges from the MRGB to the Socorro Basin near San Acacia
(fig. 1). Ground water also discharges within the MRGB through evapotranspiration
(particularly in the Rio Grande flood plain), ground-water pumpage, and discharge of
ground water into drains and some reaches of the Rio Grande. The Kernodle and others
(1995) ground-water model indicated that under predevelopment conditions, ground-
water discharged primarily through evapotranspiration. However, ground-water

pumpage, which was estimated by Kernodle and others (1995) to be about 152,700 acre-
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ft (188,400,000 m®) in 1990 for all uses, has substantially reduced the amount of ground-

water discharge through evapotranspiration.
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METHODS

To obtain the most accurate representation of water chemistry in the MRGB that
could reasonably be achieved, data collected specifically for the MRGB study were
supplemented with data obtained from previous studies. Supplementary data were
obtained from two main sources that were readily accessible, that contained data for a
substantial number of sample sites, and that included specific location information for
those sites. These sources, which are described below, are the USGS National Water
Information System (NWIS) database and a database maintained by the City of
Albuquerque on water chemistry from its drinking-water supply wells. No effort was
made to obtain data from sources that did not include location information for sites in
latitude and longitude or state-plane coordinates, that included only a small number of
localized sites, or that did not have data in a digital format. Aspects of sample collection

and analysis are discussed below for each data source.

MRGB Study

Collection of ground-water samples

For the MRGB study, more than 300 sets of ground-water samples were collected
at 288 ground-water sites (wells and springs) across the basin. Samples from these sites
were analyzed for a wide variety of constituents, including: major- and minor-element

chemistry, oxygen-18 and deuterium content of water, carbon-13 and carbon-14 content
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of dissolved inorganic carbon, sulfur-34 content of dissolved sulfate, tritium, and contents
of selected dissolved gases (including dissolved oxygen, nitrogen, argon, methane,
helium, tritiogenic helium-3, chlorofluorocarbons, sulfur hexafluoride, neon, and carbon
dioxide) (Plummer and others, in prep.). However, this investigation focuses mainly on
data for field parameters and major- and minor-element chemistry (Appendix I).

Ground-water sampling sites for the MRGB study were selected primarily on the
basis of location in an attempt to attain the best possible areal coverage of the basin.
Efforts also were made to locate wells with discrete sampling intervals (i.e. short
screened intervals) and groups of wells that allowed samples to be obtained from a
variety of depths within the aquifer at a given location. However, in most areas of the
basin except the vicinity of Albuquerque, so few wells were available for sampling that
well construction was not an important consideration.

Ground-water sampling sites consisted of 280 wells and 8 springs. Of the wells
that were sampled, 116 were classified as monitoring wells (wells from which water is
not obtained for any purpose other than monitoring of ground-water quality), 82 were
classified as production wells (wells used to supply water to more than 3 households or to
industrial operations), 34 were classified as domestic wells (wells used to supply water to
fewer than 3 households), 45 were classified as windmills (wells having a piston
mechanism to lift water, which is used primarily to water stock), and 3 were classified as
other (wells with submersible pumps, where water is used primarily for stock). Well
depths ranged from about 23 to 2,020 ft, with a median of about 500 ft. Screen lengths
ranged from 0 to 1,270 ft, with a median of 20 ft. Casing material was steel in at least 167

wells and polyvinylchloride (PVC) in at least 108 wells; the material was not noted for 5
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wells. Aside from the windmills and from 48 production wells equipped with turbine
pumps, most wells were sampled using either a dedicated or transportable submersible
pump. Construction information for each category of well type is summarized in table 2,
which shows that production wells typically were deepest but also had the longest
screened intervals, while monitoring wells typically provided the most discrete sampling
intervals.

For wells sampled as part of the MRGB study, at least 3 casing volumes of water
were purged and field parameters (specific conductance, water temperature, pH, and
dissolved-oxygen concentration) were allowed to stabilize before sample collection. At
each ground-water site, field parameters were recorded and samples were passed through
a 0.45-micron filter for laboratory analysis of dissolved concentrations of selected major
and minor elements. Major- and minor-element samples were collected in polyethylene
bottles, and minor-element samples were preserved with Ultrex nitric acid in the field. At
9 ground-water sites, samples for minor elements were collected using a range of filter
sizes. Differences among analytical results for samples filtered using 0.45-micron capsule
filters, tangential filtration at 0.1 microns, and tangential filtration at 30,000 Daltons were
negligible; As concentrations using the three methods differed by no more than 1 pg/L,

and were typically identical within the analytical precision of +/- 5 percent.

Collection of surface-water samples

In addition to ground-water samples, multiple surface-water samples also were
collected for the MRGB study. Samples were collected as frequently as monthly at up to
14 surface-water sites, including sites on the Rio Grande and associated drains and

irrigation canals, the Jemez River, the Rio Puerco, and Tijeras Arroyo (fig. 1), between
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Table 2.--Summary of construction information for MRGB study wells by well type [Length of
sample interval is in feet; all other data are in feet below land surface; --, no data]

Parameter Number Minimum Median Maximum
Domestic wells

Depth of well 34 55 379 985
Depth to top of sample interval 27 120 390 965
Depth to bottom of sample interval 27 130 400 980
Length of sample interval 27 0 20 40
Depth to water 32 8 252 530
Monitoring wells

Depth of well 116 23 394 1805
Depth to top of sample interval 115 10 349 1634
Depth to bottom of sample interval 115 20 415 1795
Length of sample interval 115 5 10 270
Depth to water 115 6 98 887
Production wells

Depth of well 81 81 1000 2020
Depth to top of sample interval 79 19 425 1355
Depth to bottom of sample interval 79 81 950 2000
Length of sample interval 79 18 400 1270
Depth to water 81 4 269 1101
Stock wells

Depth of well 3 120 192 460
Depth to top of sample interval 0 -- -- --
Depth to bottom of sample interval 0 -- -- --
Length of sample interval 0 -- -- --
Depth to water 2 107 139 171
Windmills

Depth of well 44 42 291 1109
Depth to top of sample interval 7 125 269 715
Depth to bottom of sample interval 7 135 279 725
Length of sample interval 7 5 10 40
Depth to water 33 13 207 991
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January 1997 and April 1999. Samples were dipped from streams rather than integrated
across their widths and depths. Surface-water samples were filtered and preserved in the
same manner as ground-water samples were, and were analyzed for the same field
parameters and major and minor constituents. Some surface-water samples were also
analyzed for selected isotopes and dissolved gases, but these data were not used in this

investigation. Chemical data for selected sites are summarized in table 3.

Sample Analysis

Analysis of major and minor elements for the MRGB study was performed in the
USGS Water Chemistry Laboratory in Reston, Virginia. Analysis of major cations and
silica was performed using a multi-element direct-current plasma spectrometer, and that
of major anions was performed using ion chromatography. The analysis of minor
elements was performed using EPA Method 200.8 (U.S. EPA, 1994) with an inductively
coupled plasma-mass spectrometer. The As detection limit was 0.1 pg/L. Further details

of analytical techniques and quality-control measures are given in Busenberg and others

(2000).

Data Selection

Site locations, sample reference numbers (three numbers preceded by “NM”), and
well-construction information are listed in Appendix I for the MRGB study ground-water
samples that were included in the main body of data discussed in this report; site
locations also are shown in figure 10. Data from some of the ground-water sites sampled
for the MRGB study have not been included in this main body of data. Data for a few

sites were removed from the data set because the sites fell outside of the boundaries of
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the MRGB and were known to have produced water from an aquifer system other than
that of the Santa Fe Group. Data for other sites were removed because the sites were
sampled more than once; in these cases, the more recent sample data were retained. Data
for a few other selected sites were removed from the main data set describing the typical
regional occurrence of As in the MRGB because they were determined not to be
representative of regional water quality. Examples are data from wells that were believed
to produce water from a perched system not in hydraulic connection with the Santa Fe
Group aquifer system, wells that were believed to have been affected by contamination
from landfills or other sources, wells that were believed to have been strongly affected by
local evapotranspiration, wells that were believed to produce water associated primarily
with geothermal systems, and wells that were believed to have been affected only locally
and at relatively shallow depths by surface-water bodies. Some of these data are
nevertheless discussed in terms of unusual waters that could represent certain sources of
As to the basin; these data are listed in a separate section of Appendix L.

No data were removed from the MRGB data set based on analytical ion balances
for major elements. Only three samples that had not been removed from the data set for
other reasons did not balance to within ten percent (balances were calculated as the
difference between the total meq/L of cations and the total meq/L of anions divided by
the average of these two numbers, then multiplied by 100 to obtain a value in percent);
these were NMO071, NMO075, and NM523. Laboratory analyses were repeated for these
samples and the cause of the problem with ion balance was determined to likely be faulty

alkalinity values, which could not be repeated.
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USGS NWIS Database

The NWIS database maintained by the New Mexico District Office of the USGS
includes water-chemistry data for ground-water sites (including both wells and springs)
across New Mexico. In addition to chemical analyses for samples collected primarily by
the USGS as early as 1941, the database contains latitude and longitude for each sample
site and typically includes well-construction information. For this report, all available
ground-water samples obtained from sites located within the MRGB were retrieved from
the database. Samples that did not include trace-element analyses were then removed
from the data set. All but one of these samples had associated major-element analyses.
Samples with major-element analyses that did not give an ion balance of ten percent or
better also were discarded. Finally, duplicate ground-water samples for the same site
were eliminated. In general, the most recent sample was retained, unless an older sample
was analyzed for more parameters. For the same ground-water site, a sample collected
specifically for MRGB study was always retained over any samples available from the
NWIS database. Site locations and sample reference numbers (three numbers preceded by
“DB”), in addition to well-construction and water-level information (where available),
are listed in Appendix I for all NWIS ground-water samples that were retained in the
final data set. Ground-water sites where these samples were collected are shown in figure
11. Surface-water samples having dissolved As data also were retrieved from the NWIS
database for selected sites (table 3 and figs. 10 and 11) to analyze the presence of As in
potential sources of recharge to the ground-water system.

Chemical analysis of most NWIS samples was performed at a USGS laboratory;

methods of analysis vary because the dates of sample collection encompass many years.
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All minor-element samples are believed to have been passed through 0.45-micron filters

and acidified in the field.

City of Albuquerque Database

Since 1988, the City of Albuquerque has periodically collected and analyzed
water-quality samples from its drinking-water supply wells (fig. 12) through a voluntary
effort to improve understanding of the regional ground-water resource. The database that
has been compiled as a result of this effort is described by Bexfield and others (1999),
which also describes methods of sampling and analysis. In particular, major- and minor-
element samples were not filtered and minor-element samples were acidified on the day
of collection. Arsenic was analyzed by graphite furnace atomic absorption spectroscopy.
Iron, Mn, and Zn were analyzed by atomic absorption spectroscopy; other trace elements
generally were analyzed using an inductively coupled plasma-optical emission
spectrophotometer (ICP-OES). Major cations also generally were analyzed by ICP-OES.
Other than bicarbonate, which was determined by titration, analysis of major anions was
performed by ion chromatography.

The median constituent concentrations presented by Bexfield and others (1999)
for each of 93 drinking-water supply wells were included in the data set used for this
investigation. Also included were median values from one additional municipal well
(College 3) that had been sampled several times, but had been removed from service as a
drinking-water supply well (and, therefore, had not been included in the Bexfield and
others report). Median values of the major ions for 93 of these 94 wells gave ion balances
within 11 percent; one well (Vol Andia 1) had an ion balance of 15 percent. The median

chemical values should be reasonably representative of “typical” water chemistry for the
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city wells, especially given that Bexfield and Anderholm (in press) found that temporal
variability for most chemical parameters was typically quite small (values generally
varied by less than 20 percent, including As values). For drinking-water supply wells that
had also been sampled specifically for the MRGB study, the City of Albuquerque data
were eliminated. However, City of Albuquerque data were retained in favor of historical
NWIS data when data existed from both of these sources for the same well. Site locations
and sample reference numbers (two or three letters designating the well field, followed by
two digits designating the well number), in addition to well-construction and water-level
information, are listed in Appendix I for all City of Albuquerque median ground-water
compositions that were retained in the final data set.

Data from the unfiltered City of Albuquerque samples are believed to be
comparable to those of the filtered samples from the MRGB study and the NWIS
database. This conclusion is based on the results of the filtration test described above for
selected MRGB ground-water sites, in which differences observed among results for the
various levels of filtration were generally within analytical error, as well as on
comparison of filtered samples for the MRGB study with median values of unfiltered

samples from the city database for the same site.
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HYDROCHEMICAL FRAMEWORK OF THE MIDDLE RIO GRANDE BASIN

Investigation of the occurrence and behavior of As in ground water of the MRGB
requires a fundamental understanding of the complex hydrologic system of the basin and
consideration of the large regional variation in water chemistry. The large number of
samples and wide range of chemical and isotopic substances analyzed as a part of the
MRGB study were used to delineate 13 separate water-quality zones having unique
chemical characteristics that appear to change little as water moves through the basin (fig.
13) (Plummer and others, 2001a). These zones represent 12 sources of ground-water
recharge to the basin and one area of ground-water discharge. Plummer and others
(2001a) summarize median values of selected chemical parameters, stable isotopes, and
radiocarbon ages for the water-quality zones. The different chemical characteristics of
ground water in these zones complicate investigation of relationships between As and
other chemical parameters. The differences in chemical characteristics are demonstrated
by the median parameter values given in table 4 (which differ in some cases from values
in Plummer and others (2001a) because selected samples were removed from the data set
used in this study, as described in the Methods section) and the representative major-
element compositions shown in figure 14, where the water types used below are defined.

Three distinct water-quality zones receive ground-water recharge from areas north
of the MRGB (fig. 13). Ground water of the Northern Mountain Front zone is

characterized by small specific conductance and pH relative to other water-quality zones
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(table 4). Ground water in this zone tends to have particularly small concentrations of Cl,
Na, SO, and several minor elements, but particularly large SiO, concentrations. The
dominant water type is Ca / CO3; + HCOs. The major-element compositions of most
samples from the Northern Mountain Front zone imply that the primary source of
recharge is mountain-front recharge along the eastern part of the Jemez Mountains, which
consist largely of Tertiary volcanic rocks. However, some samples show evidence of
mixing with a high-Cl water. Some important processes in the zone may include silicate
weathering, ion exchange, and calcite dissolution. The median radiocarbon age of ground
water in the zone is 8.8 thousand years before present (ka BP) (Plummer and others,
2001a). According to geologic maps available for the area (Smith and others, 1970;
Smith and Kuhle, 1998; Connell and others, 1999), most wells sampled in this zone are
completed in the Cochiti Formation, the Arroyo Ojito Formation, or axial river deposits
of the Rio Grande (fig. 7). Ground water of the zone appears to flow from the Jemez
mountain front to the south and east, probably discharging to the Rio Grande and/or
mixing with greater quantities of water from other water-quality zones to the south.
Compared to most other zones, ground water of the Northwestern zone generally
has relatively small specific conductance, relatively large pH, relatively small
concentrations of Ca, Mg, Cl, and SOy, and relatively large concentrations of NO; and
some minor elements (table 4). Silica concentrations are substantially smaller than those
of the adjacent Northern Mountain Front zone. The dominant water types are Na + K /
and mixed-cation / CO3; + HCOs. The compositions of most ground-water samples from
the Northwestern zone (including stable-isotope compositions) imply that the primary

source of water is recharge at relatively low elevations along the western base of the
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Jemez Mountains, although a few samples show evidence of local mixing with
infiltration from the Jemez River. The median radiocarbon age of ground water in the
Northwestern zone is 8.8 ka BP. Wells appear to be completed in either the Zia Sand
Formation of Miocene time or the Cochiti or Arroyo Ojito Formations (fig. 7) (Smith and
others, 1970; Craigg, 1992; Connell and others, 1999). Ground water of the zone
probably flows primarily southward and mixes at its southern end with greater quantities
of water from other, downgradient zones.

