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ABSTRACT

When groundwater contamination is monitored in pumping wells or monitoring wells, the pri-
mary questions of regulatory concern are: Where did the contaminant come from and what was its
release history? In order to address these questions, two types of probability are introduced in this
research. The first probability is called a travel time probability. It describes how long it takes a
contaminant to move from some prescribed location in the aquifer to the well. The second probabili-
ty, called the location probability, helps define the origin of the contaminant observed or produced
in the well. It gives the probability that the contaminant from some location in the aquifer will arrive
at the well some specific time later. Both probabilities can be presented as probability density func-

tions or cumulative distribution functions.

Wilson and his students (Wilson and Rao, 1992; Wilson and Liu, 1995) proposed the hypothesis
that the probabilities for location and travel time can be directly computed by solving new back-
ward-in~-time partial differential equations with reversed flow. This method is called the backward—
in-time method. We run only one single simulation and obtain the travel time or location probabili-
ties for each possible location. Compared to previous research, the new method is more direct, faster,
especially for multiple dimensions, and more economical, but it has never been tested in either
theory or practice. This research is designed: (1) to examine the new method for one~dimensional
advection and dispersion by formulating backward—-in time partial differential equations along with
appropriate boundary and initial conditions and then comparing the resulting solution to the normal
forward-in—-time solution; (2) to test the method’s ability for use in two-dimensional domains; 3)
to extend this new method to cases accounting for aquifer heterogeneity, chemical reactions, and

natural recharge; and (4) to test its application in an actual field tracer test.

Using analytical solutions of one-dimensional backward-in—time partial differential equa-
tions, we have successfully tested the new hypothesis that backward problems can be formulated
and solved. By proper selection of boundary and initial conditions at the well, one of two maps for

travel time probability and location probabilities is obtained with only one simulation of a back-



wards—in-time partial differential equation. Travel time and location probabilities are related by
Bayes theorem. Using the Laplace transform-in-time Galerkin finite element method, the simulated
results show that the new method can account for dispersion, chemical reactions, heterogeneity, and
natural recharge in a two-dimensional aquifer. The application of the new backward-in-time meth-
od to the capture zone tracer test at the Borden sites (Wilson and Linderfelt, 1995; Linderfelt, 1994)
demonstrates that the new method, together with normalized measured tracer breakthrough, can be
used to identify tracer injection sites and to delineate time-dependent capture zones for wellhead
protection. The new method also can be applied to monitoring design and data interpretation, assign-

ment of responsibility for observed contamination, and aquifer remediation.
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1. INTRODUCTION

When groundwater contamination is monitored in pumping wells or monitoring wells,
the primary questions of regulatory concern are: Where did the contaminant come from and
what was its release history? Answers to these questions are complicated by: (1) uncertain-
ties about the appropriate conceptual model and its parameters; (2) aquifer heterogeneity;
(3) dispersion; (4) chemical reactions; (5) natural recharge; and (6) transient flow. In order
to address these questions, we introduce conditional probabilities for travel time and for
contaminant location. The travel time probability describes how long it takes a contaminant
to move from some prescribed location in the aquifer to the well. It can be used to delineate
a wellhead protection area. The location probability defines the probability that a contami-
nant originating at some location in the aquifer will arrive at the pumping well some specific
time later. It is useful in identifying possible sources of past contamination and for monitor-
ing design. Both probabilities can be presented as a probability density function (PDF) or
a cumulative distribution function (CDF) (Wilson and Liu, 1994, 1995; Liu and Wilson,
1994). Each probability can be written in terms of the other, and each can be derived indepen-
dently by solving one or more partial differential equations backward in time and space

(Wilson, and Liu, 1995).

As an example, Figure 1.1 and 1.2 present, respectively, a two—dimensional travel time
probability map and a location probability map. The ambient flow is from right to left at an
average velocity of 1 m/d (porosity=0.3), with the well pumping at 5 m3/day at location (20,
25). Figure 1.1a describes the travel time cumulative probability that groundwater contami-
nation at various points in the aquifer will take 20 or fewer days to be captured by the pump-
ing well. For example, at position A, there is a 20 percent probability that groundwater con-
tamination will take less than 20 days to move from the prescribed location A in the aquifer
to the well. Figure 1.1b describes the probability for a travel time less than 40 days. It shows

that the capture zone extends in an upstream direction. Figure 1.2a illustrates the location
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Figure 1.2. Two-dimensional location probability map constructed from a backward-in-time model.
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probability for a given time 20 days in the past. Suppose a single sample of contamination
is observed in the well. Then this plot describes the location of that contamination 20 days
earlier. For example, at position B, the probability is about 0.004 that the contaminant was
located at position B. The highest probability for the contaminant’s former location is located
approximately 22 meters upstream of the well. Figure 1.2b illustrates the location probability
for 40 days in the past. Over time, this location of the greatest probability has moved to 45m
upstream of the well. Figures 1.1and 1.2 represent fairly simple examples. The question then
becomes: How can we accurately produce maps to represent increasingly complex cases of

contamination?

1.1 Background

For the forward-in-time problem, a migrating plume of the contamination spreads and
becomes diluted in the flowing groundwater. The plume is characterized by two measures
of concentration: resident concentration and flux concentration. The resident concentration,
C'(x,7), is the instantaneous mass density of contaminant in a fixed volume of pore space.
It is defined as the mass of contaminant per unit volume of water. The flux concentration,
Cf(x,t), is defined as the ratio of the contaminant mass flux to the groundwater flux. It is the
inflow or outflow concentration that moves through the fixed planes forming the boundaries
of a transport volume. The flux concentration is linearly proportional to dispersivity and the
gradient of resident concentration (Parker and Van Genuchten, 1984; Jury and Roth, 1990).
In the standard forward-in-time problem, the normalization of the flux concentration de-
scribes an arrival time probability for a contaminant to arrive at a particular observation loca-
tion from a prescribed source location (J ury and Roth, 1990; Henley and Kumamoto, 1992).
When the source location is unknown, we may construct a travel time probability map by
rerunning the forward-in-time simulations for each possible source location and computing
arrival times for each one. This method takes much computation time and becomes Very ex-

pensive,



Uffink (1988, 1989) developed a random walk particle transport code for the forward-
in-time advection-dispersion problem. He ran it backward-in-time, with a reversed veloc-
ity field, to yield location probability. In this model, particles were injected into a pumping
well and then moved away by advection and dispersion. This approach indicated that the ad-
vective part of the transport model is reversed while the dispersive part is left positive, as
provided by a Chapman-Kolmogorov backward stochastic process (Uffink, 1989). The
principle difference between this model and classical advective particle and front backtrack-
ing (Shafer, 1987a,b; EPA, 1990; Schafer—Perini and Wilson, 1991; Wilson and Linderfelt,
1990) is the incorpo}aﬁon of dispersion. In principle the dispersion can be hydrodynamic
or macro. Wilson and Linderfelt (1991), Bagtzoglou et al. (1992), and Chin and Chittaluru
(1994) also constructed location probability maps from the backward-in-time problem us-
ing similar random walk methods. Backward-in-time solutions for location probability

have been limited to the random walk particle method.

Chin and Chittaluru (1994) and Wilson and Liu (1995) pointed out that the relationship
between travel time and location probabilities can be described by the Bayes theorem, and
this relationship can be used to translate one to the other. Chin and Chittaluru (1994) demon-
strated this method by computing the travel time probability from the location probability.
In this approach, the random walk model is used to determine the probability distribution
of particle locations as a function of travel time to a pumping well; then the Bayes theorem
is used to compute the travel time probability. Chin and Chittaluru’s approach is limited to

the random walk model.

Can we figure out a simpler and more direct method to address backward-in-time prob-
lems? Wilson and his students (Wilson and Rao 1992; Wilson and Liu, 1994) proposed anew
hypothesis, in which the probabilities for location and travel time can be directly formulated
by solving a new partial differential equation (PDE) for advection-dispersion. To hnplerﬁent
this approach the flow problem is run backwards-in-time, with inflow and outflows re-

versed. Groundwater pumping becomes groundwater injection and distributed natural re-



charge becomes a prescribed discharge. The advection-dispersion code is then run back-
wards in time, with “concentration” representing a probability. This backward—in-time PDE
model requires a single simulation run for either travel time or location probabilities for an
entire domain. This new approach is a simple, fast, and economical method, but it has never

been tested in either theory or practice.

1.2 Objectives and Scope

Compared to previous research, the new hypothesis proposed by Wilson and others
(Wilson and Rao 199:2; Wilson and Liu, 1994) is more direct, faster, especially for multiple
dimensions, and more economical. Can we use the new hypothesis to address the travel time
and location probabilities in either one- or two—dimensional backward-in-time problems?
How can we utilize this model in applications, for example, to manage a tracer test interpreta-
tion? The purposes of this report are: (1) To examine the new hypothesis for one-dimension-
al advection and dispersion by formulating backward-in-time PDEs along with the ap-
propriate boundary and initial conditions for both travel time and location probabilities. (2)
To extend this new hypothesis to the cases accounting for linear equilibrium sorption, non-
equilibrium sorption, first order decay, and natural recharge in a one~dimensional domain.
(3) To test ts ability with respect to heterogeneity, natural recharge, linear equilibrium sorp-
tion, and non-equilibrium sorption in a two-dimensional domain. (4) To test its application

in an actual field tracer test at the Borden site in Ontario, Canada.

Chapter 2 and Chapter 3 illustrate the one-dimensional backward-in-time model, First,
new analytical solutions of travel time and location probabilities are directly solved using
double Laplace transforms with new boundary and initial conditions proposed by this re-
search. Analytical solutions from backward-in~time models are compared to solutions for
equivalent forward-in-time models. The relationship between travel time probability and
location probability is explored. Having proved the backward-in—time method in one di-

mension, it is trivial to argue that the method also works in two dimensions. Section 4 mainly



presents the examples of the two-dimensional backward-in-time method. Travel time and
location probability are directly simulated for two dimensions, employing new boundary
and initial conditions, using the Laplace transform-in-time Galerkin finite element method
(Sudicky and McLaren, 1992). The numerical simulations are computed by the code, FRAC-
TRAN (Sudicky and McLaren, 1991), which we have modified for non-equilibrium sorp-
tion, natural recharge, and third type boundary condition at wells in this research. Simula-
tions from the two-dimensional backward-in-time method are employed to compare to the
simulations from a forward-in-time model. Chapter 5 presents an application of the two—di-
mensional backward-in-time model to a tracer test at the Borden site. The travel time proba-
bility density function simulated by the new method is used to interpret normalized tracer
concentration breakthrough curves observed at the pumping well. Then, travel time cumula-
tive distributions simulated by the new method are compared to empirically determined

time-dependent capture zones for the test.



2. THE ONE-DIMENSIONAL BACKWARD-IN-TIME MODEL
FOR THE CASE OF ADVECTION-DISPERSION

For a one-dimensional model, contamination transport can be illustrated by the pump-
ing system in Figure 2.1. The contamination is introduced into an aquifer at a source location
(CS), and it moves downstream to the pumping well (PW) by advection and dispersion. This
process is described by a forward-in-time (FIT) model. In this section we mainly demon-
strate the backward-in-time (BIT) method for the case of advection-dispersion only, before

we can test its application in more complex cases.