Ground water of the West-Central zone typically has moderate specific
conductance relative to other zones (table 4). Ca, Mg, and Sr concentrations are
particularly small, while pH values, Na concentrations, and some minor-element
concentrations are particularly large. The dominant water type is Na + K / CO3 + HCOs,
although Na + K / mixed-anion and Na + K / SO4 water types also are relatively
common. The median radiocarbon age of ground water in the West-Central zone is 19.9
ka BP. Ground water of the zone appears to extend most of the length of the MRGB and
flows at depth under the Northwestern zone and probably parts of the Northern Mountain
Front and Central zones. The major-element compositions of most samples from the
West-Central zone show that the water probably recharged in the area of the Jemez
Mountains. The old ages of West-Central-zone ground water, along with light stable
isotopes, imply that ground water in the zone recharges farther north than recharge to the
overlying Northwestern zone and generally travels longer, deeper flow paths into the
basin. However, the exact area of recharge is uncertain. Most wells appear to be
completed in the Zia Sand Formation, Arroyo Ojito Formation, or Cochiti Formation,

whereas those at the southern end may be completed in sediments of the Sierra Ladrones
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Formation (fig. 7) (Smith and others, 1970; Craigg, 1992; Connell and others, 1998b;
Connell and others, 1999). Ground water of the zone probably flows primarily south,
discharging to the Rio Grande at its southern end and possibly mixing with water of the
Central zone along its eastern boundary.

Three distinct water-quality zones exist along the western margin of the MRGB
(fig. 13). Ground water of the Western Boundary zone typically has the largest specific
conductance of any zone (table 4). Concentrations of Na, K, and Cl are particularly large.
The typical water types are Na + K / Cl and Na + K / mixed-anion. Ground water of the
Western Boundary zone probably is a mixture of Na-Cl brine leaking into the basin from
Paleozoic rocks (typically limestone, sandstone, and shale) along the western margin and
infiltrating precipitation/arroyo flow within the basin. The median radiocarbon age of
ground water in the Western Boundary zone is 20.4 ka BP. Most wells of the zone appear
to be completed in sediments of the Sierra Ladrones Formation that were derived either
from the western piedmont or the ancestral Rio Puerco and Rio San Jose (Connell and
others, 1999). Ground water of the zone probably flows primarily to the southeast,
discharges to the Rio Grande at its southern end, and mixes with water of the Rio Puerco
zone along its eastern boundary (fig. 13).

Ground water of the Rio Puerco zone typically has the second-largest specific
conductance and the largest SO4 concentration of any zone. The dominant water types are
mixed-cation / and Na + K / SO4. The median radiocarbon age of ground water in the Rio
Puerco zone is 8.1 ka BP. Ground water of this zone likely is a mixture of water from the
Western Boundary zone with surface water that infiltrates through the Rio Puerco and/or

ground water that leaks into the basin from Mesozoic rocks (typically Cretaceous
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sandstone and shale with local Jurassic gypsum and clastic units) along the northwestern
boundary. Most wells of the zone appear to be completed in sediments of the Sierra
Ladrones Formation that were derived from the ancestral Rio Puerco and Rio San Jose
(Connell and others, 1999). Ground water of the zone probably flows primarily southeast,
discharges to the Rio Grande, and possibly mixes with some water of the West-Central
zone along its eastern boundary.

The Southwestern Mountain Front zone is delineated on the basis of only two
samples, so that analysis of the ground-water chemistry of the zone is difficult. The
median values of the two samples in the zone indicate that specific conductance is
moderately small (particularly compared to water of the Western Boundary and Rio
Puerco zones), as are concentrations of Na and K (table 4). Water types of the two
samples are mixed-cation / and Ca / COs + HCOs; the single available radiocarbon age
for the zone is 7.4 ka BP. The compositions of the two samples indicate that the primary
source of water probably is mountain-front recharge along the Ladron Mountains, which
consist mainly of Precambrian granitic and metamorphic rocks. Ground water of the zone
probably mixes with greater quantities of water from the downgradient Western
Boundary zone to the southeast, although some water may discharge to the Rio Grande.

Five water-quality zones receive ground-water recharge primarily from sources
located along the eastern boundary of the MRGB (fig. 13). Ground water of the Eastern
Mountain Front zone typically has the second-smallest conductance of any zone (table 4).
Compared to other zones, concentrations of Mg, Na, CI, SO, and several minor elements
are relatively small. The dominant water type is Ca / CO3; + HCOj. The major-constituent

compositions of most samples from the zone are consistent with a mountain-front
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recharge source along the Sandia, Manzanita, and Manzano Mountains, which consist
primarily of west-facing Precambrian metamorphic and plutonic rocks that are overlain
by Paleozoic limestone and sandstone (Anderholm, 1988; Hawley and Haase, 1992).
However, several samples downgradient of the mountain front show evidence of mixing
with high-Cl water. Ground water of the Eastern Mountain Front zone has a median
radiocarbon age of 5.2 ka BP. Most wells appear to be completed in piedmont deposits in
the eastern part of the zone or in axial-river deposits of the Rio Grande farther from the
mountain front (Connell, 1997; Connell and others, 1998a; Connell and others, 1998b;
Connell and others, 1999). Ground water of the zone probably flows primarily west and
south and discharges to the Rio Grande at its southern end, possibly mixing with water of
the Central zone along its western boundary.

Ground water of the Abo Arroyo zone typically has a moderately large specific
conductance; concentrations of Mg, SO4, and NOj are relatively large (table 4). The
typical water type is mixed-cation / SO4. Ground-water compositions from much of the
Abo Arroyo zone appear to be consistent with a major recharge source being infiltration
through the arroyo, which drains mostly Paleozoic sedimentary rocks and some
crystalline Precambrian rocks (Anderholm, 2000). However, a few samples indicate that
substantial mixing occurs locally with water that recharged along the mountain front or
through the Rio Grande. The median radiocarbon age of ground water in the Abo Arroyo
zone is 9.4 ka BP. Most wells of the zone probably are completed in either piedmont
deposits or axial channel deposits of the Rio Grande (Connell and others, 1999). The

ground water probably flows primarily southwest and discharges to the Rio Grande in
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some areas and mixes with, or possibly evolves to, water of the Discharge zone in other
areas.

Ground water of the Tijeras Fault Zone zone typically has a relatively large
specific conductance (table 4). Compared to other zones, pH values and SiO,
concentrations are relatively small, whereas alkalinity values and concentrations of Ca,
Mg, Cl, and SO, are relatively large. Mixed-cation / CO3; + HCOj is the most common
water type. Ground water of the zone appears to contain at least a fraction of high-Cl
water, such as from deep fracture systems, that likely mixes with shallow mountain-front
recharge water. Rocks present in the area include Precambrian granitic rocks and
greenstone and Pennsylvanian limestone. The median radiocarbon age of ground water in
the Tijeras Fault Zone zone is 16.3 ka BP. Most wells of the zone probably are completed
in either Paleozoic rocks (Grace Haggerty, Gram, Inc., written commun., 1996) or basin-
fill deposits derived from the eastern piedmont (Connell and others, 1999). Ground water
of the zone probably mixes with greater quantities of more dilute water from the Eastern
Mountain Front zone downgradient to the southwest.

Ground water of the Tijeras Arroyo zone typically has a moderate specific
conductance (table 4). Compared to other zones, pH values and concentrations of Na, K,
Si0,, and several minor constituents are relatively small, while alkalinity values and
concentrations of NOjs are relatively large. Concentrations of SOy also are large relative
to the Eastern Mountain Front zone. Water types are Ca / COs; + HCOj; and Ca / mixed-
anion. Ground-water samples from the Tijeras Arroyo zone generally appear to be a
mixture of dilute mountain-front recharge water and infiltration through Tijeras Arroyo,

which drains primarily Paleozoic and Precambrian rocks east of the basin. With greater
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distance downgradient, dilute mountain-front water dominates the chemical composition
of the ground water to a greater degree. The median radiocarbon age of ground water in
the Tijeras Arroyo zone is 3.2 ka BP. Most wells of the zone likely are completed either
in stream alluvium (Karlstrom and others, 1994) or sediments from the eastern piedmont
(Connell and others, 1998a ; Connell and others, 1999). Water of the zone probably flows
primarily west and south and mixes with a greater quantity of water from the Eastern
Mountain Front and/or Central zone.

Ground water of the Northeastern zone typically has a relatively large specific
conductance (table 4). Compared to other zones, alkalinity values and concentrations of
Ca, Na, Sr, SOy, and SiO; are relatively large. The dominant water types are Ca / SO4 and
mixed-cation / SO4. Ground water in the zone appears to be derived from more than one
primary source, including mountain-front recharge water, arroyo infiltration, and/or
ground-water inflow from gypsum-containing rocks outside the basin. The median
radiocarbon age of ground water in the Northeastern zone is 10 ka BP. Most wells of the
zone probably are completed in either piedmont deposits, which include abundant
volcanic rocks in the Hagan embayment, or axial channel deposits of the Rio Grande
(Smith and Kuhle, 1998; Connell and others, 1999; Sean Connell, NMBGMR, written
commun., 2001). Ground water of the zone probably flows primarily northwest and
discharges to the Rio Grande.

Two water-quality zones are located mainly near the center of the MRGB (fig.
13). Ground water of the Central zone, which extends parallel to the Rio Grande along
much of the length of the basin, typically has a relatively small specific conductance

(table 4). Compared to other zones, concentrations of dissolved oxygen (DO), Na, and
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SOy, are relatively small, whereas concentrations of K and SiO; are relatively large. The
dominant water types are Ca / CO; + HCOj; and mixed-cation / CO; + HCOj. The
composition of ground water in the zone, including isotopic composition, generally
appears consistent with a primary source from the Rio Grande. However, some ground-
water samples have unusually large CI concentrations and may be affected by
evapotranspiration or mixing with high-Cl water. The median radiocarbon age of ground
water in the Central zone is 4.3 ka BP. Most wells of the Central zone probably are
completed in either the Quaternary alluvium or axial channel deposits of the Rio Grande
or in sediments of the Arroyo Ojito Formation (Connell, 1997; Connell and others, 1998a
and b; Connell and others, 1999). Ground water of the zone probably flows primarily
south and discharges to the Rio Grande.

Ground water of the Discharge zone, located at the southern end of the MRGB,
typically has a relatively large specific conductance (table 4). Compared to other zones,
concentrations of Na, K, Cl, Si0O,, and several minor elements are relatively large and DO
concentrations are relatively small. Water types are somewhat varied, but anions tend to
be mixed or dominated by Cl. Ground water of the Discharge zone probably contains
fractions of both ground water observed in adjacent water-quality zones and deep, high-
Cl ground water that is moving upward as a result of the convergence of structural
boundaries at the southern end of the MRGB. The median radiocarbon age of ground
water in the zone is 17.9 ka BP. Most wells of the zone appear to be completed in fluvial
deposits of the ancestral Rio Grande or ancestral Rio Puerco and Rio San Jose (Connell
and others, 1999). Ground water of this zone probably discharges to the Rio Grande or to

the Socorro Basin to the south.
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GEOCHEMISTRY OF ARSENIC

Arsenic is a metalloid that exists in nature in a range of oxidation states from —3
to +5 and can form a substantial number of inorganic and organic compounds. Its crustal
abundance has been estimated at about 2.0 to 3.0 parts per million (Cullen and Reimer,
1989; Robertson, 1989). When igneous rocks are formed, As generally is separated in the
later stages of cooling magmas (Robertson, 1989) and typically is strongly enriched in
volcanic gases compared to the magmas (Chapin and Dunbar, 1994). Arsenic tends to be
relatively abundant and mobile in rocks formed by silicic volcanism and in associated
volcaniclastic sediments and hydrothermal systems (Chapin and Dunbar, 1994). Welch
and others (1988) state that As tends to be relatively high in volcanic glass,
aluminosilicate minerals, and igneous rocks containing iron oxide because As readily
substitutes for silicon, ferric iron, and aluminum in crystal lattices of silicate minerals.

Arsenic concentrations generally are larger in sedimentary rocks than in igneous
and metamorphic rocks (Welch and others, 1988). In particular, As concentrations can be
particularly large in shales and clays as a result of adsorption by clay minerals (typically
in nonmarine environments) or incorporation in pyrite and organic matter (typically in
marine environments); by contrast, As concentrations in sandstones and carbonate rocks
generally are relatively low (Welch and others, 1988). According to Robertson (1989),
the most common compounds of As are the sulfides in the reduced form and arsenates in

the oxidized form. Arsenic-bearing minerals include realgar (AsS), orpiment (As;S3),
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arsenopyrite (FeAsS), claudetite (As,03), arsenolite (AssOg), arsenic pentoxide (As;Os),
and scorodite (FeAsO4-2H,0).

Arsenic in natural waters is most commonly present as either As (III) or As (V),
and generally exists as an oxyanion. Arsenate (H,AsO4 ™) is the most stable species in
oxygenated waters, while arsenite (H,AsO3"™) dominates under reducing conditions, such
as those typically found in deep ground-water flow systems. The particular species that
dominate at equilibrium under particular conditions of pH and Eh are shown in figure 15.
However, it has been demonstrated that the distribution of arsenate versus arsenite
generally cannot be predicted through field Eh measurements or data for other redox
couples (Welch and others, 1988).

Arsenite, which is a substantially more toxic form of As than arsenate, tends to be
the more mobile form because it is not as easily adsorbed to the surfaces of minerals and
compounds, such as oxides of iron and aluminum. Laboratory studies have shown that
the sorption of As by amorphous iron oxides is dependent on both Eh and pH. The
greater adsorption of arsenate relative to arsenite has been attributed to the differing
charges of the species that dominate at particular pH values as a result of differing pK,’s
(Cullen and Reimer, 1989; Smith and others, 1999). At pH values typical of most natural
waters, arsenate is present as the negatively charged H,AsO4 or HAsO,” species,
whereas arsenite is present as the neutral H3AsOj species (fig. 15); therefore, electrostatic
interaction with sediment surfaces is generally greater for arsenate species. Arsenite
sorption tends to increase with pH, at least partly due to dissociation of H3AsOj; to
H,AsOs'. In contrast, arsenate is less strongly adsorbed at pH values larger than about 7.0

to 8.0 than at smaller pH values, probably due to competition from hydroxide ions for
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sorption sites (Boyle and others, 1998; Smith and others, 1998; Welch and others, 1988;
Welch and others, 2000). The generally greater sorption of arsenate relative to arsenite
means that arsenic mobility is likely to be increased when aquifer conditions change from
oxidizing to reducing. Also, increases in pH values can have different implications for the
mobility of arsenic depending on whether arsenate or arsenite species dominate.

Welch and others (2000) compiled data on the occurrence of As in natural waters.
They indicate that the concentration of As in rain in unpolluted areas generally is
considerably less than 1 pg/L, and that As concentrations in most streams and rivers in
the United States also are 1 ug/L or less. Arsenic concentrations in thermal waters were
generally found to be larger than concentrations in non-thermal waters. Arsenic
concentrations in ground water of the United States were found to vary somewhat for
different physiographic provinces. The 75" percentile of As concentration equaled or
exceeded 5 pg/L for the Intermontane Plateaus and Pacific Mountain System provinces.
Figure 16 shows that arsenic concentrations retained in the data set for this investigation
of ground water in the MRGB generally are somewhat larger than concentrations
throughout the Intermontane Plateaus province, in which the MRGB is located. Welch
and others (2000) state that As in ground water can be both dissolved and particulate-
bound, and that even ground-water samples passed through 0.45-micron filters can
contain some particulate-bound component.

Previous studies have found that a variety of processes affect As concentrations in
ground water. These processes include evaporative concentration, the presence of thermal
water, mineral precipitation/dissolution, adsorption/desorption, chemical transformations,

ion exchange, and biological activity (Welch and others, 1988; Welch and others, 2000).
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Figure 16.--Comparison of arsenic concentrations in ground water of the Middle
Rio Grande Basin with those summarized by Welch and others (2000) for various

physiographic provinces.
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In some cases, elevated As concentrations have been associated with anthropogenic
sources, such as agricultural and industrial uses.

Several previous studies have suggested that the dissolution of As-bearing sulfide
or iron minerals can be the primary source of As in ground water. For example, sulfide
minerals have been proposed as the likely source of As to ground water in parts of the
northeastern United States (Welch and others, 2000). Oxidation of As-containing pyrite
as a result of increasingly oxidizing conditions over time has been proposed as a source
of As to ground water in Wisconsin (Burkel and Stoll, 1999). Reductive dissolution of Fe
oxides has been proposed as an important source of As to ground water in Bangladesh
and West Bengal (Chowdhury and others, 1999; Nickson and others, 2000), and has been
shown to release As from contaminated soils (Masscheleyn and others, 1991). The
occurrence of alkaline conditions and introduction of a competing anion have been
proposed as mechanisms for the release of As sorbed onto metal oxides (Welch and
others, 2000). Welch and others (1988) state that elevated As concentrations in ground
water have not been shown to be associated with the substitution of As in aluminosilicate

minerals.
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ARSENIC CONCENTRATIONS IN WATERS OF THE MIDDLE RIO GRANDE
BASIN

Surface Water

As discussed above, both the Rio Grande and several ephemeral streams have
been shown to contribute recharge to the Santa Fe Group aquifer system. Data on the As
concentrations in surface water of these streams can be used to characterize their
potential to contribute As to the ground-water system. Chemical data, including arsenic
concentrations, for surface water in several of these streams is available from the MRGB
study and the USGS NWIS database. These data are summarized in table 3 and discussed
below.

Although the major-element compositions of ground water in the MRGB indicate
only very local recharge from the Jemez River, this river is of particular interest with
respect to As concentrations because it is fed partially by ground-water discharge in its
upper reaches, including discharge from geothermal springs known to have As
concentrations exceeding 1 mg/L (Trainer, 1974; Shevenell and others, 1987). The Jemez
River also flows into the Rio Grande, which is known to recharge the aquifer over large
areas. For the 18 surface-water samples in the USGS NWIS database that have both
dissolved-As data and discharge measurements at the Jemez River near Jemez (fig. 10a

and table 3), As concentrations range from 7 to 54 pg/L; the discharge-weighted average

As concentration is 18 pug/L. For the 23 such samples at the Jemez River below Jemez
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Canyon Dam (fig. 10a and table 3), As concentrations range from 8 to 59 pg/L; the
discharge-weighted average As concentration is 12 ng/L. Twelve samples also were
collected at each of these Jemez River sites as part of the MRGB study. For the site near
Jemez, the range in As concentrations in the MRGB samples is 6.7 to 77 pg/L; the
median As concentration is 42 pg/L. For the site below Jemez Canyon Dam, the range in
As concentrations is 21 to 28 pg/L; the median As concentration is 24 pg/L. As a whole,
these data indicate that As concentrations in the Jemez River near and within the MRGB
commonly exceed 10 pg/L.

Arsenic concentrations in the Rio Grande, which is believed to be the primary
recharge source for the Central water-quality zone, typically are smaller at sites located
above the inflow of the Jemez River than at sites located farther south. USGS NWIS data
for 44 surface-water samples collected from the Rio Grande at San Felipe (above the
Jemez River inflow) (fig. 11a and table 3) range from less than 1.0 to 4.0 pug/L; the
discharge-weighted average concentration is 1.7 pug/L. Data for 13 samples collected
from the Rio Grande at Albuquerque (fig. 11b and table 3) range from 2.0 to 4.0 pug/L;
the discharge-weighted average concentration is 2.9 pug/L. Twenty-two surface-water
samples collected at a site on the Rio Grande in northern Albuquerque for the MRGB
study (fig. 10b and table 3) had As concentrations ranging from 1.9 to 5.3 pug/L; the
median was 3.2 pg/L. Arsenic concentrations in the MRGB study samples generally
increase during the winter and spring, when the Jemez River contributes a larger
percentage of the flow of the Rio Grande (fig. 17). As a whole, these data indicate that As

concentrations in the Rio Grande at and above Albuquerque do not commonly exceed 4

png/L.
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Figure 17.--Arsenic concentrations in the Rio Grande in northern Albuquerque
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Although the data sets are relatively small, some As data are also available for
other streams that are known to contribute recharge to the aquifer of the MRGB. Twelve
historical surface-water samples from the USGS NWIS database for the Rio Puerco at
Bernardo (fig. 11a and table 3) indicate that As concentrations typically are quite low; all
samples have concentrations of 2 pg/L or less. However, 9 samples collected farther
north for the MRGB study (fig. 10a and table 3) show that As concentrations in the Rio
Puerco can range from 1.1 to 12 ug/L and generally increase with increasing specific
conductance; the median As concentration was 5.5 pg/L. Surface-water samples collected
from Abo Arroyo for the MRGB study (fig. 10a and table 3) have As concentrations of
only 1.5 and 2.1 pg/L; no chemical data were available for the arroyo from the USGS
NWIS database. Twelve surface-water samples for Tijeras Arroyo from the USGS NWIS
database (fig. 11b and table 3) all have As concentrations of 1.0 pug/L or less. Twenty-two
samples collected from the same area for the MRGB study (fig. 10b and table 3) range in
As concentration from 0.5 to 1.8 ug/L; the median concentration is 0.9 pg/L.

Similar to data collected from Abo and Tijeras Arroyos, data for Bear Canyon
Arroyo, a small stream located along the Sandia Mountains near Albuquerque (fig. 10b
and table 3), also indicate that As concentrations in ephemeral streamflow near the
eastern mountain front typically are quite low. Twenty samples collected for the MRGB
study at this site have As concentrations ranging from 0.1 to 0.5 pg/L; the median

concentration is 0.2 pg/L.
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Ground Water

Areal variations

Concentrations of As in ground water sampled in the MRGB range from less than
1 pg/L to more than 600 pg/L (Appendix I). The median As concentration for all ground-
water samples compiled for this investigation within the MRGB is 5.3 pg/L. This median
value probably is not representative of ground water throughout all locations and depths
of the MRGB as a whole because the density of sample sites was larger in the
Albuquerque area than across the rest of the basin, and most samples were obtained from
wells completed in the upper few hundred feet of the aquifer. However, because most of
the wells sampled were completed in parts of the aquifer used for drinking-water
supplies, the median value of 5.3 pg/L probably is representative of the median As
concentration in that part of the ground-water resource that is currently used. The 70"
percentile of As concentrations for the basin is 10 pg/L; apparently, then, nearly one third
of the wells supplying ground water for various uses in the basin do not meet the new
U.S. EPA drinking-water standard of 10 pg/L (Federal Register, January 22, 2001).

Arsenic concentrations in the MRGB tend to be larger in the northwestern and
central parts of the basin than along most basin margins (fig. 18). Concentrations near the
eastern and western boundaries of the basin typically are less than about 3 pg/L, as are
concentrations near the eastern half of the Jemez mountain front. Arsenic concentrations
in the central part of the basin typically range between about 3 and 15 pg/L, although

concentrations in several areas commonly exceed 20 pg/L. The most extensive areas of
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As concentrations larger than 20 pg/L occur in the northwestern and north-central parts
of the basin; other, more localized areas of elevated As occur in the northeast part of
Albuquerque and small parts of the southern half of the basin. No obvious or consistent
trends in the areal patterns in As concentration (either increasing or decreasing) are seen
with ground-water flow direction in the basin.

Arsenic concentrations appear to show a significant amount of variation with
respect to water-quality zones (fig. 19). Arsenic concentrations are consistently small
(90th percentile of less than 10 pug/L) in the Western Boundary, Rio Puerco, Southwestern
Mountain Front, Tijeras Fault Zone, and Tijeras Arroyo zones, which all have median As
concentrations of 2.2 pug/L or less. The Northern Mountain Front, Abo Arroyo, Eastern
Mountain Front, Northeastern, and Central zones include both high- and low-As areas. In
these five zones, As concentrations typically range from about 1 pg/L to more than 20
pg/L, and the median As concentrations vary between 2.0 pg/L for the Eastern Mountain
Front zone and 5.4 ng/L for the Central zone. Arsenic concentrations are consistently
large (10" percentile of greater than 3 pg/L) in the Northwestern, West-Central, and
Discharge zones, which all have median As concentrations of 9.8 pg/L or more; the
West-Central zone has the largest median As concentration (23 pg/L) of any zone. The
occurrence of elevated As concentrations throughout the Northwestern and West-Central
zones implies that As is already present in water recharging along the basin margins to
these zones. Combined with knowledge of the hydrologic system of the MRGB and the
general chemical character of ground water across the basin, these distinct patterns in As
concentration by water-quality zone allow for several conclusions to be drawn about the

sources and processes most likely to be affecting As concentrations.
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Variations with depth

In the MRGB, ground-water samples from deep piezometer nests (figs. 10 and
11), which have been installed primarily in the vicinity of Albuquerque, have provided
important information about differences in water quality with depth in the aquifer. The
amount of variability observed in As concentrations with depth ranges widely, from
about 3 pg/L across 1,200 ft of aquifer to more than 100 pg/L across 550 ft of aquifer
(figs. 20a and b).

Graphs of variability in As concentrations with depth below the water table (figs.
20a and b) were divided into two groups based on piezometer location; this division was
made to enhance readability rather than to imply differences in the behavior of As
concentrations with depth between the two areas. The graphs indicate that As
concentrations consistently increase by a total of at least 5 micrograms per liter with
depth below the water table in eleven piezometer nests (A, E, G, H, [, K, N, P, Q, R, and
S). Of these eleven piezometer nests, one is completed entirely in water of the
Northwestern zone, five are completed entirely in water of the Central zone, three show a
transition from Central to West-Central zone water with increasing depth, and two show a
transition between Central to Eastern Mountain Front zone water with depth. Arsenic
concentrations show little change with depth in six piezometer nests (D, J, L, M, O, and
T), completed mostly in water of the Central or Eastern Mountain Front zone. In the three
piezometer nests (B, C, and F) completed entirely in water of the West-Central zone, the
As concentration of the deepest piezometer is substantially smaller than the As
concentration in at least one shallower piezometer. Only six piezometer nests produced

ground water with an As concentration of 10 ug/L or less from all completions. These
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graphs indicate that in areas represented by these piezometer nests, ground water meeting
the new U.S. EPA drinking-water standard of 10 pg/L for As cannot be obtained by
increasing the depth of wells. However, these graphs also indicate that there are areas of
the basin where As concentrations do not show consistent and substantial increases with

depth, at least in the upper several hundred feet of the aquifer.
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POSSIBLE FACTORS AFFECTING ARSENIC CONCENTRATIONS IN
GROUND WATER

Because elevated As concentrations occur across broad areas of the MRGB, any
conceptual model to explain the occurrence and behavior of As in the basin must consider
sources and processes that can have effects across large areas. Therefore, although the
possibility exists that land-use practices (such as industry, mining, and agriculture) have
affected the As concentrations of ground water in very localized areas, land use is not an
especially important consideration in this basin, which consists primarily of rangeland.
Similarly, the absence of substantial quantities of organic matter in the aquifer in nearly
all areas except the Rio Grande inner valley implies that biologically mediated reactions
are unlikely to be a primary control on As concentrations in the basin. As discussed in the
previous section on As geochemistry, other, larger-scale processes that have been
investigated elsewhere as major controls on As concentrations in ground water include
evaporation, mineral dissolution and precipitation, adsorption and desorption processes,
and the presence of water associated with thermal sources. The evidence for and against
the importance of such processes in affecting As concentrations in ground water of the
MRGB is discussed below, and characteristics that are useful in determining the most

important processes in selected water-quality zones are summarized in table 5.
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Mineral dissolution

As discussed earlier, several previous studies of elevated As concentrations in
ground water have suggested that the dissolution of As-bearing sulfide or iron minerals
can be the primary source of As. In the MRGB, the dissolution of such minerals appears
unlikely to be a major source of dissolved As to ground water.

The presence of dissolved oxygen and nitrate indicates oxidizing conditions
throughout the aquifer at the depths sampled, except at relatively shallow depths in the
Rio Grande inner valley (fig. 1). The predominance of oxidizing conditions across large
areas of the aquifer is supported by data from the University of Houston As speciation
study of City of Albuquerque drinking-water supply wells (Bill Lindberg, written
commun., 2000), which showed that more than 90 percent of the As present in ground
water from 76 of 87 wells was in the form of As (V). Therefore, although Fe oxides are
known to be present in the Santa Fe Group aquifer (Stanton and others, 2001a and b), the
reducing conditions that would favor dissolution generally are not present. Also,
calculations of Pearson correlation coefficients (also known as r-values) for the Central
zone—the primary zone having reducing conditions—indicated insignificant correlations
for As with DO and NOj3, and insignificant or negative correlations for As with Fe and
Mn (table 5); these results are not consistent with an increase in As resulting from the
dissolution of Fe or Mn oxides.

Dissolution of sulfide minerals also is not a likely source of As because sulfide
minerals are not common in sediments of the Santa Fe Group aquifer system (Hawley
and Haase, 1992; Stanton and others, 2001a and b). Furthermore, sulfur isotope data

(L.N. Plummer, unpublished data, 1999) indicate that most SO, present in ground water
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of the MRGB is derived from dissolution of evaporite deposits present along some basin
margins rather than from oxidation of sulfide minerals. Also, Stanton and others (2001a
and b) found that 10 percent or less of As present in a core obtained from the western part
of Albuquerque was associated with the sulfide/organic fraction of the core. Pearson
correlation coefficients calculated for water-quality zones with substantial concentrations
of As do not show the strong positive correlations between As and SO4 and negative
correlations between As and pH that would be expected if As concentrations were

increasing as a result of sulfide dissolution (table 5).