2.1 Groundwater Contaminant Transport to a Pumping Well

In the pumping well system shown in Figure 2.1, the contaminant is initially located at
%o=100 m, the pumping well is located at the position x=0, and the groundwater flow average
velocity, V, is in the negative x direction. Contaminant concentration in the aquifer is de-

scribed by the FIT advection-dispersion equation:

2
8CT _ [ d%Cr | ,aCT

at dx2 ox (2.1)

where C"=C"(x,z) is the aqueous phase resident concentration [M/L3] (mass of dissolved sol-

ute/fluid volume), V'is the average (seepage) velocity [L/T], D is the dispersion coefficient
[L2/T1, tis time [T], and x is the direction coordinate [L]. For the pumping well, the boundary
condition is assumed by dC”/ox = 0. In this research, in order to examine the backward—
in-time model, the contamination released at a source location is assumed to be a Dirac delta

function. The new boundary and initial conditions for (2.1) are given by:

acr

W = 0, atx =0 . (2'2a)
C' =0, as x — o, (2.2b)
Cr(x, 1) = % S(x-x,), for t =0 (2.2¢)

where 8(x-x,) is a Dirac delta function for a pulse input of dissolved contaminant mass, M,

and 6 is the porosity of the aquifer of which the cross sectional area is equal to unit one.
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Figure 2.1. Sketch of geometry representing the basic one-dimensional forward-in-time prob-
lem. A pumping well (PW) is located at x=0), and the dissolved contamination source
(CS) is located at x,. The groundwater flows from right to left in the negative x-
direction.
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Figure 2.2. Space-time solution of the contaminant concentration (mg/1) for the case of advection-
dispersion. a. Plots shows resident concentration from a contamination source (CS) at
%=100m to a pumping well (PW) at x=0, for V=1.0 m/day, D=5.0 m/day, #=0.35, and
M=0.34 g; b. The contaminant flux concentration (mg/l) breakthrough curve at PW
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Figure 2.3. The arrival time probability density function (PDF) at the pumping well (x=0), for par-
ticles released at point x;,.



The analytical solution for the resident concentration shown in equations (2.1)-(2.2) is
derived using double Laplace Transforms in time and space, as shown in Appendix Al. The

solution is written as:

C'(x, ) = . ~Go + V)" 1 + ex (—xox)

21;1;_[61) [V ] erfe [(x+xo+ %)) ] ©.3)

yaDt

This analytical solution was first derived by Wilson and Rao (1992). Figure 2.2a shows the
results for x,=100 m, V=1 m/day, and D=5.0 m?/day. The relatively high value of the disper-
sion coefficient, D=5 m?/day, is intended to illustrate the consequences of dispersion. In Fig-
ure 2.2a the contaminant distributions for /=20, 50, and 100 days illustrate how the plume
expands, disperses, and dilutes with increasing time. Figure 2.2a also represents the fact that
the contaminant plume has moved downstream and been extracted by the pumping well,

with the concentration breakthrough shown in Figure 2.2b.

2.2 The Forward-in-time Model for Arrival Time Probability

The outflow concentration at the pumping well is defined as a flux concentration, or the
ratio of the contaminant mass flux to the water flux. The flux concentration, C/=C/(x,1), is
related to the resident concentration by: Cf=Cr+(D/V) aCT /dx (Parker and van Genuchten,
1984; Jury and Roth, 1990). At the pumping well, since dC"/dx = 0, the aqueous phase flux

concentration is equal to the aqueous phase resident concentration:
fx = -1 M, GV’ | v M, [V Xo + Vi
Cix = 0,1 — 6 [ AD7 350 “P || efe o (2.4)

The arrival time probability density function (PDF), £;(tlx,) describes the probability

that a non-reacting contaminant particle, released at location x,, and time t=0, will reach the
pumping well in time . It is obtained from the normalized flux concentration (Jury and Roth,

1990; Chin and Chittaluru, 1994):
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fldrg) = 12
t M 2.5)

where rm=V/0CH(x=0,?) is the mass flux at the pumping well, V is the average velocity [L/T]
at the pumping well, x=0, and € is the porosity of the aquifer. M is the total mass released
at the source location, x,=100 m. When Equation (2.4) is inserted into Equation (2.5), the

solution of the FIT arrival time PDF can be rewritten as:

~(x,-VO? | V2 . x, + Vi

%
fltlxp) = /_7% exp I:T:IMQ—E exp [ lx) ]erfc [ aDi ] (2.6)

Figure 2.2b shows a diagram of the flux concentration (in mg/l) vs. arrival time (in days)
from the source location x, to the pumping well. The mean arrival time taken by the contami-
nant from the source location to the pumping well is about 100 days. The flux concentration
is normalized and replotted as the diagram of the arrival time probability density function

vs. the arrival time in Figure 2.3.

What happens if we do not know where the source is located? Supposed all we observe
is the contamination concentration in the pumping well. This problem can be addressed us-
ing the arrival time probabilities for each possible contamination source location, x,, to find
the travel time probability density function. These probabilities are given by equation (2.6).
In a multidimensional numerical model, we would have to rerun the code for each x,, a po-
tentially expensive undertaking. Figure 2.4a shows five arrival time probability density
functions for possible source locations at x,=50 m, 75 m, 100 m, 125 m, and 150 m. The
probability at /=100 days is graphically taken from Figure 2.4a, and replotted in Figure 2.4b
as the x’s, along with equation (2.6) for =100 days, and variable x,. This plot is the travel
time probability density function. In multidimensional systems, we would have to run many
simulations to approximate the continuous curve of f;(¢=100lx,) in Figure 2.4b. As we can
see, in practical multidimensional applications, with many potential source locations, x,,, it

is expensive to get. Is there a better method?
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Figure 2.4. Graphic view of the FIT construction of the travel time probability density function for
various contaminant source locations, %,, from the forward problem solution. a. Arrival
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el time PDF of 100 days.
= pw actual flow
% 0.04 i
s lday — BIT
a 0.03 x HIT
% = 20
g X ooz
E X 0
) 100
E 0.01
= 0
o 50 100 150 200

Upstream Distrance (m)

Figure 2.5. Diagram of the travel time probability density function (PDF) for advection-disper-
sion. The plots represent the probability density function of contamination that was
observed in the well 1,20, 50, 100, and 150 days later, at V=1.0 m/day, D=>5.0 m?/day.
Solid lines show the travel time PDF computed by the backward-in—time (BIT) PDFEs
model, and crosses show the arrival time PDFs computed from the forward-in—time
(FIT) construction method.
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2.3 The Backward-in-time Model for Travel Time Probability

In the backward-in-time problem, the travel time probability density function (PDF),
J: (zlx), states how long it takes a contaminant to move to the pumping well from a former
location x. The travel time PDF can be directly formulated from the advection—dispersion
model when the flow problem is run backwards-in-time with “concentration” representing
a probability (Wilson and Rao, 1992; Wilson and Liu, 1994). If we take equation (2.1), and
run it backwards in advection (V—+ V) we can get the following, familiar advection-disper-

sion equation:

¥ _ p&e e @.7)

ot 0 2 0x

where f;=f;(rlx) is the travel time probability density function [1/T], x is a given variable for
the former location, and T=7-1, is the travel time from the former location at time 7, to the
pumping well at later time ¢. For the backward-in-time problem inFigure 2.1, the travel time
PDF for the location x should be zero at 7=0. For the pumping well, we can describe the
boundary condition at the pumping well by “injecting” a unit of travel time probability at
the pumping well. The new appropriate boundary and initial conditions for the backward-

in-time model are expressed as:

Vf,—D%f?t =Vo@®), atx =0 (2.8a)
fe=0, atx— e (2.8)
fr=0 fort=0 (2.8¢)

where f;=f; (tlx)is the travel time probability density function. The new solution of the proba-
bility density function is derived from (2.7) and (2.8) by double Laplace Transforms (see
Appendix A2):

(v 2
Fel) = &VE exp[ &) ]—;—’f—)—exp[l’g ]errfC[x fg’] 2.9)
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This solution is identical to the arrival time probability described by equation (2.6), except

for notations on distance (x or X, ) and time (z or ©).

For the example in Figure 2.1, Figure 2.5 shows the BIT travel time probability density
functions vs. upstream distance, for four selected travel times: r=1day, 20 days, 50 days and
100 days. Its distribution for =100 days is matched by the arrival time probability previous-
ly derived in Figure 2.4b. We get the probability distribution at 7=1 day, 20 days, and 50 days,

directly from equation (2.7), instead of solving equation (2.6) for many different values of

Xo.

The travel time cumulative distribution function (CDF), F; (rlx)=P(z’ <7lx) is the proba-
bility that the contaminant takes time less than t to reach the pumping well from the location
x. The travel time CDF can also be computed by the backward-in-time method. The bound-
ary condition at the pumping well is like a continuous ”injection” of probability one, while
the initial probability elsewhere is set to zero. The unit value represents a probability of one
that the contamination immediately around the well will be captured. For the contamination
transport shown in equations (2.1)-(2.2), the cumulative distribution can be solved by equa-

tion (2.7) replacing f; with F; along the new appropriate boundary and initial conditions:

oF; _ .
VF’_DHBT =V, atx=0 (2103)
Fr = 0, at x — w (2.10b)
F,=0, fort=0 (2.10c)

where F;=F,(t|x) is the travel time cumulative distribution function. The new analytical

solution is derived from the double Laplace transforms (see Appendix A .2):
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_ Vv (-VD)2| 1 (x-V7)
F, = \/J% exp[ aDs ] + -i{erfc[‘/TT; ]}
D+Vx+VZ& Vx (x + V1)
_[ 2D ] {exP [D ]e'f[ J4Dz ]} 2.11)

Based on the definition of the cumulative distribution, the travel time CDF can also be

expressed as the integration of the travel time PDF, £; (zlx) ( Jury and Roth, 1990; Henley and
Kumamoto, 1992; Chin and Chittaluru, 1994):

Fi(rh) = PG’ < 17ly) = [ fe@'lar’ (2.12)
0

If we insert the equation (2.9) into (2.12), we can get the same solution of the travel time CDF
shown in equation (2.11). The relation of the travel time PDF and CDF shown in equation

(2.12) can be employed to obtain one from the other.

Figure 2.6 shows the hypothesized time dependent cumulative distribution maps for the
pumping well in Figure 2.1, for travel times less than 1 day, 20 days, 50 days, and 100 days.
For the time less than 50 days, the cumulative distribution extends almost 100 meters up-
stream, with a better than fifty percent chance of capture for the contamination within 53
meters of the well. As time increases, the capture zone expands, disperses, and extends in

an upstream direction,

2.4 The Backward-in-time Model for Location Probability

The location probability density function, f;(xlz), is the probability that the contaminant
observed in the pumping well was located at a position x, for a given travel time 7. For the
contamination transportshown in Figure 2.1, the location PDF is expressed by the same gov-
erning equation (2.7) replacing f; (z|x) with f;(x| 7). The initial PDF is set to unity around

the pumping well at travel time 7=0, and the location PDF is not injected into the pumping
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represent cumulative probability distribution.
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well. The new initial and boundary conditions are described by:

afx
VieDox =0, atx =0 (2.13a)
fo=0, at x— w (2.13b)
Je=0W), fort =0 (2.13¢)

where f;=f;(x| 1) is location probability density function [1/L]. §(x) is the Dirac delta func-
tion. The new analytical solution for the location PDF is derived from equations (2.7) and

(2.13) using double Laplace transforms (see Appendix A3) and is written as:

) _(y— 2
filxlt) = 1 exp[ (Jfll;/;) ]—%exp[‘—g ]erfc[w] (2.14)

vaDr /4Dt

For the previous example, Figure 2.7a shows the location probability density function
for the travel time: =20 days, 50 days, and 100 days. The location PDF distribution moves
in an upstream direction and spreads with increasing travel time. If we move the origin point
to 100 m in Figure 2.7a, we can see that the location PDFs and the concentration distributions
in Figure 2.2a are symmetric with respect to x=100 m. This result is also demonstrated by
Uffink (1989). The solutions for location PDF and travel time PDF demonstrate that, in this
case, they are related by f;(xIt)=f; (zlx)/V.