Adsorption processes

As discussed earlier, arsenate ions (HAsO,” in the pH range of about 6.8 to 11.6
and H,AsOy in the pH range of about 2.2 to 6.8), which likely are the predominant form
of As in ground water of the MRGB, sorb onto amorphous Fe oxides more strongly at
lower pH values than at higher ones. A study by Robertson (1989) indicated that
adsorption of arsenate ions on smectite or ferric oxyhydroxide was the major control on
As in ground water of several alluvial basins in Arizona. Therefore, the variation in pH
values across the MRGB, which range from 6.4 to 9.8, could contribute to variation in the
concentration of As in ground water of the basin. A study by Stanton and others (2001a
and b) to examine residence and mobility of Fe and As in sediment and rock samples
from a core obtained from the western part of Albuquerque showed that the most likely
source of soluble As is the “anion-exchangeable” fraction of As associated with clay and
secondary Fe oxide surfaces, which could be mobilized by ground water having high pH

and/or low Eh values.
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The only water-quality zone with a statistically significant correlation between As
and pH at the 0.05 level and a Pearson correlation coefficient greater than 0.3 is the West-
Central zone (table 5), where the core studied by Stanton and others (2001a and b) was
obtained. The correlation coefficient for the West-Central zone is 0.46, and a graph of As
versus pH (fig. 21) for the zone shows that nearly all samples with As concentrations less
than 20 pg/L have pH values of less than 8.5, while most samples with As concentrations
exceeding 20 ng/L have pH values of 8.5 or greater. This behavior is consistent with
desorption of arsenate. The observation that the largest As concentrations in the West-
Central zone generally appear to be associated with pH values greater than about 8.5 may
explain the lack of a strong overall relation between As and pH in other water-quality
zones, where pH values generally do not exceed 8.5. It is nevertheless possible that
desorption increases As concentrations in localized areas of elevated pH in other zones
where “anion-exchangeable” As is available on sediments.

Despite the lack of a correlation between As and pH values in the Northwestern
zone, As concentrations in ground water of this zone also may be affected by desorption.
Compared to all other water-quality zones of the basin, the Northwestern and West-
Central zones tend to have the smallest ratios of chloride concentration to concentrations
of As, B, F, Mo, and V (table 6, fig. 22, and Appendix II). All of these trace elements
exist as negative ions that could be sorbed in a similar manner on clay and/or Fe oxide
surfaces. Robertson (1989) based his conclusion of a sorption control for As
concentrations partly on correlations of As with pH, F, Mo, and V. Although the relations

among these elements are not as clear in the MRGB (table 5), their elevated
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concentrations relative to CI in the Northwestern and West-Central zones as compared to
other zones could suggest a common control by adsorption/desorption processes.

While adsorption/desorption of As associated with metal oxides appears likely to
regulate dissolved-As concentrations in the West-Central zone (and may also affect
concentrations in the Northwestern zone), this process does not provide a full explanation
for the source of As to the ground water and sediments of the area. As is discussed below,
water samples from the West-Central zone generally have As concentrations of greater
than 10 pg/L even when they have similar pH values (generally 7.5 to 8.5), exist under
similar redox conditions, and are obtained from sediments of similar origin and

composition as low-As water samples from other hydrochemical zones.

Source area of water

Median values and ranges of As concentration vary substantially among water-
quality zones (figs. 18 and 19), which implies that sources of water to the basin could be
a primary factor affecting As concentrations. An association of As with source water
would be consistent with observations of previous investigators indicating that thermal
water and water from areas of intense evaporation commonly have high As
concentrations (Welch and others, 2000). Therefore, the investigation of associations
between As concentrations and the sources of water to the various water-quality zones of

the MRGB is discussed below.

Water-quality zones with consistently small arsenic concentrations

Ground water of the Western Boundary, Rio Puerco, Southwestern Mountain

Front, Tijeras Fault Zone, and Tijeras Arroyo zones of the MRGB has consistently small
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As concentrations. Therefore, in these zones, the water source is low in As concentration
and any geochemical reactions occurring within the basin are not releasing substantial
quantities of As to ground water. The generally small As concentrations in surface water
of the Rio Puerco and Tijeras Arroyo are consistent with the generally small As

concentrations in zones that receive recharge from these sources.

Water-quality zones with variable arsenic concentrations

In five water-quality zones (Northern Mountain Front, Central, Eastern Mountain
Front, Northeastern, and Abo Arroyo), elevated As concentrations are present in ground
water in some areas but not others. In the Northern Mountain Front, Eastern Mountain
Front, and Northeastern zones, As concentrations near basin margins are quite small
(generally less than 2 pg/L), indicating that recharge water along these margins probably
does not contain large As concentrations. Similarly, surface water in the Rio Grande,
which is the primary source of recharge to the Central zone, and Abo Arroyo, which is a
primary source of water to the Abo Arroyo zone, typically has As concentrations less
than 4 ng/L. Therefore, elevated As concentrations in ground water of these five zones
probably result from geochemical reactions and/or mixing with other waters
downgradient from the primary recharge areas. However, in these zones, As
concentrations do not appear to consistently increase or decrease along flow paths and, as
previously discussed, there is little evidence of the control of As concentrations by
mineral dissolution or desorption processes. Therefore, other potential As sources require
investigation.

Previous investigators (Anderholm, 1988; Trainer and others, 2000; Bexfield and

Anderholm, in press) have proposed that deep water with large Cl concentrations upwells
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in particular areas of the MRGB to mix with shallower ground water (fig. 18). In some
parts of the Northern Mountain Front, Eastern Mountain Front, and Central zones in
particular, large As concentrations in ground water have been shown to coincide closely
with these areas of elevated Cl concentration (fig. 23) (Trainer and others, 2000; Bexfield
and Anderholm, in press). Upwelling may occur as leakage along faults or as the result of
the movement of ground water over structural highs between subbasins, as indicated by
the clustering of high Cl and As concentrations along these features (fig. 23). Mixing
with deep water with high Cl and As concentrations could explain the occurrence of
elevated As concentrations in zones where the primary source water (surface water and/or
mountain-front recharge) appears to have low As concentrations and little evidence exists
for the influence of a particular geochemical reaction along a flow path. The observed
decrease of both As and Cl with distance downgradient of these affected areas would be
consistent with declining As concentrations as a result of dilution rather than adsorption.
Pearson correlation coefficients and chemical data from piezometer nests appear
to lend support to the hypothesis that elevated As concentrations in the Northern
Mountain Front, Eastern Mountain Front, and Central zones typically are associated with
the upwelling of deep, mineralized water. Concentrations of As in the Northern Mountain
Front zone are strongly associated with concentrations of SO4, Na, B, Cl, Sr, and Li, and
with specific conductance (values of all Pearson coefficients are positive and 0.67 or
greater) (table 5). Significant correlations also exist with temperature (positive
coefficient) and carbon-14 (negative coefficient). The inverse relation of As with carbon-
14 in percent modern carbon indicates that As is positively correlated with ground-water

age. These relations appear consistent with mixing with older, deeper, more mineralized
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water. Anderholm (1988) and Trainer and others (2000) describe high-CI water in the
Bernalillo area (near the southern end of this zone) as conduit flow that may originate as
geothermal fluid in the Valles Caldera of the Jemez Mountains. Arsenic, Cl, Na, B, and
Li are all found at large concentrations (greater than 1500 milligrams per kilogram for CI
and Na and 2.7 milligrams per kilogram for As, B, and Li) in geothermal water of the
caldera (Goff and others, 1988).

In the Eastern Mountain Front zone, high As concentrations in and near
Albuquerque generally appear to occur in a narrow band coincident with an area of high
ClI concentrations (fig. 23) (Logan, 1990; Bexfield and Anderholm, in press). Generally
upward hydraulic-head gradients and increasing Cl and As concentrations with depth in
deep piezometer nests in the area appear to support the hypothesis that mineralized water
is moving upward from depth (figs. 20 and 24); Na and B also tend to increase with
depth. In addition, from about 10 to 50 percent of the As in oxic ground water from
several wells in this area is As (III) (Bill Lindberg, City of Albuquerque, written
commun., 2000), suggesting a deep source. Water from a deeper, more reducing zone
where As (III) predominates apparently mixes with more shallow, oxic water. Pearson
correlation coefficients of 0.55 or larger occur between As and several constituents in the
Eastern Mountain Front zone: carbon-14 and DO (negative coefficients), and Li, B, Na,
Cl, Mo, K, V, and temperature (all positive coefficients) (table 5). These relations appear
consistent with an As source associated with older, deeper, more mineralized water that
also would likely have elevated concentrations of other trace elements. At the far
southern end of the Eastern Mountain Front zone, one ground-water sample with a

temperature of 53.8 °C and a sample slightly downgradient with a specific conductance
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of 8,200 uS/cm (with As concentrations of 52 and 33 ng/L, respectively, and classified as
mineralized waters in Appendix I) indicate that deep, thermal water is upwelling in this
area.

In the eastern part of the Central zone (approximately east of the dashed line of
fig. 13), nearly all ground-water samples with As concentrations greater than 10 pug/L are
coincident with areas of unusually large Cl concentrations (fig. 23). Therefore, it appears
likely that elevated As concentrations in this area could also be associated with a high-Cl
source. Arsenic concentrations within this area do not correlate strongly with Cl
concentrations or specific conductance values, but one of the best correlation coefficients
(-.72) is for As with carbon-14 content, indicating that elevated As concentrations are
associated with older water (table 5). Other constituents that show correlation coefficients
of 0.59 or better with As concentration in the area are Ca (negative coefficient) and F, B,
Na, Li, and Mo (all positive coefficients), all of which would be consistent with a source
of deep, old water with elevated concentrations of Na and minor constituents.

Elevated As concentrations in some other parts of the Central zone may also be
associated with high-Cl upwelling (figs. 23 and 24), but investigation of this possibility is
complicated by the likely existence of As-rich ground water (median concentration, 23
ng/L) of the West-Central zone at depth below the western part of the Central zone.
Analysis of samples from piezometer nests in the western part of the Central zone show a
shift toward a more typical West-Central zone composition (larger pH, smaller
concentrations of Ca, Mg, and Sr, and larger concentrations of Na, V, F, and As) with
depth. Therefore, in western parts of the Central zone where small Cl concentrations

indicate little or no effect from deep, mineralized water, elevated As concentrations
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probably are the result of mixing between the Central-zone water originating at the Rio
Grande and the deeper West-Central zone water, which apparently includes As desorbed
from aquifer sediments. Arsenic in this area shows strong negative correlations with
carbon-14 content and concentrations of Ca, Mg, and Sr and positive correlations with
concentrations of V and F (table 5), which appears consistent with this conclusion.

In the Northeastern zone, the well that produces water with the largest As
concentration (155 pg/L) is near an intersection of major faults and has a large Cl
concentration (66.1 mg/L), indicating that upward movement of mineralized water along
faults of the area could be the primary As source. A downgradient well having an As
concentration of 7.5 ug/L and a CI concentration of 22 mg/L may also include some
component of deep, mineralized water.

In the Abo Arroyo zone, the two ground-water samples with As concentrations
greater than 3 pg/L have relatively large pH values and SiO; and K concentrations
relative to the other two samples, but their Cl concentrations are the smallest. It appears
possible, though not certain, that silicate weathering may have increased pH enough to
allow some As to desorb from aquifer materials.

Unfortunately, the exact origin of deep ground water with elevated CI and As that
is believed to affect waters in aforementioned zones is not clear. Fairly substantial
differences in the chemistry of various “exotic” water samples believed to represent these
deep, mineralized waters (fig. 10 and Appendix I) indicate that the origins of these deep
waters likely differ across the basin, and indeed may differ over relatively short distances.
The availability of only a few samples believed to represent such waters, and the

existence of differences in chemistry among them, complicate efforts to look for unique
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relations among constituents that can indicate where “typical” zone waters have mixed

with these mineralized waters.

Water-quality zones with consistently large arsenic concentrations

In contrast to zones with extensive areas of small As concentrations, nearly all
ground-water samples from the Northwestern and West-Central zones have As
concentrations of 5 ug/L or more. As discussed earlier, adsorption/desorption processes
are a likely control on As concentrations along ground-water flow paths of the West-
Central zone and could particularly increase concentrations in areas where pH exceeds
8.5. However, the process does not appear to provide a full explanation for elevated As
concentrations in ground water at pH values as low as 7.4 (fig. 21), or for the ultimate
source of As found in the sediments of the Northwestern and West-Central zones. The
occurrence of elevated As concentrations in ground water near basin margins (fig. 18),
along with the lack of a consistent increase in As concentrations downgradient, implies
that the source water to the Northwestern and West-Central zones has relatively large As
concentrations. The presence of silicic volcanic rocks and high-As geothermal waters in
the Jemez Mountains (believed to be the primary recharge area to these zones) is
consistent with this observation, as are elevated As concentrations in meteoric water
outside the basin margins, such as in sample NM524 (Appendix I and fig.10), which has
an As concentration of 23.2 ng/L and a pH of 6.9. However, the occurrence of elevated
As in ground water near basin margins in zones in the northwest contrasts with the
apparent lack of As in ground water near basin margins in most of the Northern Mountain
Front zone, in the eastern Jemez Mountains. The general near-surface geology of the

eastern and western parts of the Jemez Mountains is quite similar, consisting mainly of
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Tertiary and Quaternary volcanic rocks. Therefore, some other feature must differ
between these areas in order for As concentrations to be larger in recharge water from
one area compared to the other.

One feature that could potentially account for the difference in As concentrations
observed near recharge areas for the northern water-quality zones is the distribution of
geothermal water from the Valles Caldera. Previous investigations (Trainer, 1975;
Trainer, 1984; Goff and others, 1988; Trainer and others, 2000) have shown that
mineralized water from the caldera probably flows primarily south and west, where it
contributes to thermal springs, and probably does not leak from the caldera to the east.
Mixing of mountain-front recharge water with small quantities of this geothermal water,
typically with As concentrations larger than 1,000 pg/L, could increase As concentrations
in the non-thermal recharge water.

A plot of As relative to Cl was used to examine the possibility that the mixing of
geothermal water with mountain-front recharge water is sufficient to explain the As
concentrations observed in most ground-water samples of the Northwestern and West-
Central zones (fig. 25). Ground-water samples from these zones generally do not fall
along the line representing conservative mixing between dilute mountain-front recharge
water of modern age and water derived from Soda Dam Spring, a thermal spring located
southwest of the Valles Caldera. Water from Soda Dam Spring has been shown to have
an As-Cl ratio very similar to that found in geothermal water inside the caldera (Goff and
others, 1988). Also, the graph shows no clear relation between the concentrations of As
and CI, which is consistent with a lack of correlation between these constituents for the

two zones (table 5). Consequently, this graph supports the conclusion that As
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concentrations in the Northwest and West-Central zones are controlled primarily by a
process (or processes) other than mixing with geothermal water from the caldera. Ratios
of chloride concentration to the concentrations of multiple trace elements tend to be
smaller in ground water of these zones than in geothermal fluids in and near the Valles
Caldera (table 6 and Appendix II), indicating there likely is an additional and/or separate
source of trace elements to ground water of these zones besides mixing with geothermal
water.

Flow of mountain-front recharge water through rocks altered by contact with
geothermal water is a possible source of As and other trace elements to ground water near
the recharge areas of the Northwestern and West-Central zones that appears consistent
with the observed chemistry. Local hydrothermal systems can often lead to intense
alteration of rocks and sediments, particularly those of volcanic origin (Chapin and
Dunbar, 1994). Contact with geothermal water typically enriches the rocks in certain
trace elements, including As, Ba, Sb, Pb, and Zn. (Chapin and Dunbar, 1994; Dunbar and
others, 1995; Ennis and others, 2000). Dunbar and others (1995) indicate that As
associated with hydrothermally-altered rocks probably is largely sorbed to mineral
phases, particularly mafic oxide surfaces, and could be mobilized by a secondary fluid
phase moving through the altered rocks. These investigators do not specifically discuss
possible effects of this alteration on concentrations of B, F, Mo, and V (the trace elements
shown to be elevated relative to Cl in the Northwestern and West-Central zones as
compared to other zones), but these elements are also known to exist as sorbing anions.
Therefore, water moving through hydrothermally-altered rocks in the western Jemez

Mountains might acquire As (and other trace elements) largely by desorption, and then
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transport the As into the Northwestern and West-Central zones of the MRGB, where
adsorption/desorption processes involving Fe oxides in the basin-fill deposits control the
concentration at any particular location along the flow path.

Hydrothermally-altered rocks have been observed at the land surface along the
ring fracture, topographic rim, and flanks of the Valles Caldera, as well as at depths
exceeding 5000 ft in core holes from the western part of the caldera (Charles and others,
1986; Hulen and Nielson, 1986; WoldeGabriel, 1990; Armstrong and others, 1995; Goff
and Gallaher, 2001; Fraser Goff, Los Alamos National Laboratory, oral commun., 2001).
These locations would be consistent with the likely recharge areas for the Northwestern
and West-Central water-quality zones. Although hydrothermally-altered rocks appear to
be most widespread in the western part of the caldera (i.e., in the source area to the
Northwestern and West-Central water-quality zones), they also have been observed in the
“Cochiti district,” covering part of the source area to the Northern Mountain Front zone
(WoldeGabriel, 1990). The existence of hydrothermally-altered rocks in this particular
area might have contributed to the elevated As concentration of 28.9 ug/L in sample
NMS510 from the Northern Mountain Front zone, which does not have a particularly large
Cl concentration indicative of mixing with mineralized water (Appendix I).

Similar to the Northwestern and West-Central zones, ground water of the
Discharge zone also has As concentrations, in general, greater than or equal to 5 pg/L.
The relatively large As concentrations of the zone are not surprising given that this area
represents the drain for the ground-water system of the basin. Ground water in the zone
typically is quite old with relatively large specific conductance values, indicating long

flow paths and travel times. Interestingly, the smallest As concentrations occur in ground-
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water samples with the largest specific conductance values and CI concentrations. These
samples probably represent ground water with a substantial fraction of water sourced in

the Western Boundary zone, which shows very low levels of As.

Geochemical origin of water

As discussed in the previous section, As concentrations in ground water of the
MRGB appear to be closely associated with the source area of water. Further analysis
was performed to investigate whether As in ground water from different source areas
(i.e., water-quality zones), but similar geologic and hydrologic origins, occurred in
similar concentrations. The computer program SNORM (Bodine and Jones, 1986) was
used to calculate the salt norms of ground-water samples collected for the MRGB study
and thereby classify the chemical origins of the waters. The MRGB study samples in
particular were chosen for SNORM analysis because of the consistent availability of data
for a selected subset of individual constituents used by the SNORM program.

Bodine and Jones (1986) describe the salt norm as “the quantitative ideal
equilibrium assemblage that would crystallize if the water evaporated to dryness at 25° C
and 1 bar pressure under atmospheric partial pressure of CO,.” The SNORM program
uses 18 solute concentrations to directly compute the normative salt assemblage from a
possible 63 salts (table 7). The reader is referred to Bodine and Jones (1986) for a
detailed discussion of the operation of the SNORM program and the procedures used by
the program to calculate the appropriate salt assemblages. The normative assemblages
generated for natural waters fall into three broad categories, as described by Bodine and
Jones (1986): meteoric norms (characterized by the lack of alkaline-earth-bearing

chlorides), marine norms (dominated by sulfate and chloride salts and particularly
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Table 7.--Normative salts available in SNORM (from Bodine and Jones, 1986)

Calcite
Magnesite
Dolomite
Trona
Pirssonite

Anhydrite
Gypsum
Kieserite
Epsomite
Arcanite
Thenardite
Mirabilite
Glauberite
Syngenite
Polyhalite

Antarcticite
Bischofite
Tachyhydrite
Sylvite
Carnallite
Halite

Nitrocalcite
Nitromagnesite
Niter

Soda niter

Inyoite
Indirite

Fluorite
Sellaite

Hydroxyapatite

CaCoO,
MgCO;,
CaMg(CO3),
Na3H(COj3),-2H,0
Na,Ca(COs),-2H,0

CaSo,
CaS0,-2H,0
MgSO,-H,0
MgSO,-7H,0

K,SO,

Na,SO,
Na,SO,-10H,0
Na,Ca(SO,),
KoCa(SO,),-H,0
K,Ca,Mg(SO,)s-2H,0

CaCl,"6H,0
MgCl,-6H,0
CaMg,Clg-12H,0
Kl
KMgCly-6H,0
NaCl

LiCly-H,0

Ca(NO,),4H,0
Mg(NOj),-4H,0
KNO,

NaNO,

03286011.1 3H20+
MngGO11'15H20+

CaF2
MgF,

Ca5(PO4)3OH
Mg3(POy),
Na3PO4

(Bi)carbonates

Sulfates

Chlorides

Nitrates

Borates

Fluorides

Phosphates

Kalicinite
Teschemacherite
Strontionite
Witherite

Bloedite
Leonite
Picromerite
Aphthitalite

Mascagnite
Celestite
Barite
Burkeite

Salammoniac

Kainite

Ammonia niter

Nitrobarite

Borax
Ulexite

Villiaumite

Fluorapatite
Wagnerite

KHCO,
Li,CO;,
NH,HCO,
SrCo;
BaCO,

Na,Mg(S0,),-4H,0
K,Mg(S0,),-4H,0
K,Mg(S0,),-6H,0
K3Na(S0,),

Li,SO4

(NH4),SO,4

SrSO,

BaSO,
NagCO3(SO,),

NH,CI
SrCl,-2H,0
SrCl,"6H,0
BaCl,H,0
BaCl,2H,0
KMgCISO,-3H,0

LiNO3+3H,0
NH,NO,
Sr(NOy),
Ba(NOs),

NazB4O7' 1 OH20+
NaCaBsOq-8H,0"

NaF
LiF

Ca5(PO4)3F
MgzPO4F
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characterized by magnesium-associated salts), and diagenetic norms (characterized by
calcium-bearing chloride minerals that indicate solute diagenesis and highly altered fluid
compositions). The major-solute categories represented by the normative salts typically
are most indicative of the principal lithologies of the source area. As Bodine and Jones
(1986) state, for the major anions, carbonate waters are associated with limestone
dissolution or silicate hydrolysis, sulfate waters with oxidation of reduced sulfur and/or
gypsum dissolution, and chloride waters with marine salts or hydrothermal systems; for
the major cations, the alkalis are associated with siliceous crystalline rocks or
pyroclastics, calcium with carbonate or plagioclase-rich rocks, and magnesium with
mafic rocks and marine muds.

The salt assemblages generated by the SNORM program for the MRGB study
samples in the basin can be used to investigate associations between As and particular
source area lithologies. To facilitate comparison, the assemblages generated by the
program were divided into seven broad salt groups based on the general lithologies
associated with each salt and on patterns observed in the data. These seven groups consist
of: anhydrite plus glauberite, burkeite plus trona, halite, calcite plus pirssonite, dolomite,
thenardite plus aphthitalite, and a combination of other salts. For each sample, the
percentage of total salts falling into each of these groups was calculated. The dominant
salt group for each sample was then defined as the group having the largest percentage of
salts (Appendix III); no sample had the largest percentage of salts categorized into the
“other” salt group. The distribution of As concentrations among these various dominant
salt groups is discussed below, as is the distribution of these dominant salt groups among

the various water-quality zones (Appendix III).
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To investigate the distribution of As concentrations among the various dominant
salt groups, the concentrations reported for the MRGB study ground-water samples were
divided into quantiles as shown in figure 26. For each dominant salt group, the
percentage of samples having As concentrations within each quantile was determined.
The results indicate that some salt assemblages tend to be associated with larger As
concentrations than other assemblages.

Of the 262 MRGB samples that were analyzed and not considered “exotic,” 54
showed anhydrite plus glauberite as the dominant salt group. Seventy-four percent of
these samples have As concentrations falling within the lower two quantiles (i.e., As
concentrations of 4.0 pug/L or less); only 5.6 percent of the samples have As
concentrations falling within the upper two quantiles (fig. 26). Therefore, in the MRGB,
it appears that samples dominated by this combination of salts typically have relatively
small As concentrations. The dominance of these salts tends to reflect dissolution of
evaporitic CaSO, and sulfatic weathering in areas having calcic lithologies (Bodine and
Jones, 1986). Most MRGB samples categorized in this salt group are from the Rio
Puerco, Tijeras Arroyo, Northeastern, and Central water-quality zones. Also, 3 of the 4
samples from the Abo Arroyo zone and 2 of the 6 samples from the Tijeras Fault Zone
zone are categorized in this group. Gypsum-bearing Mesozoic or Paleozoic rocks are
known to be present in at least part of the source areas for the Rio Puerco, Tijeras Arroyo,
Northeastern, and Abo Arroyo zones. Waters from different source areas that are derived
from this same type of lithology, therefore, appear to contribute only small quantities of
As to the basin. The lithology associated with Central-zone samples with large anhydrite

plus glauberite is unclear.
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Burkeite plus trona is the dominant salt group for 51 of the MRGB samples.
Eighty-six percent of these samples have As concentrations falling within the upper two
quantiles, and only 8 percent have concentrations falling within the lower two quantiles
(fig. 26). Therefore, in the MRGB, it appears that samples dominated by this combination
of salts typically have relatively large As concentrations. The dominance of these salts
tends to reflect weathering of siliceous crystalline or clastic rocks (Bodine and Jones,
1986). Most MRGB samples categorized in this salt group are from the West-Central
zone, although both the Eastern Mountain Front and Central zones include at least 4
samples categorized in this group. The volcanic source rocks for the West-Central zone
may be the primary factor determining the unique salt assemblage of the West-Central
zone samples compared to most other MRGB samples.

Calcite plus pirssonite is the dominant salt group for 82 of the MRGB samples.
Fifty-one percent of these samples have As concentrations falling within the lower two
quantiles, 21 percent have concentrations falling within the middle quantile, and 28
percent have concentrations falling within the upper two quantiles (fig. 26). This is a
relatively even distribution compared to the anhydrite plus glauberite and burkeite plus
trona samples, although samples in the calcite plus pirssonite salt group are somewhat
more likely to have As concentrations below rather than above the median for the basin.
This dominant salt assemblage is indicative of carbonate acid hydrolysis of rock-forming
minerals and importance of calcium-plagioclase (Bodine and Jones, 1986). Most MRGB
samples categorized with calcite as the dominant salt are from the Eastern Mountain
Front and Central zones, although most samples from the Northern Mountain Front and

Northwestern zones also fall into this category. Similar to the West-Central zone, Tertiary
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volcanics from the Jemez Mountains are the general type of rocks present in the source
areas for the Northern Mountain Front and Northwestern zones. However, the difference
in salt assemblages among these zones must reflect a difference in the exact compositions
of the source rocks or in the chemical processes affecting the waters. The source area for
the Eastern Mountain Front zone contains primarily Precambrian metamorphic rocks and
Paleozoic limestones and sandstones. The waters of the Rio Grande that are the main
source of recharge to the Central zone reflect a variety of lithologies in upstream source
areas. Overall, a dominance of calcite plus pirssonite does not appear closely associated
with a particular range of As concentrations in ground water of the basin.

Dolomite is the dominant salt for 27 MRGB samples. Fifty-six percent of these
samples have As concentrations falling within the lower two quantiles, and only eleven
percent have concentrations falling within the upper two quantiles. Therefore, in the
MRGB, it appears that samples with dolomite as the dominant salt tend to have relatively
small As concentrations. The dominance of dolomite tends to reflect carbonate-rock
dissolution or hydrolysis of mixed calcium-magnesium silicates (Bodine and Jones,
1986). Most MRGB samples categorized in this group are from the Central and Eastern
Mountain Front zones, although two samples from the Tijeras Fault Zone zone and the
single sample from the Southwestern Mountain Front zone also fall into this group.
Precambrian granitic and metamorphic rocks are among the primary lithologies of the
source areas for the Eastern Mountain Front, Southwestern Mountain Front, and Tijeras
Fault Zone zones. The source areas to the Eastern Mountain Front and Tijeras Fault Zone

zones also contain Paleozoic limestones. Waters from different source areas that have
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similar lithologies resulting in dolomite as the dominant salt, therefore, appear to
typically contribute only relatively small quantities of As to the basin.

Halite is the dominant salt for 18 MRGB samples. Sixty-one percent of these
samples have As concentrations falling within the upper two quantiles, whereas 28
percent have concentrations within the lower two quantiles. Therefore, in the MRGB, it
appears that samples with halite as the dominant salt are somewhat more likely to have
relatively large As concentrations. The dominance of halite can reflect an ultimate source
in marine rocks or hydrothermal systems or can be associated with recycling in
continental basins (Bodine and Jones, 1986). MRGB samples categorized in the halite
group come from a variety of water-quality zones: Northern Mountain Front, Western
Boundary, Rio Puerco, Eastern Mountain Front, Tijeras Fault Zone, Central, and
Discharge. The primary source rocks vary widely among these zones. Also, as discussed
in previous sections, ground water in several of these zones are believed to be affected by
mixing with a deep, mineralized water source having elevated Cl; each of the samples in
this group that have As concentrations of greater than 5 pg/L is from one of these zones.
The five samples in the halite group that have As concentrations of less than 5 pg/L are
from zones associated with high-ClI brine from Paleozoic rocks located along the western
boundary of the basin. Therefore, at least two types of high-Cl waters having different
chemical characteristics appear to exist within the basin. Relative to the salt assemblages
of the samples believed to be associated with the deep high-Cl source, the salt
assemblages of the samples associated with the brine from Paleozoic rocks (such as
NM485, Appendix III) tend to have smaller percentages of calcite, dolomite, and fluorite

and larger percentages of celestite, magnesite, polyhalite, and sellaite. These differences
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in composition may reflect differences in source rocks or chemical processes affecting
these waters.