In the one-dimensional backward—in-time model, the location cumulative distribution
function, Fy(x |7)=P(x’<xlr), can also be directly found from the BIT method. For the pre-
vious example, the location cumulative distribution can be formulated by equation (2.7), re-
placing f; with F. The cumulative distribution function is set to unit one for the initial condi-
tion, and the cumulative distribution function is equal to zero in the pumping well. The

appropriate new boundary and initial conditions can be written as:

Fx = O, atx =0 (2153)
Fe=0, atx—co (2.15b)
Fy=1 fort =0 (2.15¢)

where Fy=F,(x|T) is the location cumulative distribution function. The analytical solution
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is derived in Appendix A3, and the result is expressed as:

F(xr) = 1—%{6,7‘6[(%%) ] + exp [«‘g—x ]erfc[(x/—l%;-’-)-]} 2.16)

The location cumulative distribution function (CDF) can also be computed by the in-

tegration of the location probability density functions, f;(x|7), along the distance from the

pumping well to location x:

Folxt) = P(x’ < xlt) = I Felx'Im)dx’ (2.17)
0

After inserting equation (2.14) into (2.17), we obtain the same solution shown in equation
(2.16). The analytical solution for the cumulative distribution function, Fy(x|7), is con-

firmed by the integration of location PDF.

Figure 2.7b shows the diagram of the location cumulative distribution function vs. the
upstream distance for the travel time: 7=20 days, 50 days and 100 days. The location CDF
for travel time, say 7=50 days, illustrates the probability that the contamination observed
from the pumping well is located within a distance less than 100 m. The location cumulative
distribution of the contamination spreads and extends in an upstream direction with increas-

ing travel time.

2.5 Relation of Travel Time and Location Probabilities

The travel time and location probability density functions are directly determined from
the backward-in-time method, with the analytical solutions shown in equations (2.9) and
(2.14), respectively. The relation of travel time PDF, J(zlx), and location PDF, f;(x |7), can
be expressed as:

fo(tlx) = Vfdalr) (2.18)

where V is the average velocity at the pumping well.
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The travel time and location probability are both conditional probabilities in the back-
ward-in-time problem. The relation of both probabilities can also be expressed through

Bayes theorem (Henley and Kumamoto, 1992):
fe(Tln)g(x)

Silxlr) =

f Fe(rlo)g(x)ax (2.19)

0
where g(x) is the location probability density function. In a one-dimensional model, all con-
taminants released from the source location are captured by the pumping well in complete

time. If the location g(x) is described by a uniform function, the relation in equation (2.13)

can be rewritten as;

futary = L)

f £t (2.20)

0

After inserting the analytical solutions of equations (2.9) and (2.14) into equation (2.20),

equation (2.18) is obtained.



3. THE ONE-DIMENSIONAL MODEL FOR CASES OF CHEMI-
CAL REACTIONS AND NATURAL RECHARGE

Contaminant transport in the aquifer is usually complicated by chemical reactions and
natural recharge. How do we extend the new backward-in-time (BIT) hypothesis to these
more complex cases? To examine the extensions of the new model, the pumping well system
in Figure 2.1 is used to describe forward-in-time (FIT) contaminant transport models ad-
dressing first order decay, linear equilibrium sorption, non-equilibrium sorption, and natural
recharge. These conzaminant transport models are used, respectively, to formulate the back-

ward-in-time (BIT) models for each case.

3.1 The One-dimensional Backward-in-time Model in the Case of First Order
Decay
In the case of first order decay, contaminants in the aquifer decay with time, usually
through either biodegradation or radioactivity. The contaminant concentration in governing

equation (2.1) must be modified, and aqueous phase resident concentration is then described

by:

aCr _ d2%Cr aC” r
57 _Dax2 +Vax—AC (3.1

where C"=C"(x,t) is resident concentration [M/L3], and A is the first order decay rate [1/T].
For the example shown in Figure 2.1, this equation is solved with the same boundary and
initial conditions given in equation (2.2), yielding:

C'x,1) = exp(-ADC"(x,1; A = 0) (3.2)

where C7(x,t; 1=0) is the resident concentration for =0 as given in equation (2.3). Figure
3.1 shows the aqueous phase resident concentration for 4=0.01 day~! (time constant is 100
days) for time t=20 days, 50 days, and 100 days. Compared to the resident concentration
without first order deéay in Figure 2.2a, Figure 3.1 demonstrates that the resident concentra-

tion decays as time increases.

19
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Figure 3.1. Diagram of the aqueous resident concentration for the case of first order decay vs.
upstream distance. The source location x,=100 m, V=1.0 m/day, D=5.0 m2/day,

and 1=0.01 day1.
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Figure 3.2. Diagram of the arrival time PDF for the case of the first order decay vs. arrival time
from the source location at =100 m, at V=1.0 m/day, D=5.0 m2/day. The dotted
line shows advection dispersion only, at 1=0.0; the solid line shows advection-dis-
persion within first order decay, at A=0.01 day~!.
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3.1.1 The Forward-in-time Model for Arrival Time Probability

The aqueous phase flux concentration observed in the pumping well at x=0, where
Cf(x=0,)=C"(x=0,1), is also affected by first order decay. The normalized flux concentration,
i.e. arrival time PDF is:

fltlxo) = exp(-Anfi(flxs; A = 0) (3.3)

where f(¢] %p; A=0) is the arrival time PDF for the non-decay case given in Equation (2.6).
Figure 3.2 shows arrival time PDF for both first order decay and no decay. The arrival time
probability for first order decay is smaller, suffering exponentially decays as time increases.
The influence of first order decay is dependent on the decay rate, velocity, and the distance
from the source location to the pumping well. The decay of arrival time probability increases

with the decay rate, the distance, and decreases with velocity.

3.1.2 The Backward-in-time Model for Travel Time Probability
For the backward-in-time model, the travel time PDF, f; (7 |x), should exponentially

decay as time increases. The probability density function can be expressed as:

f _ 0% of
o = D5V i (3.4)

The solution of the travel time PDF is derived along the same boundary and initial conditions
given in equation (2.8):

fitly) = exp(-Ar)f:(zl; A = 0) (3.5)
where f; (r | x; A=0) s the travel time PDF for no decay which is given in equation (2.9). Equa-

tion (3.5) is the same as (3.3) except for (x, or x). The travel time CDF can be computed by

the integration of travel time PDF:

Fi(zlx) = J fak)dr = [ e*Mf(tly; A = 0)dr (3.6)
0 0

where F;(r|x) is travel time CDF for first order decay, £, (z | x; A=0) is the travel time PDF

for non first order decay.
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Figure 3.3. Diagram of the travel time probability for the case of first order decay vs. upstream
distance. The plots represent probabilities of the former locations for contamination
that was observed in the well 20, 50, and 100 days later at V=1.0 m/day, D=5.0
m?/day, and 1=0.01 day .. a. Travel time PDF; b. Travel time CDF.

Using the previous example in Figure 2.1, Figure 3.3 shows the travel time probability
for three times: 7=20 days, 50 days, and 100 days, at 1=0.01 day~! (time constant 100 days).
Figure 3.3a indicates that the travel time probability density reduces exponentially with time.
This reflects reduced probability due to the fact that some of the dissolved contaminant will
decay before it reaches the pumping well. Figure 3.3b describes travel time cumulative dis-
tribution. The capture zone of the contamination reduces as time increases under the case of

first order decay.

3.1.3 The Backward-in-time Model for Location Probability

For the case of first order decay, the estimation of location PDF, f,(x|), is not affected
by the decay of the contaminant. The location probability for a given travel time is the same

as the solution for non-first order decay:

faxlr) = fulxlz; 4 = 0) (3.7)

where f; (x| 7; A=0) is the location PDF for non first order decay in (2.14).
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If we insert equation (3.5) into (2.20), we can get the same solution as equation (3.7).
This result further demonstrates that the relationship between travel time and location proba-

bilities is given by the Bayes theorem.

3.2 The One-dimensional Backward-in-time Model in the Case of Linear Equilibri-
um Sorption

In the case of linear equilibrium sorption, the resident concentration can be described
as being in the aqueous phase, sorbed phase, or both the aqueous and sorbed phase. The

aqueous phase resident concentration of contamination, C(x,t), is then described by:

aCT _ 6 C’ aC”
R— Fral = D— + V= Ix (3.8)

where C"=C"(x,1) is the aqueous phase resident concentration [M/L3], and R=(1 + K40p/6)
is the retardation factor due to linear equilibrium sorption with distribution coefficient K
[L3/M], bulk density o, [M/L3], and porosity §. The sorbed phase resident concentration,
C's(x,1), is described by [(R-1)/R]C"(x,1), and the total resident concentration, C%ioia1(x, 1), is
described by C'iota1=RC'(x,). Equation (3.8) is solved with the same forward problem
boundary and initial condition given in (2.2). The resident concentration is solved and de-

scribed as:

C'x, 1) = & C'(x ,1%; R=1 (3.92)

1e
R
sy =B e Ly R = 1) (3.96)

Chowal ) = C'(x, 1) + Clix, 1) = C"(x : R=1) (3.9¢)

3 R 1]
where C'(x,7/R; R=1) is the aqueous phase resident concentration for the R=1 non-sorption

case (2.3) but at time #/R (R>1).

For the example in Figure 2.1, Figure 3.4 shows the resident concentrations for R=2 vs.
upstream distance. Compared to the non-sorption in Figure 2.2a, Figure 3.4 shows that the
concentrations are retarded by R=2. Figure 3.4a indicates that the aqueous phase resident

concentration is reduced by R=2. Figure 3.4c demonstrates that total resident concentration
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Figure 3.4. Diagram of the resident concentration (mg/l) with linear equilibrium sorption vs.
upstream distance, The plots represent plumes of contamination in the aquifer 20,
50, and 100 days later. V=1.0 m/day, D=5.0 m?/day, g,=1.5 mgfcm?, 6=0.3,

R=2.0. a. Aqueous phase concentration; b. Sorbed phase concentration; c. Total
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Figure 3.5. Diagram of the aqueous phase flux concentration observed in PW or normalized

concentration (arrival time PDF) for linear equilibrium sorption. Plots describe ar-
rival time PDF vs. arrival time from the source location x,=100 m, at V=1,0 m/day,
D=5.0 m?/day. The dotted line and solid line represent R=1.0 and R=2.0, respec-

tively.
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is equal to the aqueous phase resident concentration for non-sorption at time #/R. The total
concentration in the time =100 days is the same as the concentration for the non-sorption

case in the time =50 days.

3.2.1 The Forward-in-time Model for Arrival Time Probability

For linear equilibrium sorption, the aqueous phase flux concentration observed in the
pumping well at x=0 is described by the aqueous phase resident concentration,
Cf(x=0,0)=C"(x=0,?). Then the normalized flux concentration represents aqueous phase ar-

rival time PDF:
fldeo) = % ikl R = 1) (3.10)

where fi(t]x,) is the aqueous phase arrival time probability, f;(#R|x,; R=1) is arrival time
probability (2.6) for the non-sorption case at time #R (R>1). Figure 3.5 presents the arrival
time probability for linear equilibrium sorption with R=2 and for non-sorption with R=1.
Figure 3.5 shows that the arrival time probability is retarded and reduced by the retardation
factor R=2. The integration of the arrival time probability over the time domain is equal to

one.

3.2.2 The Backward-in-time Model for Travel Time Probability

For the case of sorption, the travel time probability can also be described as being in the
aqueous phase, sorbed phase, or the combined aqueous phase and sorbed phase. The aqueous

phase travel time PDF, f;(r | x), is directly solved from the backward-in-time model:

ofe 0 ofr
Rof=D3 Vel (3.11)

or
with the same initial and boundary conditions presented in equation (2.8):
o) = & filklG R = 1)
R /TR (3.12)
where f,(% lx, R = 1)is the aqueous phase travel time PDF for the non-sorption case but

at travel time, 7/R, as given in equation (2.9). The BIT travel time PDF, f,(t | x), is the same

as the arrival time PDF computed from the forward-in-time model (3.10). The total travel
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time PDF for the combined aqueous phase and sorbed phase, £; 1otal(7lx), is illustrated by the

travel time PDF for the aqueous phase, f; (otal(TIX)=Rf; (zlx), L.e. f; total(zlx)=f; (z/Rlx; R=1).

The travel time CDF for the aqueous phase, F;(zlx), can also be directly computed from
a backward-in-time partial differential equations (3.11) and (2.10) with £, replacing F;.. The
new analytical solution is:
F(zlx) = F,(l% k; R = 1) (3.13)
F ’(IL"\’ Ix; R = 1) is the travel time CDF for the non-sorption case at time, 7/R, as given in

equation (2.11). This analytical solution is also obtained from the integration of the travel
time PDF, £ (zlx).