Thenardite plus aphthitalite is the dominant salt assemblage for 30 MRGB
samples. Sixty-three percent of these samples have As concentrations that fall within the
upper two quantiles, whereas 17 percent have concentrations that fall within the lower
two quantiles. Therefore, in the MRGB, it appears that samples with thenardite plus
aphthitalite as the dominant salt assemblage tend to have relatively large As
concentrations. The dominance of these salts is associated with sulfatic weathering of
siliceous crystalline rocks (Bodine and Jones, 1986). Most of the MRGB samples
categorized in this group are from the Central and West-Central water-quality zones; the
one sample from the Abo Arroyo zone that has an As concentration greater than 20 pg/L
also is categorized in this group. The lithology associated with these samples is unclear.

SNORM was also used to analyze several “exotic” waters from the Jemez
Mountains and from within the MRGB. The primary salts for the two samples from
geothermal springs in the Jemez Mountains were halite and calcite plus pirssonite, with
some sylvite; the assemblages did not include anhydrite plus glauberite (Appendix III).
The salt assemblages for these samples differed somewhat from those for the mineralized
waters within the basin that are believed to be associated with deep, geothermal sources
(Appendix III). The primary salt groups for the mineralized samples within the basin
were halite and anhydrite plus glauberite. Quantities of all other salt groups were
generally less than 5 percent, except for the “other” group. The primary “other” salts
differed among the 3 samples, but included magnesite, syngenite, and/or sylvite. None of

the trace “other” salts that were present in the assemblages of all three samples were
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unique to these samples as compared to typical samples for the basin. Several “typical”
basin samples were discussed above as falling into the group with halite as the dominant
salt and as probably resulting from mixing with a deep, mineralized source. In general,
the assemblages of these “typical” basin samples appear to be consistent with a
combination of both the assemblages of the “exotic”” mineralized waters and of the more
typical waters of the zones in which the samples are located.

Overall, analysis of ground-water samples from the MRGB using SNORM
indicates that As concentrations can differ substantially between waters with different
geologic and hydrologic origins, whereas waters from broadly similar origins tend to
have similar As concentrations, even when recharged in geographically separate source
areas. The use of SNORM, while it did not provide new insight into the evolution of
waters in the MRGB, presented a convenient way to categorize different waters into
groups having broadly similar chemical origins that are generally consistent with current

knowledge of the geology and hydrology of the basin.

Other factors

The available data appear to indicate that the source area and chemical origin of
waters recharging the MRGB are the primary factors determining the distribution of As
in ground water of the basin. However, a few additional factors also were investigated for

effects on As concentrations.

Evaporation

Evaporative concentration has been cited as a major process that can affect As

concentrations in ground water, particularly in closed hydrologic basins of the western
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United States (Welch and others, 2000). In the MRGB, there is little evidence that
evaporation results in elevated As concentrations on a regional scale. Depth to water
throughout most of the basin is greater than 50 ft, so that substantial evaporation of
ground water is likely to occur only in recharge areas around the basin margins and in the
inner valley of the Rio Grande. As discussed earlier, both Cl and As concentrations in
ground water near the mountain fronts of the basin are generally quite small (less than 10
mg/L and 3 pg/L, respectively), except in the northwestern part of the basin where Cl
concentrations still tend to be quite small although As concentrations are elevated.
Therefore, evaporative concentration occurring during mountain-front recharge processes
generally does not appear to be resulting in elevated As concentrations. Similarly, most
ground-water samples that have been shown to be associated with infiltration through
ephemeral streams or arroyos, such as the Rio Puerco, Tijeras Arroyo, Abo Arroyo, and
arroyos in the Northeastern zone, have relatively small As concentrations, indicating little
effect from evaporative concentration during recharge. Samples from water-quality zones
associated with ground water leaking into the MRGB from the west also are low in As
despite large Cl concentrations.

In the inner valley of the Rio Grande, evaporative concentration may increase
both CI and As concentrations in ground water locally. For example, elevated As
concentrations (greater than 10 pug/L) occur in two shallow ground-water samples
removed from the overall data set for this study because of large specific conductance
values indicating local evaporative concentration (Appendix I, samples DB178 and
DB403). However, 12 other ground-water samples removed from the data set for the

same reason show As concentrations of less than 10 pg/L, and generally less than 5 pg/L
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(surface water in the Rio Grande, which provides recharge to the aquifer in this area,
typically has an As concentration of about 3 pg/L; table 3). Therefore, evaporative
concentration may locally elevate As concentrations in ground water of the inner valley,
but it appears that in many cases As may then be effectively removed from solution
through a process such as sorption. Further study of inner valley ground water and
sediments would be necessary to confirm the occurrence of these processes.

As discussed earlier, elevated As concentrations in parts of the Northern
Mountain Front, Eastern Mountain Front, Central, and Northwestern water-quality zones
appear to be associated with areas of elevated Cl concentrations that likely are the result
of mixing with deep, mineralized waters. In both the Northern and Eastern Mountain
Front zones, Pearson correlation coefficients of greater than 0.50 between As and CI
indicate a relatively strong relation between these two constituents. If evaporative
concentration were the primary factor resulting in increased Cl and As concentrations in
the mineralized “end-member” waters, these waters probably would have originated in a
setting such as a playa lake, where evaporation would occur while sediments were being
deposited, allowing evaporated waters to become trapped in pore spaces (sediments
deposited in playa lake settings are found in the lower Santa Fe Group). Such waters
would be expected to have relatively heavy stable isotope signatures, as would the waters
resulting from mixing between these mineralized waters and “typical” basin waters.

Unfortunately, the available data do not provide a clear indication of whether
evaporative concentration played an important role in the evolution of the deep,
mineralized waters of the basin. The three “exotic” samples within the basin that are

believed to most closely approximate these types of waters have deuterium compositions
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of —60, —80, and —83 per mil. All of these values appear fairly typical or even somewhat
light when compared to the median deuterium values for ground water in the water-
quality zones in which the sampling sites are located. Whether these mineralized waters
can be expected to have recharged at a similar elevation and temperature as surrounding
“typical” waters is unclear; but, if so, these deuterium values do not appear to indicate
substantial evaporative concentration of the “exotic” waters. Plots of deuterium versus
chloride for ground-water samples from the water-quality zones believed to be affected
by mixing with deep, mineralized waters also do not indicate that higher-Cl waters have
the heavier deuterium compositions that might be expected if evaporative concentration
had caused the increased Cl (fig. 27). However, if a higher-CIl water sample represents a
mixture containing only a relatively small portion of deep, mineralized water, the
deuterium composition of the resulting mixture might be only a few per mil different
from the deuterium composition of a water sample that had not mixed with the deep
water. (For example, if a water sample was a mixture of 90 percent “typical” zone water
having a deuterium composition of 90 per mil and 10 percent mineralized water having
a deuterium composition of —60 per mil, the resulting mixture would have a composition
of —87 per mil.) Therefore, although the data do not support evaporative concentration as
a major process in the evolution of the deep, mineralized waters of the basin, they do not

provide clear evidence that the process has not occurred.

Ground-water age

Arsenic concentration and ground-water age were investigated for any apparent
relation that could indicate whether the kinetics of chemical processes occurring either

inside the MRGB or in ground-water source areas play a major role in controlling
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As concentrations in the basin. Plummer and others (2001a) indicate that ground-water
ages calculated from carbon-14 data collected during the MRGB study will require only
small corrections for chemical processes occurring within the basin. Therefore, for this
study, As concentrations were compared directly to carbon-14 concentrations to
investigate the existence of relations between As concentration and ground-water age.
Statistical tests indicate that no significant correlation exists between As
concentrations and carbon-14 values in the MRGB data set, providing little evidence for a
relation between As and carbon-14 for the data set as a whole. The water-quality zone
with the smallest median carbon-14 value (i.e., oldest age) is the Western Boundary zone,
which has consistently small As concentrations. The next two smallest median carbon-14
values occur for the West-Central and Discharge zones, which have the largest two
median As concentrations. The generally old ages and large As concentrations for ground
water in these two zones could imply that long travel paths/contact times may contribute
to the addition of more As to solution through desorption, mineral dissolution, or other
chemical processes. Samples from locations near the Jemez mountain front indicate that
the ground water of the West-Central zone is already quite old and elevated in As upon
entering the MRGB. Therefore, contact time with the volcanic rocks of the Jemez
Mountains source area could be a factor influencing As concentrations in this zone,
whereas water of the Discharge zone has had long contact times with geologic materials
within the MRGB. Other water-quality zones with relatively old water include the Tijeras
Fault Zone and Northeastern zones, which have median As concentrations smaller than 3

pg/L, indicating that contact time is not always a determining factor in As concentration.
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Pearson correlation coefficients discussed in an earlier section indicate that within
an individual water-quality zone, larger As concentrations can be associated with older
waters. For the Northern Mountain Front, Eastern Mountain Front, and Central zones,
significant negative correlations with coefficients of 0.56 or greater exist between As and
carbon-14. In all of these zones, mixing with deep, mineralized water has been proposed
as a source of the elevated As concentrations of many samples. For the Central zone,
mixing with the older waters of the West-Central zone also has been proposed to cause
increased As concentrations. The exact processes that would cause elevated As in the
deep, high-ClI waters of the basin have not been determined from this data set, but contact
time is a potentially important factor in increasing As concentrations in these waters.
Alternatively, the most important factors could include the higher temperatures
encountered along deeper flow paths through the basin (correlation coefficients between
As and temperature tend to be greater than 0.50 for the Northern Mountain Front, Eastern
Mountain Front, and Central zones), or chemical processes related to the more reducing
conditions present along these deeper flow paths, which could result in the dissolution of
As-containing iron oxides (although this is not generally supported by correlation

coefficients) or the limited sorption of As because of its presence as As (III).

Variability in basin-fill deposits

Concentrations of As in ground water of the MRGB also were examined for any
relation to the various types of basin-fill deposits present within the basin. Figure 28
shows the distribution of ground-water samples of particular As and pH ranges compared
to the lithostratigraphic units of Connell and others (1999). In a broad sense, As

concentrations appear to have an association with individual units, as would be expected,
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given that As concentrations were previously demonstrated to be related to the source
areas and geochemical origins of ground water. In particular, ground water in piedmont
deposits along the eastern and western margins of the basin has generally small As
concentrations, except in areas of apparent upwelling. Most of these deposits are derived
from calcic lithologies, as indicated by the predominant salts in ground-water samples
originating from source areas along the basin margins. Similarly, most of the wells in the
northwest part of the basin that have elevated As concentrations are completed in
sediments derived from the silicic volcanic rocks of the Jemez Mountains.

Although there does appear to be a broad relation between As concentration and
lithostratigraphic unit, ground-water samples from wells that are completed in similar
basin-fill deposits and exist under similar redox conditions can have substantially
different As concentrations. Figure 28 shows that the existence of volcanic material in
basin-fill deposits does not always correspond to elevated As concentrations in ground
water. For example, wells completed in the Arroyo Ojito Formation (containing volcanic
sediments from the Jemez Mountains and from west of the basin) tend to have elevated
As concentrations, whereas wells completed in sediments of the Sierra Ladrones
Formation that were derived from the ancestral Rio Puerco/Rio San Jose (also containing
volcanic sediments from west of the basin) tend to have small As concentrations.

Even wells that are completed in the same lithostratigraphic unit can have
substantially different As concentrations, particularly when the source waters differ (i.e.,
when the wells are located in different water-quality zones). For example, several
samples from piezometer nests of the Central zone have As concentrations of 3 to 7 pug/L

at depths where pH values are about 7.7 to 9.0 and sediments are classified as being of
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the Arroyo Ojito Formation (fig. 28 and data in bold in Appendix I) (Connell and others,
1999; Jackson-Paul and others, 2001). Nearly all samples from the Northwestern and
West-Central zones that exist under similar redox conditions in sediments of the same
formation have As concentrations greater than 10 pg/L. If desorption from the volcanic-
rich sediments of the Arroyo Ojito Formation was the primary source of As to ground
water in the Northwestern and West-Central zones, ground-water samples from other
zones that existed under similar redox conditions and were obtained from sediments of
the same formation would be expected to have similarly large As concentrations. The
observation that As concentrations can differ substantially among such wells supports the
conclusion that processes affecting water in the recharge area (i.e., processes that result in
a particular source-water composition) can be more important in determining the
distribution of elevated As concentrations than processes occurring within the basin in

association with a particular lithostratigraphic unit.
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SUMMARY AND CONCLUSIONS

Availability of low-arsenic ground water for drinking-water supplies

This investigation indicates that the quantity of potable ground water (total
dissolved solids less than about 500 mg/L) in the Middle Rio Grande Basin that will also
meet the U.S. EPA drinking-water standard of 10 pg/L for As is limited. Figure 29 shows
that most wells known to produce water meeting these criteria are located in the vicinity
of Albuquerque between the Rio Grande inner valley and the eastern mountain front and
south of Albuquerque near the eastern mountain front. Other clusters of wells that meet
the criteria occur in the far northern part of the basin and at the northern end of the Sandia
Mountains. However, even within these broad areas of generally small As concentrations,
samples from some wells have As concentrations larger than 10 pg/L.

Although most of the wells sampled for this investigation were completed in the
upper 1,750 ft of the Santa Fe Group aquifer, indications from deep piezometer nests are
that As commonly increases with depth. Also, unpublished data from two oil wells near
the center of the basin at depths of 2,600 to 6,600 ft below land surface indicate As
concentrations exceeding 50 to 100 ug/L (Scott Anderholm, USGS, written commun.,
2001). Therefore, it is doubtful that wells completed at greater depths would yield water
with smaller As concentrations for municipal drinking-water supply.

Overall, future efforts to obtain sources of potable ground water in the MRGB

that will meet the new U.S. EPA drinking-water standard for As should focus on areas
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relatively close to recharge sources that have been shown to have generally low As.
These include areas receiving mountain-front recharge along the eastern margin of the
basin or in the eastern part of the Jemez Mountains to the north, as well as areas receiving
recharge through the Rio Grande. In particular, such areas typically include the region
east of the Rio Grande between the north end of the Sandia Mountains on the north and
Abo Arroyo on the south and the region at the far northern end of the basin. However,
even within these regions, caution should be taken to avoid areas that are affected by
upwelling of deep, mineralized water along major structural features or mixing (typically
at depth) with waters sourced in the western Jemez Mountains. Large CI concentrations,
elevated temperatures, and/or proximity to major faults that have been indicated to
facilitate upwelling along at least part of their lengths can be useful in identifying areas
that might be affected by upwelling of deep waters. Near the Rio Grande, large Na
concentrations and high pH values (exceeding about 8.0) can help identify mixing with
waters sourced in the western Jemez Mountains. In regions where recharge through the
western part of the Jemez Mountains is the primary source of recharge, identification of
likely areas of low-As waters may not be possible. As stated above, deepening of wells in
any area is unlikely to produce water having smaller As concentrations. In the vicinity of
Albuquerque, surface water from the Rio Grande, which the City of Albuquerque has
proposed to use as its primary source of drinking-water supply beginning in about the

year 2005, should meet the new U.S. EPA standard under most conditions.

Primary controls on arsenic occurrence

This investigation of the distribution and sources of As in ground water of the

MRGB indicates that variations in As concentration in the basin are associated more
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closely with the source and geochemical origin of the ground water than with processes
occurring within the basin. The sources of arsenic to the basin appear to fall into two
major categories: high-As recharge water from the silicic volcanic terrain of the western
Jemez Mountains, where As may desorb from hydrothermally-altered rocks, and
mineralized water of deep origin that upwells in association with major structural
features. However, sorption/desorption processes occurring within the basin also appear
to play a role in elevating As concentrations in areas where anion-exchangeable As is
available on sediments and pH values are sufficiently high. Appendix Il summarizes the
likely sources/controls on As levels in ground-water samples having concentrations
exceeding 5 pg/L.

Recharge through volcanic rocks in the western Jemez Mountains is the primary
source of ground water to the Northwestern and West-Central water-quality zones of the
MRGB and contains substantial dissolved As upon entering the basin. Based on SNORM
results, most waters of these zones are classified in the dominant salt group of burkeite
plus trona, which typically indicates weathering of siliceous crystalline or clastic rocks.
By contrast, ground water along basin margins in the Northern Mountain Front zone is
low in As and is classified in the dominant salt group of calcite plus pirssonite, despite
also receiving recharge through the volcanic terrain of the Jemez Mountains. This
contrast indicates that unaltered Tertiary and Quaternary volcanic rocks that blanket the
Jemez Mountains may not be the primary source of As for the northwest part of the basin.
Investigation of the relations between minor-element and CI concentrations appears to
indicate that mixing with the geothermal fluids that exist in the western part of the Jemez

Mountains also generally cannot account for the entire As content of ground water of the
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Northwestern and West-Central zones. Elevation of As concentrations as water recharges
through volcanic rocks whose trace-element concentrations have been increased by
hydrothermal alteration appears most consistent with the chemistry of ground water
observed in these zones. Additional research is necessary to investigate compositional
differences between volcanic rocks in the eastern and western parts of the Jemez
Mountains.

Mixing with mineralized water of deep origin appears to elevate As
concentrations in parts of the Northern Mountain Front, Northeastern, Eastern Mountain
Front, and Central zones. In these zones, areas of elevated As concentrations are nearly
coincident with areas of elevated CI concentrations. These areas tend to cluster near
significant structural features of the basin—particularly, major faults and structural highs.
Major faults could provide conduits for vertical movement of deep, mineralized water
into shallower parts of the aquifer, whereas structural highs also could force deep water
upward by means of a reduction in the thickness of Santa Fe Group sediments.
Parameters with which As concentrations in the Northern Mountain Front, Eastern
Mountain Front, and eastern Central zones are strongly correlated include Cl, carbon-14
age, temperature, Na, B, Li, and Mo. All of these associations appear consistent with
mixing with old, deep water that has elevated concentrations of Cl, Na, and several trace
elements; increasing concentrations of these constituents with depth in deep piezometers
also appear consistent with this conclusion. Ground-water samples from these zones that
are classified with halite as the dominant salt (indicating those samples with large
fractions of mineralized water) all have As concentrations between 6 and 54 pg/L.

Unfortunately, the exact composition of this deep, mineralized water is not necessarily

122



consistent throughout the basin, which makes determination of its origin difficult.
Additional research is required to determine whether the elevated As concentrations
associated with these deep waters might be the result of long contact times, high-
temperature processes, limited sorption associated with the reduced form of As, or other
processes.

Adsorption/desorption processes within the aquifer of the MRGB appear to affect
As concentrations in some parts of the basin. Desorption seems to elevate As
concentrations primarily in the West-Central zone, where samples with the largest As
concentrations typically have pH values of 8.5 or higher, although desorption may also
occur in the Northwestern zone. The conclusion that As is desorbing from metal oxides at
elevated pH values is supported by data from a core studied by Stanton and others (2001a
and b), which indicate that the most likely source of soluble As from aquifer sediments is
the “anion-exchangeable” fraction associated with clay and secondary Fe oxide surfaces.
It is not entirely clear whether the source of As available on sediments of the Arroyo
Ojito and Cochiti Formations in the West-Central zone is weathering of the aquifer
sediments after deposition or transport of As in ground water sourced in the western
Jemez Mountains. However, the lack of elevated As concentrations in several ground-
water samples of similar redox conditions from wells in the Northern Mountain Front and
Central zones that are also completed in sediments of the Arroyo Ojito and Cochiti
Formations implies that source water plays a major role in the availability of As on
sediments of the northwestern part of the basin (i.e., that water recharging through
hydrothermally-altered rocks in the source area carries As into the basin, where it can

undergo cycles of adsorption/desorption). Additional investigation of the availability of
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anion-exchangeable As on sediments from different lithostratigraphic units throughout
the basin is needed to confirm the role of source water as opposed to sediment
composition alone (in particular, the abundance and composition of volcanic material).
Ground waters that have not been affected by mixing with water sourced in the
western part of the Jemez Mountains or with deep mineralized water typically have
relatively low As concentrations (generally less than 5 pg/L). Possible exceptions are the
Discharge zone, which represents the drain for older, more evolved waters from a variety
of upgradient water-quality zones, and localized waters of elevated pH in other zones
where anion-exchangeable As may be available on aquifer sediments. Low levels of As
occur throughout the Western Boundary, Rio Puerco, Southwestern Mountain Front,
Tijeras Fault Zone, and Tijeras Arroyo water-quality zones. Small As concentrations also
occur near basin margins in the Northern Mountain Front, Eastern Mountain Front, Abo
Arroyo, and Northeastern zones, and in parts of the Central zone that are unaffected by
upwelling. Based on SNORM results, the low-As waters of these zones tend to be
classified with dominant salts of anhydrite plus glauberite (indicating dissolution of
evaporitic CaSOj or sulfatic weathering of calcic rocks), dolomite (indicating dissolution
or hydrolysis of mixed calcium-magnesium silicates), or calcite (indicating carbonate
acid hydrolysis of rock-forming minerals and the importance of calcium-plagioclase),

although halite waters sourced from Paleozoic rocks west of the basin also are low in As.

Applications to other ground-water basins

This investigation of As in ground water of the MRGB indicates the types of
sources and geochemical controls that can be important in determining the occurrence of

As in ground water of alluvial basins in the southwestern United States. Mountain-front
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recharge through Precambrian metamorphic and plutonic rocks appears generally to have
very low concentrations of As, as does recharge through evaporitic CaSO, or carbonate
rocks. Surface water also tends to be a source of low-As recharge, when contributions of
water (particularly geothermal water) from volcanic terrains are limited. Elevated As
concentrations are more commonly associated with waters sourced in silicic volcanic
terrains, and particularly with waters that have mixed with geothermal fluids or contacted
geothermally-altered rocks present in areas of volcanism. Arsenic concentrations can also
be elevated in old, mineralized waters present at depth. Unfortunately, the exact origins
of mineralized waters at depth in the MRGB are not evident. Therefore, it is not known
whether elevated As concentrations are likely to exist in such waters in other alluvial
basins, or whether elevated As is unique to the deep waters of basins such as the MRGB
as a result of local volcanism, the depositional environments (such as playa lakes)
represented by sediments at depth, or other factors. However, where such high-As waters
do exist at depth, they appear most likely to affect shallower depths of the aquifer along
structural features that can facilitate upwelling. Such features may include major faults
and/or structural highs. Another process that can elevate As concentrations in ground
waters of alluvial basins is desorption of anion-exchangeable As from Fe oxide or clay
surfaces; this process appears to be of most significance in areas where pH values exceed
about 8.5. Knowledge of such sources and processes that result in elevated As
concentrations can aid in delineating areas where ground water is most likely to meet the

new U.S. EPA drinking-water standard of 10 pg/L.
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Appendix Il.--Salt assemblage and dominant salt group for MRGB study ground-water
samples. [Assemblages are given in percent of salts classified in each group, as
determined using SNORM (Bodine and Jones, 1986). a, anhydrite plus glauberite; b,
“burkeite plus trona; ¢, calcite plus pirssonite; d, dolomite; h, halite; t, thenardite plus
aphthitalite]

Sample
refer-  Anhydrite Thenardite
ence ~  plus . Burkeite Calcite plus plus Dominant

number glauberite plus trona . pirssonite Dolomite Halite aphthitalite ~Other  salt group
Northern Mountain Front zone .
NMO026 0.0 0.0 52.6 271 3.8 14.9 1.7

C
NM027 0.0 0.0 50.1 23.6 5.9 18.1 2.3 c
NMO055 7.4 0.0 17 - 83 44.2 0.0 28.4 h
. NM131 13.7 0.0 15.2 47 59.6 0.0 6.8 h
NM143  26.7 0.0 23.8 26.4 9.5 0.0 13.6 a
NM168 0.0 0.0 51.6 28.0 5.7 125 22 c
NM486 0.0 0.0 52.4 20.5 6.1 18.9 22 c
NM487 2.3 0.0 45.1 27.3 2.5 21.9 1.0 c
NM510 0.0 423 22.5 203 49 77 24 b
NM514 0.0 0.0 432 160 119 28.1 0.8 c
NM525 06 - 00 414 275 100 17.3 3.2 c
NM527 0.0 0.0 . 535 30.1 2.8 13.0 0.6 c
NM528 0.0 0.0 73.1 105 5.1 9.7 1.6 c
NM530 0.0 0.0 52.8 25.0 7.0 145 0.7 c
h Northwestern zone
NM128 0.0 25.9 27.3 11.8 6.8 24.8 3.3 c
NM133 0.0 - 0.0 302 6.6 28.5 332 15 t
NM179 00 00 64.5 8.6 5.3 12.7 8.9 c
NM180 8.8 0.0 40.0 21.6 4.3 135 11.9 c
NM184 0.0 0.0 53.4 180 24 201 6.1 c
NM185 0.0 19.9 44.6 13.5 7.3 11.9 2.9 c
NM326 0.0 34.0 31.6 99 74 14.2 2.9 b
NM497 0.0 = 394 37.2 8.3 5.8 4.1 5.2 b
NM498 0.0 33.3 386 122 44 3.9 7.7 c
NM499 00 - 00 453 229 52 18.3 8.3 c
NM526 0.0 0.0 41.0 14.9 7.9 34.2 20 c
NMO003 0.0 57.7 230 = 22 5.8 9.3 2.0 b
NM007 55 00 - 6.3 225 9.1 54.8 1.8 t
NM0O8 .00 0.0 113 200 75 59.5 17 t
NMO15 0.0 0.0 16.6 5.7 104 663 1.1 t
NMO56 0.0 577 203 75 67 57 21 b
NMO76 0.0 69.5 8.6 84 6.2 6.2 1.1 b
NMO77 00 - 639 10.7 9.9 7.8 6.7 1.0 b
NM107 00 742 85 6.3 35 - 62 13 b
NM109 0.0 34.9 135 26 13.0 34.3 1.8 b
: NMi10 0.0 315 141 40 118 36.7 18 t
ey

NM129 0.0 81.8 9.8 - 04. 45 1.0 2.6




NMO058 54.4 0.0 0.0 0.0 18.2 0.0 274 . a

i
i
Ji
Iy
Sample R !
refer-  Anhydrite Thenardite ' ' 1
ence plus Burkeite - Calcite plus plus Dominant
number glauberite plus trona pirssonite Dolomite Halite aphthitalite Other  salt group
NM130 0.0 485 32,6 39 98 3.2 20 b
NM132 0.0 882 5.7 03 29 0.9 2.1 b |
NM135 0.0 72.0 70 83 77 3.2 18 b
NM139 0.0 16.8 10.2 130 7. 51.6 13 t
NMi24 0.0 86.2 73 08 15 26 15 b i
NM145 00 82.1 1.2 12 09 27 2.0 b I
NM146 0.0 65.5 19.1 18 85 3.6 14 b i
NM155 0.0 265 147 16 33 530 09 t
NM181 0.0 78.1 9.0 20 28 3.1 5.0 b
NM182 0.0 788 7.7 26 30 3.2 47 b -
NM183 0.0 0.0 14.0 85 341 42.0 14 t |
NMi8S 00 838 9.4 11 29 22 06 b
NM255 0.0 774 10.8 22 48 3.9 0.9 b |
NM260 0.0 473 9.1 149 66 20.2 1.9 b I
NM264 0.0 87.2 56 10 37 00 25 b Il
NM294 0.0 776 9.2 30 70 0.4 2.7 b \;
NM308 0.0 0.0 28.8 284 83 30.6 4.0 t I
NM310 0.0 56.9 208 74 63 6.7 1.9 b i
NM311 0.0 33.2 26.9 195 49 11.9 3.6 b ‘i}
NM322 0.0 453 15.1 04 213 16.4 14 b “
NM346 00 283 3256 152 6.4 15.1 25 |
NM347 0.0 625 80 04 183 9.4 14 b I
NM353 0.0 81.8 79 17 50 0.9 2.8 b f
NM4g1 0.0 64.5 1.9 08 309 1.0 0.9 b
NM482 0.0 91.6 3.8 02 28 14 0.4 b
NM483 0.0 . 89.9 4.6 1.1 1.4 1.7 1.4 b
NM484 0.0 775 14.3 03 46 0.4 3.0 b
NM492 . 0.0 79.9 4.9 0.7 114 0.8 26 b - |
NM509 0.0 58.7 224 93 39 3.8 2.0 b ‘;
NM516 0.0 79.2 56 08 128 0.9 0.8 b l
NM519 00 267 .. 158 . 40 210 31.7 0.7 t !
NM520 0.0 78.4 9.0 09 84 22 1.0 b |
NM521 0.0 48.4 29.8 89 53 2.8 49 b I
Western Boundary zone 3
NM167 00 103 60 - 109  16.1 55.8 0.9 t |
NM263 157 00 00 75 463 272 34 h |
NM266 00 539 40 50 330 3.6 0.6 b {
NM278 433 0.0 0.0 00 390 00 177 a i
NM285 0.0 0.0 4.7 125 513 30.9 05 h
O NM320 811 0.0 0.0 0.0 433 0.0 25,6 h
. NM329  67.7 0.0 0.0 00 43 0.0 28.1 a
NM345 0.0 0.1 5.2 102 387 453 . 06 t
Rio Puerco zone
i
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[ b
4 il
:
~ Sample v ‘
refer-  Anhydrite ‘ Thenardite
ence plus Burkeite - Calcite plus plus Dominant
" number glauberite plus trona pirssonite . Dolomite Halite aphthitalite Other  salt group !
NMO62 422 0.0 0.0 0.0 31.0 0.0 26.8 a -
NMO79  44.0 0.0 0.0 00 212 0.0 34.8 a i
NM137 438 0.0 00 00 230 0.0 33.2 a .
NM262  43.1 0.0 0.0 00 384 8.2 103 a
NM324 585 0.0 0.0 00 104 0.0 31.1 a i
NM335 0.0 0.0 20.0 183 26 58.5 0.8 t “
NM341 341 0.0 0.0 0.0 478 0.0 18.2 h
NM342  45.3 0.0 00 00 220 0.0 32,6 a
NM408 584 0.0 0.0 0.0 3.9 0.0 37.7 a
NM409  61.4 0.0 0.0 00 35 0.0 35.0 a |
Southwestern Mountain Front zone
NMO09  27.4 0.0 63 366 152 137 18 d
v Abo Arroyo zone
NMO11  68.3 00 0.0 3.4 7.3 0.0 21.0 a
NM0B4  66.2 00 00 0.0 6.2 0.0 27.6 a
i NM067 5.4 0.0 20.6 19.2 6.4 44.9 36 t
NM261 522 0.0 0.0 00 60 0.0 418 a
‘ Eastern Mountain Front zone
| NM002  185. 0.0 33.4 398 37 29 1.7 d
NM006 6.9 0.0 39.9 274 64 18.7 0.7 c
! ~ NMO16 5.2 0.0 427 125 252 132 1.2 ¢
‘ NMO31 00 00 39.8 288 7.9 21.7 1.9 c
NM042 - 11.9 0.0 43.4 314 36 8.1 1.6 c
] NM043 228 0.0 24.3 445 32 0.0 5.1 d
NMOSBO 83 00 - 556 235 4.4 9.6 37 c
| NMOB8  16.9 0.0 339 248 65 165 15 c
NMO78 0.0 0.0 57.4 104 79 22,6 2.0 c i
NM0SO* 0.0 423 216 27 48 26 2.0 b |
. NM095 0.0 0.0 67.7 129 38 125 3.0 c i
. NM106 155 00 345 56 395 0.0 49 h it
NM108 7.7 0.0 39.6 184 225 10.2 1.7 c
NM134 13.7 0.0 27 330 162 12.0 2.4 d U‘
NM138 365 0.0 19.4 302 120 00 20 a I
- o NM141 0.0 0.0 613 215 44 11.8 11 ¢ !
©  NM142 05 . 00 50.1 223 55 19.6 20 ¢
NM148 35 00 54.1 219 25 16.9 11 c |
NMi53 00 00 54.5 17 121 20.8 0.8 c
NM156 0.0 00 - 402 350 44 192 13 c |
~ NMi57 0.0 0.0 68.5 120 52 13.1 11 o |
3 NMi61 0.0 82.6 93 0.7 51 1.2 12 b ‘;
CNM162 155 0.0 36.4 81 342 0.0 5.7 © |
CNMI74 143 00 39.6 18 - 369 0.0 74 c
| NM177  14.2 0.0 216 354 156 114 18 . d
d