For the previous example, the analytical solution for travel time PDF with R=2 is shown
in Figure 3.6. Compared to the aqueous phase travel time PDF for non-sorption in Figure
2.5, Figure 3.6 demonstrates that the aqueous phase travel time PDF for various locations
xis retarded and reduced by retardation factor R. However, in applications of the retardation
equilibrium model, we are notinterested in the aqueous phase alone, butrather the total prob-
ability. It is given by multiplying the curves in Figure 3.6 by R=2, or retarding the curves
in Figure 2.5 by 1/R=0.5. Then, the probabilities are distributed the same in space but simply
take longer to the pumping well. Figure 3.7 shows diagrams of the aqueous phase travel time
CDF for travel time: 7=40 days, 100 days, and 200 days. Compared to the aqueous phase
travel time CDF for the non-sorption case in Figure 2.6, this distribution is retarded by the
retardation factor R. The capture zone of the contamination for a travel time of 100 days is

the same as that for non-sorption at 50 days.

3.2.3 The Backward-in-time Model for Location Probability

A location probability can also be described for the aqueous phase, sorbed phase, or the
combined aqueous phase and sorbed phase. The location probability density function (PDF)
for the aqueous phase, f;(x|7), is determined by the backward-in-time PDE in (3.11) and

(2.13) except that the initial condition is fi(x,7 = 0) = d(x)/R. The analytical solution of
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Figure 3.6. Diagram of the aqueous phase travel time PDF for the case of linear equilibrium
sorption. The plots represent the travel time PDF for three times: 7=20 days, 50
days, and 100 days at V=1.0 m/day, D=5.0 m%/day, and R=2.0.
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Figure 3.7. Diagram of the travel time cumulative distribution function (CDF) for linear equi-
librium sorption. The plots represent the travel time CDF vs. upstream distance for
travel times: 7=40 days, 100 days, and 200 days at V=1.0 m/day, D=5.0 m?/day,
and R=20,
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the location PDF is:
fldr) =+ fdZ: R =1)
R /¥ ’ (3.14a)
where fi(xl ,}%; R = 1) is the location PDF for the non-sorption case at /R, which is given

in equation (2.14). The sorbed phase location PDF, g;(x|t), is expressed by:

st = EDpaT; g < (3.14b)

The total location PDF for combined aqueous and sorbed phases, f; 1ota1(x | 7), is given by:
Fraomaflt) = fldfs R = 1) (3.140)
Figure 3.8 represents location PDFs for linear equilibrium sorption with R=2.0. Figure

3.8a shows that the PDF for the aqueous phase is retarded and reduced by retardation factor

R=2;Figure 3.8b shows the PDF for the sorbed phase is retarded and reduced by retardation
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Figure 3.8. Diagram of the location PDFs for linear equilibrium. a. The plots represent the aqueous
phase PDF for three times: 7=20 days, 50 days, 100 days later, at V=1.0 m/day, D=5.0
m?/day, R=2.0. b. Sorbed phase location PDF. c¢. Total location PDF for two cases:
R=1.0and R=2.0,
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factor R/(R-1)=2, which, in this case is identical to the aqueous phase probability. Figure

3.8c shows that the total location PDF is retarded by R=2, but not reduced.

For linear equilibrium sorption, the relation of total travel time probability and the total

location probability can be expressed as:

f r.total(ﬂx)

f x,toral(x Ir) =

I [z sotal(Tix)AX (3.15)

0
Thisrelation is easily proved by inserting the total PDF for travel time and location into equa-
tion (3.15). We can obtain the relation of both probabilities, Ji total T)=1, total(tix)/V, after

integrating the total location PDF in equation (3.15).

3.3 The One-dimensional Model in the Case of Non-Equilibrium Sorption

In contaminant transport within non-equilibrium sorption, the resident concentrations
for the aqueous phase, C’(x,t), and the sorbed phase, C;"(x,1), can be described by (Van Ge-
nuchten and Wierenga, 1976; Van Genuchten and Alves, 1982; Parker and Jardine, 1986;
Bruesseau, al et., 1992; Jury and Roth, 1990):

ocr . 9CT _ _a2cr _aCT (3.16a)
o T = PV ex

acg_ K r_er

= —a[ 22 Cr-C (3.16b)

where C"=C"(x,t) is aqueous phase resident concentration [M/L3], C"(x,?) is sorbed phase
resident concentration [M/L3]. Op is the bulk density of the aquifer material [M/L3], 0 is the
porosity of the aquifer, K is the equilibrium sorption coefficient [L3/M], and « is the mass
transfer coefficient [1/T]. For the previous example in Figure 2.1, the boundary and initial
conditions for the aqueous phase are shown in (2.2), and the initial condition for the sorbed
phase is Cs"(x,1)=0. A new analytical solution of (3.16) is derived using the double Laplace
transforms in time and space (see Appendix A4). After inverting the space transform, the

Laplace transform of the concentration in time (t—p) is described by:



30

Ay Mexp(sy(x-xo)) Mexp(s (x-x0)) [ 55 _VEx

Cr = 3—“"‘—_‘/5 I:]-"U(x_xo):l_g VE ?l—exp( D 0)—U(x~xo) (317&)

A’ — aKaQb Ar

C=tasppC (3.17b)
Oatx = x,

Uas) = 11 ar x > Xo

= “l‘ = _——‘»{« -
1= 35 (L+8) 53 = -55 (1-8)

_ _okga V2 + 44D
A_(1+9(p +=a))" E= [0

A A
where C" = C'(x, p) is the Laplace transform of the aqueous phase resident concentration

with respect to time (¢—p). é§ = é\g(x, p) is the Laplace transform of the sorbed phase resi-
dent concentration. Using numerical inversion of the Laplace transform (e.g. Jury and Roth,
1990), we can inverse the p to ¢, and get the solution for the resident concentration. For the
case 0=1.5g/cm3, porosity 8=0.3, and K3=0.0 (R=1), the solution represents the non—sorp-
tion case we have been studying, verifying the numerical inversion of the Laplace transform
with the analytical solution in equation (2.3). For the aqueous phase resident concentration
and sorbed phase resident concentration, Figure 3.9 shows the resident concentration for:
aqueous phase, sorbed phase and the combined phases, with K;=0.2 (R=2) and ¢.=0.02 day*
(time constant is 50 days). Compared to that for non-sorption, the resident concentration for

the aqueous phase is retarded and reduced by non-equilibrium sorption.

3.3.1 The Forward-in-time Model for Arrival Time Probability
For non-equilibrium sorption, the arrival time PDF, f;(¢| x,), is derived from the nor-

malization of the aqueous phase flux concentration, and its Laplace transform:

rn 2exp(-syx,)

g,\ _ aQb,Kd A

‘= Ba + oy (3.18b)
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Figure 3.9. Diagram of the resident concentration (mng/l) for non-equilibrium sorption. The plots
represent contaminant concentration in the aquifer 50, 100, and 200 days later. V=1.0
m/day, D=5.0 m2/day, g,=15g/m?, 6=0.3, K;=02cm3/g, and a=0.02/day (time
constant=50 days). a. Aqueous phase concentration; b. Sorbed phase concentration; c.
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Figure 3.10. Diagram of arrival time PDF for non-equilibrium sorption. Plots give arrival time PDF
for the aqueous phase for the three cases: non-sorption, linear equilibrium sorption
(R=2.0), and non-equilibrium sorption (K;=0.2em3/g, 0=0.02 day~!) for the source
location, x,=100 m, V=1.0 m/day, D=5.0 m?/day.
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where j?t = ft(xo, p) is the Laplace transform of arrival time probability density function for
the aqueous phase with respect to time (-—p), and g, = g,(x,, p) is the Laplace transform
of arrival time PDF for the sorbed phase. The constant coefficient, A and § are given in equa-
tion (3.17). Figure 3.10 shows diagrams of the arrival time PDFs for the aqueous phase.
Compared to the cases for non-sorption (R=1) and linear equilibrium sorption (say R=2),
the arrival time PDF with non—equilibrium sorption is characterized by its long tail. The in-

tegration of the arrival time PDF over the time domain is equal to one.

3.3.2 The Backward-in-time Model for Travel Time Probability

For the backward-in-time problem, the travel time PDFs for aqueous phase and sorbed

phase are described by:
e 08 _ P 0
at ot ox2 = ox (3.19a)
0gr _ aopKy
3? = ] ft - agr (3.19b)

where f;=f; (zlx) is the travel time PDF for the aqueous phase, and g, =g; (zlx) is the travel time
PDF for the sorbed phase. For the previous example shown in Figure 2.1, the appropriate
boundaries and initial conditions for the aqueous phase travel time PDF are given in equation
(2.8), and the initial condition for the sorbed phase travel time PDF is equal to zero, g,=0.
The new analytical solution is derived in Appendix AS5. The Laplace transform of the travel

time PDFs with respect to time (T—p) is described by:

; 2exp(-

fnm = T (3.208)
A _aepKy 2exp(-syx)

&P = 5 T A £ E (3.20b)

where ft = f,(x, p) is the Laplace transform of travel time PDF for the aqueous phase with
respect to time (t—p), and §, = §r(x, p) is the Laplace transform of travel time PDF for the

sorbed phase. The constant coefficients, s; and &, are given in equation (3.17). Compared

to the arrival time PDF, f, = f,(x,, p) in equation (3.18), the travel time PDF, £, (| x), is iden-
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tical. The total travel time for the aqueous phase and sorbed phase, £ torai(tlX), is given by:

A ag K 2exp(~s,x)
T roral®P) = [0((1 + ;) i 1] (1+9 (3.20¢)

The cumulative distribution of travel time for the aqueous phase, F; v | x), can be directly
solved from (3.19) and (2.10) with initial condition G; (r | x)=0 at 7=0. The analytical solution

of the Laplace transform in time is:

Futnp) = 222 (321)

Figure 3.11a shows the travel time probability density function for the aqueous phase

for K4=0.2 cm3/g (R=2) and 0,=0.02 day~! (time constant=50 days), for the three times: 7=20
days, 50 days, and 100 days. Compared to the travel time PDF for the non-sorption case in
Figure 2.5a, Figure 3.11a indicates that the aqueous phase travel time PDF is retarded and
reduced by the non-equilibrium sorption. Figure 12b describes the cumulative distribution
of travel time for the aqueous phase. The capture zone in Figure 12b becomes smaller than

that for non-sorption in Figure 2.6.

3.3.3 The Backward-in-time Model for Location Probability

The location PDFs for non-equilibrium sorption are expressed in equation (3.19) by re-
placing f; with f;, and g, with g.. The solution is derived by using double Laplace transforms
in time and space along with boundary and initial conditions from equation (2.13) and initial
condition g, =0 atr=0. After inverting the space transform, the Laplace transform of the loca-

tion PDF in time (t—p) is described by:

n o 2exp(-syx)

T VIT B (3.22a)
A 00Ky 2

r [ oKy 2
Frsotal = (m + 1)fx (3.22¢)
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Figure 3.11. Diagram of the travel time probability for non-equilibrium sorption. a. The plots repre-

sent travel time PDFs for three times: t=20 days, 50 days, and 100 days, at V=1.0 m/day,
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where fx = jA”x(x, D) is the Laplace transform of location PDF for the aqueous phase,

g, = &,(x,p) is the Laplace transform of location PDF for the sorbed phase.

f;'total = f;’mm(x, p) is location PDF for the combined aqueous phase and sorbed phase.

For the previous example, Figure 3.12 shows the location probability density functions
for three times: 7=20 days, 50 days, and 100 days. Figure 3.12a presents the aqueous phase
location PDF. The location PDF is retarded and reduced by non-equilibrium sorption. Figure
3.12b shows that the s orbed phase location PDF, The probabilities are closer to the well. Fig-
ure 3.12c describes the total location probability density function. The three types of location
PDFs are affected by the mass transport coefficient a (or time constant 1/a): For the large
a, the location PDFs tend to equilibrium sorption; for the small &, the location PDFs tend

to non-sorption.

For non-equilibrium sorption, the relation of total travel time probability and the total

location probability can also be described by a relationship analogous to that in (3.15).

3.4 The One-dimensional Model in the Case of Natural Recharge

For a one-dimensional aquifer with natural recharge, the average velocity and disper-
sion are spatially variable. Contaminant transport is different than in the previous cases.
When clean water is regionally recharged into the aquifer shown in Figure 2.1, the aqueous

resident concentration of the contamination, C'(x,f), must be expressed as:

ACT _ 3 (HocCry | (V)
a ax(D ax) T

(3.24)

where C"=C"(x,?) is the aqueous phase resident concentration. D=q; V+D* is the dispersion
coefficient [L2/T], D* is the diffusion coefficient, and ¢y is the dispersivity. Assume that the
average velocity V, at the pumping well, x=0, is constant. The average velocity V in the aqui-
fer can be described by:

V= Vo—%g (3.25)
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for uniform recharge, where N is the natural recharge rate [L/T], B is the thickness of the
aquifer [L], and @ is the porosity. For the pumping system in Figure 2.1, the boundary and

initial conditions are the same as those in equation (2.2).

We could not find a convenient closed form solution for the resident concentration for
(3.24) and (2.2). Instead this case was simulated by an implicit finite difference method with
A1=0.1 and Ax=1.0. Figure 3.13a represents a diagram of the resident concentration vs. up-
stream distance for three times: r=20days, 50days and 100 days, while V,=1.0m/day, a; =5m,
N=0.001 m/day, and-0=0.3. Because the average velocity, V, and the dispersion coefficient,
D, linearly decrease in the x direction, the contaminant concentration distributions are not
symmetric in the aquifer, a significant difference from the the concentration distributions for

no recharge in Figure 2.2.

3.4.1 The Forward-in-time Model for Arrival Time Probability

In the forward-in-time problem, since C"/dx = O at the pumping well, the aqueous
phase flux concentration is equal to the resident concentration simulations. The arrival time
PDF can be obtained from the normalization of the simulated concentrations at the pumping
well. Figure 3.13b shows the arrival time PDF for natural recharge. It is delayed by the lower
velocities intrinsic to this aquifer, and is somewhat spread out by the higher velocities at the

head of the plume, relative to the tail.

3.4.2 The Backward-in-time Model for Travel Time Probability

The backward-in-time model can also be extended to the case of natural recharge. The
flow problem is run backward-in-time, and the distributed natural recharge becomes a pre-
scribed discharge. For the pumping well in Figure 2.1, the travel time PDF, £.=f,(z | x), can

be computed from:

o _ _a_(Da_f,) LV N (3.26)
or ~ dx\ "~ ox 0x B&'®

After inserting equation (3.25) into equation (3.26), we can obtain:
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Figure 3.13. a. Space-time solution of the contaminant concentration (mg/l) for the case of uniform
natural recharge. The contamination source (CS) is located at x,=100 m, and the pump-
ing well (PW) is located at x=0. The average velocity at the pumping well V,=1.0m/day,
natural recharge rate N=0.001m/day, the dispersivity ¢;=5.0 m. b. Normalized flux
concentration or arrival time PDF at the pumping well vs. arrival time. Solid line repre-
sents the natural recharge with ¥=0.001 m/day; dotted line represents the non natural
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Figure 3.14. Diagram of travel time probability for the case of natural recharge. a. The plots repre-
sent travel time PDF for three travel times: =20, 50, and 100 days at V,=1.0 m/day,
a7,=5.0 m, and N=0.001m/day. Solid lines represent BIT PDE solutions and crosses
represent FIT solutions. b. The plots represent travel time CDE
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e i(Difz)_ : (3.27)
ot ox ox dx

For natural recharge, the initial and boundary conditions are the same as in equation (2.8).

The solution of the travel time PDF is simulated by the implicit finite difference method.
Figure 3.14a represents a diagram of the travel time PDF vs. upstream distance for three
times: 7=20 days, 50 days and 100 days in the past. Figure 3.14a also presents five arrival
time PDFs for 7=50 days, computed from the forward—in-time method for five different
source locations. Co;nparison of travel time PDFs and the five arrival time PDF values con-
firms the travel time PDFs from the backward-in-time model. Figure 3.15a states the influ-
ence of the natural recharge rate on the travel time PDFs. The travel time PDF decreases as

the recharge rate increases.

The travel time cumulative distribution function (CDF), F;(z | x), can be obtained from
integration of the travel time PDFs, or can be directly solved from the equations (3.27) and
(2.10). Figure 3.14b shows the distributions of travel time CDF vs. upstream distance for
travel times: 7=20 days, 50 days, and 100 days. Figure 3.15b represents the influence of the
natural recharge rate on the capture zone. The capture zone reduces as the recharge rate in-

creases.

3.4.3 The Backward-in-time Model for Location Probability

In the case of natural recharge, the location probability can also be determined from the
backward-in-time PDE. Because we assume that the contaminant did not come from natural
recharge but an independent contaminant source at x,, the backward—in-time PDE does not
involve the “discharging” of the location probability while the groundwater flow is reversed.

- The location PDF, f,=f,(x|7), is described by:

e _ 9 ( Da_fx)+ o(Vfx) (3.28)
Jr  ox 0x ox

The initial and boundary conditions are the same as in equation (2.13).
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For the previous example, the numerical solutions of location probabilities from equa-
tions (3.28) and (2.13) are shown in Figure 3.16. Figure 3.16 shows the location PDFs for
three times: =20 days, 50 days and 100 days in the past. Due to the velocity linearly decreas-
ing along the direction x, the greatest location probability is located at about 90 m in 100

days. The capture zone of the contamination is reduced by natural recharge.

For the case of natural recharge, the travel time PDF and location PDF can also be de-
scribed by equation (2.20), such that we can compute the location PDFs from the travel time
PDFs through the Bayes theorem shown in equation (2.20). Figure 3.16 shows the location
PDFs computed from the travel time simulation using the Bayes theorem for time 7=50 days,
and 100 days. Compared to the location PDF simulations from equation (3.28), the location

PDFs from the Bayes theorem are in close agreement to the location PDF simulations.



4. THE TWO-DIMENSIONAL BACKWARD-IN-TIME MODEL
FOR TRAVEL TIME AND LOCATION PROBABILITIES

In the previous sections, one-dimensional models have been used to successfully study
the backward-in-time approach, accounting for dispersion, chemical reactions, and natural
recharge. In this section we extend the new method to a two-dimensional domain, shown
in Figure 4.1, and demonstrate how to create travel time and location probability maps for
it. The aquifer consists of two sub-domains: high hydraulic conductivity and low hydraulic
conductivity, The gr:oundwater flows from right to left. In the pumping well system, the
pumping well is located at the downstream location, X1=(x1,y1), and the contamination was
introduced into the aquifer from an upstream location, X, =(x,., y,). The contamination plume
moves downstream, spreads, dilutes, and finally is extracted by the pumping well. This mod-
el is used to examine the new method for cases of aquifer heterogeneity, linear equilibrium
sorption, non-equilibrium sorption, and natural recharge. The FIT solute transport, and
backward-in-time probability models are simulated by the Laplace transform—in-time Gal-
erkin finite element method (Sudicky and McLaren, 1992). The computer code, FRAC-
TRAN (Sudicky and McLaren, 1991), is modified for cases of natural recharge, non-equi-

librium sorption, and third type boundary conditions for sinks and sources.

4.1 The Two-dimensional Backward-in-time Model in a Heterogeneous Aquifer

4.1.1 Contaminant Transport in a Two-dimensional Heterogeneous Aquifer

In the pumping well system in Figure 4.1, the hydraulic head is expressed by the govern-

ing equation for steady state flow with a point sink:
9 (7. 92 \ sx- =
ox; (T'J axj ) o(X X0, =0 (4.1)

where his hydraulic head [L], T;j 1s the second order aquifer transmissivity [L2/T] tensor with
i,j=1,2, Q, is the pumping rate[L3/T] at a location, and X 1=(x1,1). x; ; are the coordinates

of the domain, x, y, and X=(x,y). The governing equation accounts for heterogeneous and

41



42

oh _ ac _
A ay 0 ay 0
50 T Y T
CS
= h=40m PW % h=50m
g o
o _ Q=5 m3/day
8 &»=0
g High K
g K=3.65 m/day
0 l dh
0 ay 0

Distance (m), x

Figure 4.1 Hlustration of the physical dimensions of a basic steady state flow, two-dimensional
mass transport model. The heterogeneous domain is about 100 m in length and 50 m
in width. A pumping well (PW) is located at (20,25), and the dissolved contamina-
tion source (CS) is located at (80,30). For the groundwater flow, the boundary condi-
tions are illustrated as a constant head along the left and right sides with imperme-
able boundaries on the top and bottom. The hydraulic conductivity: K1=3.56 m/day,
K»=1.78 m/day. For the mass transport, second type boundary conditions are used
except for a first-type boundary condition on the right side.
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Figure 4.2. Two-dimensional hydraulic head contour in a heterogeneous aquifer. The pump-
ing well (PW) is located at (20,25) with pumping rate Q,=5.0 m3/day. The con-
tour interval is 0.5 m.
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1sotropic aquifer conditions, and for a steady state flow with sources or sinks. The boundary
conditions in Figure 4.1 are described as a constant head on the left and right boundary, and

no flow through the top and bottom boundary:

h=h,atx=0 h=hy, atx=1L, (4.2a)
oh _ =0 y=
5y 0, aty=0; y=1Ly (4.2)

where Ly and L are the length and width of the domain, and Q,, is the pumping rate at the
pumping well. The hydraulic head solution for the steady state from equations (4.1)-(4.2)
is numerically simulated by the Galerkin finite element method (Sudicky and McLaren,
1992). The average velocity of the groundwater is computed by Darcy’s law. The parameters
for groundwater flow in Figure 4.1 are shown in Table 4.1. Figure 4.2 shows the simulated
hydraulic head. The groundwater flow direction is normal to the contour of the hydraulic

head.

For contaminant transport in the two-dimensional heterogeneous domain shown in Fig-
ure 4.1, the contaminant was introduced into the aquifer at contamination source (CS),
Xo=(%.¥,), at time #=0. The aqueous phase resident concentration C?(X,) can be expressed
as (Dagan, 1984; Dagan and Nauyen, 1989; Sudicky and McLaren, 1992):

9T = a%(o,% )v%ﬁ- (43)
where C'=C"(X,?) is the resident concentration, V;(i=1,2) is a first~order velocity tensor, and
Dy (i,j=1,2) is a second-order dispersion tensor. For the example in Figure 4.1, the boundary

and initial conditions for the mass transport are expressed as:

'Qé"c;'c—r = 0, at x = 0, CI" = 0, at x = Lx (443)
lim a—CrdS = 0, at pumping well (x;,y)
=0 | 0r (4.4c)

"= ZoX-X,), for t=0 4.4d)



where C’=C’(X¢) is the resident concentration, M is the released mass of 0.356 grams at

Xo=(x0,Y0), S is the boundary around the pumping well at radius, r. For the pumping well,

the Newman solute flux is equal to zero. For the initial condition, §(X-X,)=0(x~Xy, Y-¥o)

is a Dirac function at point (x,,y,).