NM256 0.0 24.0 0.0 53.8 105 5.3 6.4
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Sample

refer-  Anhydrite = : Thenarditq‘

ence plus " Burkeite Calcite plus plus Dominant .
number glauberite plus trona pirssonite  Dolomite  Halite aphthitalite  Other  salt group
NM257  30.4 0.0 49.3 13.1 4.7 0.0 25 ¢
NM295 0.0 0.0 336 180  16.2 31.1 1.0 c
NM298 7.0 0.0 462 28.0 4.6 11.0 33 c
NM299 304 0.0 0.0 434 200 0.0 6.3 d
NM300 1.9 0.0 31.0 29.0 7.6 29.3 1.2 c
NM306- 323 0.0 13.4 39.5 8.7 0.0 6.1 d
NM312 1.0 00 106 9.1 56.6 21.1 16 “h
NM313 136 0.0 9.0 88 60.9 0.0 7.8 h
NM317 00 - 00 52.4 19.8 8.7 17.5 1.6 c
NM318 195 0.0 30.6 25.9 7.5 15.0 15 c
NM319 0.0 37.6 34.4 16.8 7.8 1.6 1.8 b
NM328 0.0 469 . 144 6.8 12.6 17.3 2.1 b
NM336 0.0 - 00 25.1 197  19.6 34.7 0.9 t
NM343  26.7 0.0 30.3 14.0 7.4 19.8 1.9 c
NM407  13.1 0.0 30.8 250 152 145 15 c
NM500 0.0 0.0 67.9 5.1 5.4 20.0 1.7 c
NM501 0.0 34.1 50.6 5.6 4.8 37 14 c
NM502 0.0 0.0 62.3 15.9 4.6 15.6 16 c
NMS505 0.0 0.0 33.4 290 155 20.8 1.3 c
NM515 109 0.0 50.1 25.2 35 7.7 26 c
NM523 0.0 0.0 60.0 17.0 6.0 15.3 1.8 c

. Tijeras Fault Zone zone '

NM029 19 . 0.0 21.6 247 435 3.0 5.4 h
NMO61 55.5 0.0 0.0 199 108 0.0 13.8 a
“NMO071 49.8 0.0 3.0 24.1 17.6 0.0 55 a
NM136 0.0 49.1 0.0 121 173 20.5 1.0 b
NM151 136 0.0 20.2 356 2741 0.0 3.6 d
NM152  18.1 0.0 14.3 332 314 . 00 3.0 d

: Tijeras Arroyo zone
NM0OO1 536 - 0.0 0.0 124 148 0.0 19.3 a
NM069 369 0.0 - 218 28.7 89 00 3.7 a
NMO75  37.2 00 9.8 315 1741 0.0 45 ‘a
NM250  37.4 0.0 00 36.9 140 0.0 1.7 a
NM277 447 - 0.0 16.9 28.2 75 0.0 26 a
g _ o _ Northeastern zone _
NM097 717 0.0 00 - 97 40 00 1456 a
NM258 0.0 . 543 11.9 4.8 14.0 14.1 08 b
NM259 00 00 350 7. 8.4 46.2 3.3 t
NM276  81.9 0.0 0.0 00 29 00 152 a
NM332 432 0.0 15.1 324 52 00 43 a
NM334 719 - 0.0 0.0 0.0 25 0.0 25.6 a
NM338 749 . 0.0 0.0 0.0 5.4 . 0.0 19.8 a -

NMOO4 202 00 269 235 86 198 11 ¢




Sample .
refer-  Anhydrite Thenardite : o

ence plus Burkeite Calcite plus : plus Dominant

number glauberite plustrona pirssonite. Dolomite Halite aphthitalite Other  salt group

NM005 0.0 0.0 30.4 15.2 8.7 44.4 1.3 t :
NMO012 16.4 0.0 20.4 26.9 24.9 0.0 1.4 d ?
NMO013 1.7 0.0 23.0 27.8 26.6 0.0 10.9 d

NM025 40.7 0.0 24.9 20.1 10.8 0.0 3.5 a

NM028 0.6 0.0 18.1 19.5 39.1 20.7 2.0 h

NM032 1.1 0.0 20.1 20.9 9.1 475 1.3 t

NMO057 0.0 0.0 267 200 8.4 441 0.9 t

NM063 0.0 0.0 856 197 11.0 327 0.9 c

NMO66 37.0 0.0 145 29.8 10.0 0.0 8.7 a

NM070 13.2 0.0 268 - 275 229 0.0 9.5 d

NM073 33.1 0.0 30.8 222 7.6 0.0 6.2 a

NMO074 11.9 0.0 46.2 14.9 10.3 14.8 1.9 c

NMO081 53.2 0.0 0.0 20.0 15.1 0.0 11.6 a

NM082 24.3 0.0 1.2 40.1 10.7 0.0 13.8 " d

NM083 25.6 0.0 10.6 40.8 9.2 0.0 13.8 d

NM084 221 0.0 34.2 23.4 6.7 12.7 0.8 c

NMO085 23.3 0.0 15.9 34.6 12.3 0.0 13.9 d

NM086 39.4 00 v 152 33.8 45 . 0.0 7.2 a

NMO088 . 14.6 0.0 20.9 309 68 257 1.0 d

NM089 24.0 0.0 29.1 26.3 6.1 135 1.0 c

NM090 30.5 0.0 222 27.1 4.8 14.2 1.3 a

NMO91 00 - 00 315 21.2 7.3 38.8 1.1 t

NM092 00 00 315 225 7.7 37.2 1.1 t

NM093 20.9 0.0 14.0 34.7 1.0 18.0 1.4 d

NM094 30.3 0.0 5.8 39.2 10.1 0.0 14.6 d

NM099 10.3 0.0 295 26.2 6.5 26.3 1.1 c

NM100 328 - 00 176 - 276 12.7 0.0 9.3 a

NM101 395 . 00 . 223 247 79 0.0 5.6 a ‘
NM102 251 0.0 30.9 21.1 7.2 147 1.0 c ;
NM103 322 0.0 32.0 23.2 7.0 43 1.4 a |
NM104 - 48 0.0 31.2 33.1 8.0 21.7 1.3 d i
NM105 30.0 0.0 32.1 23.6 8.2 0.0 6.2 c {
NM111 32.7 0.0 28.6 225 = 9.2 - 0.0 7.0 a 1
NM112 0.0 0.0 29.8 19.8 8.1 40.9 1.4 t i
NM113 316 0.0 10.4 280 185 6.9 46 a

NMi14 114 00 225 261 98 - 292 1.1 t

NM115 89 00 238 32.0 19.7 0.0 15.6 d

NM116 43.3 0.0 0.0 20.8 12.7 0.0 23.3 a ‘
NM126 0.0 0.0 23.8 228 17.0 35.3 1.0 t |
NM127 - 00 - 0.0 - 254 38.1 75 28.0 1.1 d

NM140 0.0 0.0 224 210 179 ~ 370 - 16 ot

NM147 0.0 0.0 37.3 20.3 9.9 31.3 1.2 . c.

NM158 00 - 208 499 - 95 12.6 6.4 0.9 c

NM159 00 25 : 1504 - 232 9.1 9.0 5.9 c
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Sample

refer-  Anhydrite Thenardite ,
ence plus Burkeite Calcite plus plus Dominant
number glauberite plus trona . pirssonite . Dolomite Halite aphthitalite Other - salt group
NM171 375 00 26.4 235 6.2 1.2 5.2 a
CNMI72 247 00 40.1 180 103 48 22 c
NM173  37.9 0.0 23.3 205 119 0.0 6.4 a.
NM175 0.0 0.0 30.6 17.7 276 23.0 12 c
NM178 223 0.0 21.5 253 192 0.0 118 d
NM270' 0.0 0.0 30.9 19.8 6.9 413 1.1 t
NM271 217 00 231 268 76 19.5 1.3 d
NM272 175 0.0 282 232 8.0 22.0 1.1 c
NM273  31.2 00 248 25.5 6.5 1.3 1.0 a
NM274 340 0.0 25.7 25.2 9.1 5.1 0.9 a
NM275 . 31.9 00 24.1 259 113 0.0 6.9 a
NM279 0.0 55.3 23.1 7.3 5.4 7.4 16 b
NM280 0.0 31.2 31.6 18.3 6.0 11.2 1.7 c
NM283 325 0.0 20.9 26.0 9.2 0.0 11.3 a
NM286 0.0 47.6 28.4 8.8 6.8 7.0 16 b
NM287 25 0.0 36.0 27.0 5.9 277 10 c
NM288  51.3 0.0 24 30.4 8.6 0.0 7.3 a
NM289  31.0 00 223 242 5.6 16.3 0.8 a
NM290  39.7. 0.0 14.9 29.7 7.2 0.0 8.6 a
NM291 485 0.0 3.7 315 9.1 0.0 7.2 a
NM292 0.0 . 0.0 38.4 20.3 9.0 31.3 1.1 c
NM305 0.0 0.0 324 27.1 6.7 32.2 16 c
NM307  39.0 00 100 241 136 0.0 13.3 a
NM309 0.0 0.0 40.2 19.2 10.0 292 15 c
NM315 0.4 0.0 45.0 17.9 68 285 13 c
~ NM316 2941 00 147 365 134 0.0 6.3 d
- NM321 11.7 0.0 35.7 202 250 0.1 7.4 c
NM323 0.0 0.3 21.2 117 105 552 12 t
NM325 0.0 0.0 43.3 279 110 16.9 0.9 c
NM331 422 0.0 20.4 26.4 5.7 0.0 5.3 a
NM333 201 00 31.1 31.9 4.2 11.9 0.9 d
NM339 0.0 00 245 215 258 26.7 1.7 t
NM340 0.0 0.0 44.9 24.9 7.4 215 1.3 c
NM344  18.7 0.0 27.7 234 130 15.5 18 c
NM348 0.0 0.0 412 134 78 36.3 1.5 c
NM349 0.0 00 . 384 16.2 7.6 36.6 16 c
NM350 130 00 - 202 200 85 37.2 12 t
NM351 19.9 0.0 21.4 24.1 75 26.0 12 ot
NM352 262 . 0.0 290 25.6 9.3 8.9 0.9 c
NM488 0.0 25.0 23.8 140 289 6.9 15 h
NM489  16.0 0.0 248 197 3241 59 - 16 h
NM490 - 382 00 0.0 177 156 00 284 a
NM491 481 00 135 281 50 00 53 a
b

NM493 0.0 667 153 44 7.1 5.1 14
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Sample B R :
refer-  Anhydrite . Thenardite e
ence plus Burkeite - Calcite plus plus ) Dominant
number glauberite plus trona  pirssonite Dolomite Halite - aphthitalite ~ Other .- -salt group ‘
NM494 0.0 0.0 40.3 217 88 28.1 1.1 c . ‘ }
NM495  29.1 0.0 . 3.1 - 217 102 8.2 0.7 c o
NM503 0.0 774 - 63 0.3 12.6 1.1 23 b 7
NM504 0.0 65.7 8.7 0.6 221 1.1 1.7 b
NM506 0.0 0.0 235 281 220 247 1.7 d
NM507 0.0 0.0 428 187 110 26.4 1.1 c |
NM508 00 158 454 147 74 155 12 c |
NM511 00 291 192 150 = 297 6.0 1.1 h !
NM513  26.1 0.0 18.0 174 312 0.0 7.3 h ﬂ;;
NM517 00 724 12.0 3.1 5.1 6.3 1.2 b . I
NM518 0.0 6.0 39.4 154  10.2 27.9 1.1 c };
NM522 0.0 29.7 22.3 152 254 6.2 1.1 b ‘
. Discharge zone o '
NM096  33.4 00 0.0 71 383 0.0 21.2 h !
NM150  23.8 0.0 0.0 0.0 59.4 0.0 16.8 h
NM327 255 0.0 0.0 7.4 36.2 0.0 31.0 h
Samples not included in final data set
NMO14' 322 0.0 0.0 5.9 53.1 0.3 8.5 h : ‘”
NMo41' 88 00 18 13 80.8 0.0 74 h \
NM297' 498 0.0 0.0 14 248 0.0 24.0 a
NM485° 9.4 0.0 0.0 0.0 68.5 0.0 22.1 h B
NMO065° 0.0 0.0 25.3 2.7 60.5 0.0 115 h [
NM154° 0.0 0.0 234 69 558 0.0 13.9 h i

"Mineralized water from within the MRGB
2Brine from Paleozoic rocks along the western boundary of the MRGB
sGeothermaI‘ water from the Jemez Mountains

f
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