Table 4.1. The parameters for the groundwater flow and mass transport model:

Parameters

Description

Domain

Heterogeneous and isotropic hydraulic
conductivity

Longitudinal dispersivity
Lateral dispersivity
Diffusion coefficient
Porosity

Porous medium bulk density
Pumping well location
Pumping rate

Boundary conditions for groundwater flow

Boundary conditions for contaminant
transport

Initial condition for mass transport

Grid characteristics

100 m x 50 m rectangle

K;=Ky=3.56 m/day in high K sub-domain
Kyx=Ky=1.78 m/day in low K sub-domain

a7, =04 m

ar =0.2m
D*=3.0E-4 m%/day
6=0.35
op=1.5g/cm3

x=20, y=25m
0,=5.0 m3/day

h1=40 m at x=0 m, 71p=50 m at x=50 m
dh/dy=0 on top and bottom boundaries
C=0

oC"ox;=0;

at the right boundary
otherwise

C'=[M/(B8)] d(X-X,)

Ax=0.5m, Ay=0.5m;
20,000 square elements and 20,301 nodes.

for =0

The parameters for contaminant transport are listed in Table 4.1. For the contamination

source at (80,30), the resident concentration simulations from equations (4.3)-(4.4) are

shown in Figure 4.3, Figure 4.3 represents resident concentration contours for three travel

times: =30 days, 40 days, and 60 days. The contaminant plume moves downstream, spreads,
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Figure 4.3. Two-dimensional transport of a contaminant plume in a heterogeneous aquifer. The
contaminant source (CS) is located at (80,30), and the pumping well (PW) is located
at (20,25). The outermost contour line represents 0.004 (mg/1), the contour interval
is 0.004 (mg/1). a—c show the plumes for 30 days, 40 days, and 60 days, respectively.
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and dilutes. This figure shows the combined effects of advection, dispersion, and aquifer het-

erogeneity.

4.1.2 The Forward-in-time Model for Arrival Time Probability

We can apply equations (4.3)-(4.4) to the problem of determining the contaminant flux-
concentration arriving at the pumping well. In the pumping well the arriving aqueous phase
flux concentration, C/(X,?), is equal to the resident concentration, CAX,1)=C" (X,0), as is
shown by equation (4.4c). The arrival time probability density function, f;(z| X,,) describes
the probability that a non-reacting contaminant particle, released at location (x,, v,) at time,
=0, will reach the pumping well at (xy, y1) in time ¢. The arrival time PDF is obtained from

the normalized flux concentration:

kg = 222

here f;(¢| X,) is the arrival time PDF for a given source location, Xg=(%,, ¥»). O, is the pump-

4.5)

ing rate at the pumping well, located at X1=(x;, y{). M is the total mass released at the source

location,

We can compute the arrival time PDF for a given source location, X,,. What happens if
we don’t know where the source is located? Suppose all we observe is the contamination con-
centration in the pumping well. It is possible to simulate the arrival time PDF numerically
for each possible source location, but if there are a large number of these it would be very
expensive in terms of time and computational resources. Worse, what if we do not know

where the possible sources are?

4.1.3 The Backward-in-time Model for Travel Time Probability

In the new method, the travel time PDF can be directly formulated using the backward-
in-time method. The two-dimensional travel time PDF, £(r | X), for a travel time, T, from
some location X=(x, y) to pumping well location (x1, y1), can be expressed with the standard
advection—dispersion equation by replacing the concentration with f; (v | X), and replacing V

in the forward problem by -V:
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aft _ a aft ifl (4.6)
ot = 53;,.(19:7:335. *Viax,

where f; =f,(z| X) is travel time PDF, and i, j =1, 2. In this example, the boundary and initial

conditions are as follows:

ofy

2 =0 atx =0 fr=0, at x = L, (4.7a)
e _ _o 9 _ -
- aty=0 =0 ay=L, (4.7b)

s * afr _ Qo .
11_13(1) L[—V[fr—Dr—gr—]dS = @6(1'), at pumping well (x,y,) (4.7¢)

fr=0 atr=0 (4.7d)
where the V; and D, are the average velocity, and dispersion coefficient along the normal
direction of the pumping well, S is the boundary of the pumping well as 7—0, and Q, is the
pumping rate. Figure 4.4 shows the boundary conditions in the domain. The travel time PDF

for each possible location can be obtained by running only one simulation from equations

(4.6)-(4.7).
ofe _
A - 0
50 t H )
: 8f.] o _ Qs
lim L[—V,f,—D,E]dS = 520()
3
c ‘;—J; =0| PWo =0
g High K
A K1=3.65 m/day
0 ' -

Distance (m), x

Figure 4.4. Ilustration of the physical dimensions of a two-dimensional backward-in-time model.
The heterogeneous domain is about 100 m in length and 50 m in width. The pumping well
(PW) represents an “injected well” in the backward-in-time problem. A third type
boundary condition is used at the pumping well, and second type boundary conditions are
used on the other boundary.
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The simulated result for the example is shown in Figure 4.5, Figure 4.5 represents the
travel time PDF map for three times: 7=30 days, 40 days, and 60 days in the past. It shows
that the capture zone moves in an upstream direction and spreads. Figure 4.5 also shows re-
duced probability as time progresses in a backward direction, The travel time PDF distribu-
tion is affected by the heterogeneity of the aquifer, and a high travel time PDF tends to occur

in the high conductivity area.

Can we compare the backward-in-time (BIT) solution to the forward-in-time (FIT)
solutions? Figure 4.6a and Figure 4.6b represent the travel time PDF, £;(z | X), (in solid line)
vs. arrival times for locations (80,30) and (80, 20), simulated with the forward—in-time
method (in dotted line). The small difference is due to the numerical simulation technique.
The arrival time PDFs and travel time PDFs demonstrate that the travel time from the aquifer
to the pumping well can be estimated using either the BIT solution or the FIT solution, but
the BIT approach is more efficient. The travel time PDF for a location in the higher conduc-
tivity area is higher than that for a location in the lower conductivity area. Figure 4.7 shows
the travel time PDF for 60 days along a cross section through both locations (80, 20) and (80,
30), from a single backward-in-time solution, and the arrival time PDFs from five forward-

in-time solutions, further confirming the validity and efficiency of the method.

The travel time cumulative distribution function (CDF), F;(t | X), describes the proba-
bility that a contaminant is captured by the pumping well in a period of time less than 7, from
a given location, X=(x,y). The travel time CDF, F;(r | X), can be obtained by integrating the
travel time PDF, £, (7| X):

F(rlX) = f f('\X)ar! (4.8)
0

In the new method, the travel time CDF can also be formulated from equation (4.6) by replac-

ing f; with F, along the boundary conditions:
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Figure 4.5. Two-dimensional travel time PDF in a heterogeneous aquifer. The outermost contour
line represents 0.02, and the contour interval is 0.02, in units of 1 day~!. a-c show the
travel time PDF for 30 days, 40 days, and 60 days, respectively.
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Figure 4.6. Diagram of the travel time PDF, f,(zIX) vs. travel time. a. Travel time PDF for the
source location at (80,30), in which the dotted line shows the forward-in-time (FIT)
solutions, and the solid line shows the backward—in-time (BIT) solution. b, Travel
time PDF for the source location at (80,20). Two FIT simulations are required to
construct this figure, but only one BIT simulation.
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oF;

ox = 0, at x = O, F‘L’ =0, atx = Lx (493)
aF; - 9Fr _ _

3y - 0, aty =0 3y 0, aty =L,y (4.9b)
lim - V,F,—D,—‘EW—’ as = —Q—Q, at pumping well (x{,y;) (4.9¢)
r—0 s or 6B

F;=0 att=20 (4.9d)

where F;=F; (| X) is travel time CDF.

The travel time CDF can be computed by the following methods: 1) integration of the
forward-in-time PDF, 2) integration of the backward-in~time PDF, and 3) direct computa-
tion using the backward-in-time method. The solutions from all three methods are in very
close agreement, differing only by a small amount attributable to numerical approaches. Fig-
ure 4.8 shows the travel time CDF, F;(7 | x,y), for times: =30 days, 40 days and 60 days. The
capture zone of the contaminant extends in an upstream direction as the time increases. For
the forward problem, the travel time CDF in this example had to be reconstructed by running

many simulations to approximate the continuous curve of F;(z | X). In practical multidimen-

P
0.1 -
PW FIT
— X
& o008l ° BIT
=
‘93 0.06}
£
3 0.04
£
0.02}
O 1 x 1 2
0 10 20 30 40 50
Distance (m), y

Figure 4.7. Diagram of the travel time PDF vs. distance along the cross section A-A’ at x=80
m. The crosses represent the travel time PDF from five forward-in-time solu-
tions for source locations: y=15 m, 20 m, 25 m, 30 m, and 40 m. The solid line
shows one backward-in-time solution along the cross section.
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tour line represents (.1, and the contour interval value is 0.1. a-¢ show the travel time
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sional applications, with many potential source locations, it is unrealistic to obtain the CDF
in this manner. In the backward-in-time method, the travel time CDF is easily obtained by

running one numerical simulation.

4.1.4 The Backward-in-time Model for Location Probability
The location probability density function, fz (X |7) describes the probability that a non—
reacting contaminant particle observed from the pumping well was located at the position,

X=(x,y), at a given travel time, 7. In the new method, the location PDF can be formulated

by the backward-in-time PDE:

Ifx _ 9 Iy Iy (4.10)
B T ax (foaTj +Vigy,

where fy=fy(XIr) is the location probability density function. A unit probability is

“introduced” into the aquifer at the pumping well in 7=0. The boundary conditions and initial

conditions are;

%j;—x =0, at x = 0; fx=0 atx=1L; (4.11a)
%‘l:o, aty = 0 %’%:o, aty = Ly (4.11b)
lim [ [—V,]‘X—Dr%[}-{-]dé‘ = 0, at pumping well (x;,y;) (4.11c)
r=0 ] r '

fx =06(X-X)), at7 =0 (4.11d)

where the V; and D, are the average velocity and dispersion coefficients along the normal

direction of the pumping well, and § is the boundary of the pumping well at r—0.

For the same domain and the contaminant transport model in the previous example, the
simulated location PDF, computed from equations (4.10)-(4.11), is shown in Figure 4.9 for
three times: =30 days, 40 days, and 60 days in the past. It shows that the location distribution
moves in an upstream direction, and spreads. The location PDF is affected by the heterogene-

ity of the aquifer, and a high location PDF tends to occur in the high conductivity area.
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Figure 4.9. Two-dimensional location PDF in a heterogeneous aquifer. The ocutermost contour
line represents 5.0E-4, and the contour interval is 5.0E-4 in units of 1 m~2. a~b show
the location PDFs for travel times of 40 and 60 days, respectively.
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In a one-dimensional model, the relationship between the travel time and location prob-
abilities has been described by the Bayes theorem. In a two-dimensional model, the relation-
ship of the travel time and location probabilities is also derived from their simulations using

the backward-in-time models. It is confirmed by the Bayes Theorem:

Jo(r1X)g(X)

Sy(Xir) =
(4.12)
I Jr(t1X)g(X)dxdy
0

where fx (X | 1) is a conditional location PDF, and g(X) is a uniform probability density func-
tion. f; (z1X) is the travel time probability density function. In the case of advection-disper-

sion only, equation (4.12) can be rewritten:

Fy(Xl) = %fr(ﬂX) (4.13)

For a two~dimensional heterogeneous aquifer, the travel time probability can be direct-
ly determined using the backward-in-time method, and is in close agreement with the simu-
lation results from traditional forward-in-time methods. The examples in this research dem-
onstrate thatthe backward-in-time method can be applied in a two-dimensional aquifer. For
the pumping well system, the appropriate boundary condition for the travel time PDF in the
backward-in-time PDE is a delta function third type boundary condition at the pumping
well and the proper boundary condition for travel time CDF is a third type boundary condi-

tion. The proper initial condition for the location PDF is a delta function at the pumping well.

The travel time and location probabilities are affected by the heterogeneity of the aqui-
fer. The backward-in-time simulations demonstrate that high probabilities tend to locate
in high permeable sub-domains, and small probabilities tend to locate in low permeable sub-

domains.
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4.2 The Two-dimensional Backward-in-time Model for the Case of Linear Equilib-
rium Sorption

In the case of sorption in the domain shown in Figure 4.1, itis supposed that the ground-
water flow conditions are the same as in the previous example. Two cases of sorption will

be considered in this report: linear equilibrium sorption and non-equilibrium sorption.

For linear equilibrium sorption, the aqueous phase resident concentration C’(X 1) can

be expressed as:

T _ 9 p 9CT )y, 0CT 4.14
- R5 ax,-(D‘J ox; ) Vi 0x; (4.14)

where C'=C"(X,?) is the aqueous phase resident concentration in the aquifer, and R is the re-
tardation coefficient. For the example shown in Figure 4.1, the boundary and initial condi-

tions for mass transport are expressed by equation (4.4).

For the previous example, it is supposed R=1.5 in the high K sub-domain, and R=2.0
in the low K sub-domain. The results of the simulations from equations (4.14) and (4.4) are
shown in Figure 4.10 and Figure 4.11. Figure 4.10 shows the aqueous phase resident con-
centration contours for three times: =40 days, 60 days, and 90 days after release at source
location, (80, 30). Compared to the aqueous resident concentration contours of non-sorption
in Figure 4.3, Figure 4.10 demonstrates that the contaminant plumes are retarded by the sorp-
tion, and the retardation in the low K sub-domain is larger than that in the high K sub-do-
main. Figure 4.11 demonstrates that the sorbed phase resident concentration is élso retarded

by the sorption.

4.2.1 The Backward-in-time Model For Travel Time Probability
In the new method, the travel time PDF for the sorption case can be directly solved by

applying the backward-in-time PDEs. The travel time PDF can be expressed as:

rRY: _ _a_(p e ) Ly Y (4.15)

ot ox;\ " Yox tox;

where f;=f;(z|X) is the aqueous phase travel time PDF, and R is the retardation factor.
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Figure 4.10. Two-dimensional aqueous phase resident concentration contour for the case of lin-
ear equilibrium sorption in a heterogeneous aquifer. The contaminant source (CS) is
located at (80, 30). The outermost contour line represents 0,004 (mg/1), the contour
interval is 0.004 (mg/1). a—c show the plumes for 40 days, 60 days, and 90 days, re-

spectively.
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Figure 4.11. Two-dimensional sorbed phase resident concentration contour of contaminant
transport in the case of linear equilibrium sorption in a heterogeneous aquifer. The
contaminant source (CS) is located at (80, 30), and the pumping well (PW) is located
at (20, 25). The outermost contour line represents 0.004 (mg/1), the contour interval
is 0.004 (mg/1). a-c show the plumes for 40 days, 60 days, and 90 days, respectively.
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Compared to the non-sorption case in equation (4.6), the travel time PDF in linear sorption
is retarded by R. In this example, the boundary and initial conditions are given in equation

4.7.

The simulated travel time PDF’s for the previous example are shown in Figure 4.12 and
Figure 4.13. Figure 4.12 shows travel time PDFs for source locations at (80, 30) and (80,
20) vs. travel time. The simulation results from the single BIT simulation are confirmed by
the two FIT solutions. Compared to the travel time PDF without sorption, the travel time
PDF is retarded by the sorption. Figure 4.13 represents the travel time PDF for three travel
times: 7=40 days, 60 days, and 90 days in the past. Compared to the non-sorption case in

Figure 4.5, the travel time PDF distributions are closer to the pumping well.

For linear equilibrium sorption, the travel time CDF for the aqueous phase can be ex-
pressed as equation (4.15) by replacing f; with F;, along the same boundary and initial condi-
tions shown in equation (4.9). For the same example as Figure 4.13, the simulated results
of the travel time CDF for the two times 7= 40 days, and 60 days are shown in Figure 4.14.
Compared to the non-sorption case in Figure 4.8, the travel time CDF demonstrates that the

capture zones are reduced by the sorption.

4.2.2 The Backward-in-time Model For Location Probability
For the linear equilibrium sorption case, the location PDF for the aqueous phase, fy (Xir)

can be expressed as:

Ix _ 8 ofx Ifx (4.16)
k5 = aT(DJa_xJ tVigy,

where fy=/x(XIr) is the location PDF for the aqueous phase, and R is the retardation factor.

For the same domain in Figure 4.1, the boundary and initial conditions for the aqueous
phase location PDF can also be expressed by equation (4.11), except that the initial condition
is replaced by 6(X-X1)/R. The simulated location PDF for the aqueous phase is shown in

Figure 4.15 for two times: 7=40days, and 60 days in the past. The greatest location PDF for
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Figure 4.12. Diagram of the travel time PDF, £(z1X) for linear equilibrium sorption vs.
travel time. a, Travel time PDF for the source location at (80,30), in which
the dotted line shows the forward-in-time (FIT) solution, and the solid line
shows the backward-in-time (BIT) solution. b. Travel time PDF for the
source location at (80, 20).
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Figure 4.13. Two-dimensional travel time PDF contour for the aqueous phase in the case of linear
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Figure 4.14, Two-dimensional travel time CDFs for linear equilibrium sorption. The retardation
factor R=1.5 in the high K sub-domain, and R=2.0in the low K sub-domain. The outer-

most contour line represents (.1, and the contour interval value is 0.1. a. The travel
time probability distribution for time less than 40 days. b. The travel time probability
distribution for time less than 60 days.
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Figure 4.15. Two-dimensiona! location PDFs for the aqueous phase in linear equilibrium sorption.
The retardation factor R=1.5 in the high K sub-domain, and R=2.0 in the low K sub-do-
main. The outermost contour line represents 5.0E-4, and the contour interval value is
5.0E-4. a. The location PDFs for the travel time, =40 days. b. The location PDFs for

the travel time, 7=60 days.



7=60 days is located around the position (60, 30). The greatest location PDF moves in an
upstream direction as time progresses in a backward direction. As the result of the retarda-
tion, the location PDF distribution is closer to the pumping well than in the non-sorption

case.

The location PDF for the sorbed phase, gy=gx(Xlr), and the total location PDF for the
combined aqueous phase and sorbed phase, gx 0w = 8 10101 (XIT), can be computed through
the aqueous phase location PDF: gy = fx(R-1)/R, gx 10rat =fxR. The total location PDF simu-
lation is shown in Figure 4.16. Compared to the non-sorption in Figure 4.9, the total location

PDF is retarded by linear equilibrium sorption.

4.3 The Two-dimensional Backward-in-time Model for the Case of Non-equilibri-
um Sorption

For the case of non-equilibrium sorption in the same domain shown in Figure 4.1, the

resident concentrations can be expressed as:

acr , 9C5 _ acr acr 417
ot + ar ax,- Dl—’ axj _Vi ax,- ( a)
oCt  aKpo, . .
Fraimli C™-aCy (4.17b)

where C'=C7(X,r) is the aqueous phase resident concentration in the aquifer, and
C7s=C"4(X,1) is the sorbed phase resident concentration in the aquifer. The boundary and ini-
tial conditions for the aqueous phase resident concentration are the same as those in equation
(4.4), and the initial condition for the sorbed phase concentration is expressed as:
C§ =0, fort=0 (4.16)

where C7;=C"(X,?) is the resident concentration for the sorbed phase.

For the example, it is supposed that Ky=0.12 cm3/g (R=1.5), a=0.1 day~! (time
constant=10 days) in the high K sub-domain, and K;z=0.24 cm3/g (R=2), =0.1 day~! (time

constant = 10days) in the low K sub-domain. The result of simulations for the aqueous phase

concentration and sorbed phased concentration are shown in Figures 4.17 and 4.18, respec-
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Figure 4.16. Two-dimensional total location PDFs for the aqueous phase and sorbed phase in linear
equilibrivm sorption. The retardation factor R=1.5 in the high X sub-domain, and
R=2.01n the low K sub-domain. The outermost contour line represents 5.0E-4, and the
contour interval value is 5.0E-4. a. The location PDF for the travel time, 7=40 days. b.
The location PDF for the travel time, 7=60 days.
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Figure 4.17. Two-dimensional aqueous phase resident concentration contour for the case of non-
equilibrium sorption. The contarntinant source (CS) is located at (80,30), and the
pumping well (PW) is located at (20,25). The outermost contour line represents 0.004
(mg/1), the contour interval is 0.004 (mg/l). a-b show the plumes for 40 days and 60
days, respectively,
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Figure 4.18. Two-dimensional sorbed phase resident concentration contour for the case of non-~
equilibrium sorption in a heterogeneous aquifer. The contaminant source (CS) is lo-
cated at (80,30), and the pumping well (PW) is located at (20,25). The outermost
contour line represents 0.004 (mg/l), the contour interval is 0.004 (mg/1). a-b show

the plumes for 40, 60 days, respectively.
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tively. Figure 4.17 shows the aqueous phase concentration contour for two times: 7= 40 days
and 60 days, after contaminants were released at source location (80, 30). Compared to the
linear equilibrium sorption, Figure 4.17 indicates that the aqueous phase concentration
plume is retarded within a long "tail” from the source location. Figure 4.18 shows that the

concentration for the sorbed phase is less than that for linear equilibrium sorption.

4.3.1 The Backward-in-time Model For Travel Time Probability
In the backward-in-time model, the travel time PDFs for non-equilibrium sorption can

be expressed as:

fe 98 _ 9 fz e (4.19a)
o T\ Piax, ) T Viay,

agr _ aKaQb

_é.%._ = 9 fr_agr (419b)

where f;=f;(t | X) is the travel time PDF in the aqueous phase, and g, =g,(z | X) is the travel
time PDF for the sorbed phase. The boundary and initial conditions for the aqueous phase
travel time PDF are the same as those in equation (4.7), and the initial condition for the
sorbed phase travel time PDF is shown as:

g =0, att=20 4.21)
where g, =g, (1| X).

The simulated results of the travel time PDFs for the aqueous phase for the example
are shown in Figures 4.19 and 4.20. Figure 4.19a and Figure 4.19b show the travel time PDFs
given the source locations at (80, 30) and (80, 20), respectively. Due to the non-equilibrium
sorption, the travel time PDFs present long “tails” along the travel time. The simulation re-
sults from the backward-in-time (BIT) model (solid lines) are also confirmed by the two
FIT solutions (dotted lines). Figure 4.20 represents the aqueous phase travel time PDF for
two travel times: 7=40 days and 60 days in the past. Compared to the non-sorption case in
Figure 4.5, the travel time PDF distributions have been retarded by sorption, and have a long

tail pointing toward the well.
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Figure 4.19. Diagram of the travel time PDF, £; (z1X) for non-equilibrium sorption vs.
travel time, a. Travel time PDF for the source location at (80, 30), in
which the dotted lines show the first of two forward-in-time (FIT) solu-
tions, and the solid line shows the same for the single backward-in-time
(BIT) solution. b. Travel time PDF for the source location at (8§0,20).
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Figure 4.20. Two-dimensional aqueous phase travel time PDF in a heterogeneous aquifer with non-
equilibrium sorption. In the high XK sub-domain: K=3.56 m/day, K;=0.12 cm3/g
(R=1.5), @=0.1 day™! (time constant=10 days). In the low K sub-domain: K»=1.78 m/
day, K;=0.24 cm3/g (R=2.0), a=0.1 day! (time constant=10 days). The outermost
contour line represents (.01, and the contour interval is 0.01. a-b show the travel time
PDF for 40 days and 60 days, respectively.
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For non-equilibrium sorption, the travel time CDF can be formulated from the equation
(4.19) by replacing f; with F; along with the same boundary and initial conditions shown in
equation (4.9). The simulated results of the travel time CDF for the two times 7= 40 days
and 60 days are shown in Figure 4.21. Compared to the non-sorption case in Figure 4.8, the
travel time CDF demonstrates that the capture zones are retarded and reduced by the sorp-
tion. The front area of CDF distributions is larger than those for non—sorption or linear equi-

librium sorption.

4.3.2 The Backward-in-time Model for Location Probability

In the case of n;n—equilibrium sorption, the location probabilities for the two phases:

the aqueous and sorbed phase, can be expressed as:

x  98x _ a8, % Ix (4.20a)
v "ot o\ Piax, |t Ving

gy aK 0,

_617 - 9 fX—ag X (420b)

where fy=/x(Xlr) is the location PDF for the aqueous phase, and gxy=gx(XIr) is the location
PDF for the sorbed phase. The boundary and initial conditions for the aqueous phase location
PDF are the same as those in equation (4.11), and the initial condition for the sorbed phase
location PDF is:

gx(Xlt) =0, at1=0 4.21)

The total location PDF for the aqueous phase and sorbed phase, gx 11 = 8x total X17),
can be computed by:
xtom = fx + 8x (4.22)
where fy=fx(XIr) is the location PDF for the aqueous phase, gy=gx(XIz) is the location PDF
for the sorbed phase.

The simulated results of location PDF are shown in Figures 4.22 and 4.23. Figure 4.22
represents the location PDF for the aqueous phase for two times: 7=40days and 60 days in

the past. The greatest location PDF for =60 days is located around the position (75, 30).
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Figure 4.21. Two-dimensional aqueous phase travel time CDF for the case of non-equilibrium
sorption. In the high X sub-domain: K=3.56 m/day, K;=0.12 cm-3/g (R=1.5), a=0.1
day! (time constant=10 days). In the low K sub-domain: K,=1.78 m/day, K;=0.24
cm~3/g (R=2.0), a=0.1 day! (time constant=10 days). The outermost contour line rep-
resents 0.1, and the contour interval is 0.1. a-b show the travel time PDF for 40 days

and 60 days, respectively.
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Figure 4.22. Two-dimensional location PDF for the aqueous phase in the case of non-equilibrium
sorption. In the high K sub-domain: K;=0.12 cm-3/g (R=1.5), a=0.1 day-! (time
constant=10 days). In the low K sub-domain: K;=0.24 cm~¥/g (R=2.0), a=0.1 day~!
(time constant=10 days). The outermost contour line represents 5.0E-4 m~2, and the
contour interval is 5.0E-4 m~2. a-b show the location PDF for 40 days and 60 days,
respectively.
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Figure 4.23. Two-dimensional total location PDF for the combined aqueous phase and sorbed
phase in the case of non-equilibrium sorption. In the high K sub-domain: K;=0.12
cm~3/g (R=1.5), a=0.1day™! (time constant=10 days). In the low K sub-domain:
K;=0.24 cm3/g (R=2.0), =0.1 day-! (time constant=10 days). The outermost contour
line represents 5.0E-4 m~2, and the contour interval is 5.0E-4 m~2. a-b show the loca-
tion PDF for 40 days and 60 days, respectively.
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Compared to the location PDF in linear equilibrium sorption, the location PDFs have a wider
distribution. Figure 4.23 shows the total location PDF for the combined aqueous phase and
sorbed phase. Due to the combined influences of heterogeneity and sorption, the total loca-
tion PDF has longer “tails” than the location PDF for the aqueous phase in Figure 4.22.
4.4 The Two-dimensional Backward-in-time Model in the Case of Natural Re-
charge
Natural recharge changes the groundwater flow and the mass transport. To begin with,

the hydraulic head equation (4.1) is rewritten as:

3 (- on _
E(Tya—% )—6(X—X1)Qo +N=0 (4.23)

where A is hydraulic head [L], 7;; is the second order aquifer transmissivity [L2/T] tensor with
i,j=1,2,and Q, is the pumping rate[L3/T] at a location, X1=(x1,y1). N is the natural recharge
rate [L/T]. For the domain in Figure 4.1, the same boundary conditions for the steady state
groundwater flow shown in equation (4.2) apply. The groundwater average velocity,

Vi=Vi(x,y), can be computed by Darcy’s law.

For the same contaminant transport model as in the previous example, because of the

natural recharge, the resident concentration C’(X,f) will be expressed as:

9CT _ 9 {p. 9CT Y\ 3 (yor
: axi(DU x; ) axi(VzC ) (4.24)

where C"=C"(X.?) is the aqueous phase resident concentration in the aquifer. V;=V;(x,y) is
average velocity at X=(x,y). The boundary and initial conditions for equation (4.24) are ex-

pressed by equation (4.4).

For the domain of Figure 4.1, and a uniform natural recharge rate of N=0.005 m/day,
the simulated heads are shown in Figure 4.24. Figure 4.24 indicates a groundwater flow di-
vide through the domain along the y direction. The contamination released at (80,30) in the
previous examples is not captured by the pumping well. In this example, it is supposed that

the contamination was introduced into the aquifer’s low conductivity zone, at location (66,
q
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Figure 4.24. Two-dimensional hydraulic head contour in a heterogeneous aquifer
with natural recharge. The pumping well (PW) is located at (20,25) with
a pumping rate of Q,=5.0 m3/day. Constant heads: h;=40 m at the left
boundary, and /=50 m at the right boundary. The natural recharge rate
is N=0.005 m/day. The contour interval is 0.5 m.
15). Figure 4.25 shows the contamination plume for three times: =20 days, 40 days, and 60
days in the past. The contamination plume moves in a downstream direction and is only par-
tially captured by the pumping well. Figure 4.25¢ shows that contamination not captured by
the pumping well flows out through the left boundary. These results demonstrate the com-

bined effects of advection, dispersion, aquifer heterogeneity, and natural recharge.

4.4.1 The Backward-in-time Model for Travel Time Probability
In the backward-in-time method, the travel time PDF is described by the advection-
dispersion equation with a reversed flow problem (V; — -V;) and recharge becoming dis-

charge:

fr 9 i 9 N 4.25
% - sz(D"faxj ) + Vg 2

where f;=f;(r| X) is the aqueous phase travel time PDF. After inserting (4.24) into (4.26),

the travel time PDF can be rewritten as;

o _ i(p e ) PR (4.26)

ot a Bxl UEX-; laxi

The boundary and initial conditions are expressed as in equation (4.7).
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Figure 4.25. Two-dimensional resident concentration contour for the case of natural recharge in a
beterogeneous aquifer. The contaminant source (CS) is located at (66,15), and the
pumping well (PW) is located at (20,25) with a pumping rate of 0=5.0 m3/day. The
outermost contour line represents 0.004 mg/l, the contour interval is 0.004 mg/l. a—<
show the plumes for 20, 40 and 60 days, respectively.
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For natural recharge, the travel time cumulative distribution function CDF can also be
expressed as equation (4.27) by replacing f with F; along the same boundary and initial

conditions shown in equation (4.9).

The simulationresults are shown in Figures 4.26-4.28. Figure 4.26a and 4,26b represent
the travel time PDF from locations: (66, 25) and (66, 15), respectively. The travel time PDF
simulations from the backward-in-time model is in close agreement to the arrival time PDF
simulations from two separate runs of a forward-in-time model. The highest travel time
probability for the location (66, 25) is about 40 days, and the highest travel time probability
for location (66, 15 )‘is about 58 days. Because of the combined effects of recharge and heter-
ogeneity, the travel time probability for location (66, 25) is much larger than that for location
(66, 15), and the most possible travel time for location (66,25) is less than that for (66,15).
Figure 4.27 pictures the travel time PDF for each of these possible former locations for two
travel times: 7=40 days and 60 days. The travel time PDF distribution moves in an upgradient
direction, spreads, and dilutes as travel time increases. It is moving in toward (66,15) from
(66, 25). Under the influence of natural recharge and dispersion, some contaminants are not
captured by the pumping well, especially for the locations that are far from the pumping well.
Figure 4.27 also demonstrates that contamination observed in the pumping well came from
the left side of the flow divide. Figure 4.28 plots the simulation results for the travel time
CDF for the two times 7= 40 days and 60 days. The travel time cumulative distributions also

show that the probability expands along the upgradient direction.

4.4.2 The Backward-in-time Model for Location Probability

In the case of naturalrecharge, location probability is not “discharged” in the backward-

in-time problem. It can be expressed as:

afy _ i(D ofx ) + 2 (Vs (4.27)

o ox;\ Vax;

where fx =fx(XIr) is the location PDFE. The boundary and initial conditions for the location

PDF are the same as in the equation (4.11).
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Figure 4.26. Diagram of the travel time PDF, £; (z1X) for natural recharge vs. time. a. Plots
represent the travel time PDF for the source location at (66,25): the dotted line
shows the forward-in-time (FIT) solution, and the solid line shows the back-
ward-in-time (BIT) solution. b. Travel time PDEF for the source location at
66,15),
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Figure 4.27. Two-dimensional travel time PDF for natural recharge in a heterogeneous aquifer. The
natural recharge rate is N=0.005 m/day. The outermost contour line represents 0.01
day~1, and the contour interval is 0.01 day~!. a-b show the travel time PDF for 40 days
and 60 days, respectively.
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Figure 4.28. Two-dimensional travel time CDF in the heterogeneous aquifer with natural recharge.
The natural recharge rate is N=0.005 m/day. The outermost contour line represents 0.1,
and the contour interval value is 0.1. a. shows the travel time CDF for time less than 40

days. b. shows the travel time CDF for time less than 60 days.
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Figure 4.29. Two-dimensional location PDF in the heterogeneous aquifer with natural recharge.
The natural recharge rate is N=0.005 m/day. The outermost contour line represents
0.002 m~2, and the contour interval value is 0,002 m~2. a. shows the location PDF in 40
days. b. shows the location PDF in time 60 days.
Figure 4.29 represents the simulated location PDFs for two given times: 7=40days and
60 days in the past. The most possible location for 7=40 days is located around the position
(64,24), and the most possible location for 7=60 days is located around the position (64,18).
The location PDF distributions demonstrate that the former location PDF moves upgradient.

The possible former locations of the contamination only occur left of the flow divide.



5. APPLICATION TO THE BORDEN TRACER TEST

In the previous section, it has been demonstrated that the backward-in-time model can
be adapted to a two-dimensional heterogeneous domain. As a further explanation of the use-
fulness of the backward-in-time PDEs model, this section will present its application to the
Borden capture zone tracer test run by New Mexico Tech and the University of Waterloo,
from 1992 to 1993. The author of this report did chemical analysis of water samples in the
High Pressure Liquid Chromatographic (HPLC) Laboratory and tracer concentration inter-
pretations. For the series of field tests, data were collected on tracer injection locations/times,
and on tracer concentration as a function of time in both a pumping well and in monitoring
wells. The flow field was well-monitored. Most data were published (Linderfelt, 1994; Lin-
derfelt and Wilson, 1994; Linderfelt and Wilson 1995; Wilson and Linderfelt 1995). This
report will use the concentrations observed from the first experiment to examine the back-

ward-in-time model.

5.1 Tracer Transport Model in the Borden Tracer Test

The Borden site as shown in Figure 5.1 is located in Borden, Ontario, Canada. The Bor-
den aquifer is an eight meter thick, unconfined sand aquifer which is underlain by a thick,
silty clay deposit (Mackay et al., 1986; Linderfelt, 1994). The basic parameters, such as hy-
draulic conductivity, the dispersion coefficient, porosity, and the horizontal hydraulic gradi-
ent, were studied in previous research ( Sykes, et al., 1982; Nwankwor et al., 1984; Sudicky,
1986; Sudicky et al., 1983; Mackay et al., 1986; Linderfelt, 1994). The basic parameters uti-

lized in this research are listed in Table 5.1.

The regional hydraulic gradient, J,, and flow direction angle, 3, were frequently mea-
sured by Linderfelt et al. (Linderfelt, 1994; Linderfelt and Wilson 1995). The observations
of gradient and flow direction shows that the groundwater flow changed with time (Wilson
and Linderfelt, 1995). In this research, the experiment was broken into three time periods,

with steady flow roughly assumed in each period, as shown in Table 5.1. This allowed us

83
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Figure 5.1. Map of the Borden site tracer test. a. Map of eastern USA and southern Ontario,

Canada, showing Great Lakes region and location of CFB Borden; b. Plan view
of the Borden site; c. Site cross-section (schematic) A-A’ showing landfill, ex-
perimental zone, and local geologic features (after Linderfelt, 1994; Mackay et
al., 1986).
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to use the Laplace transform-in-time Galerkin finite element code. The regional ambient
flow rate, gz, can be computed by Darcy’s law, g,=KBJ. The average velocity in the tracer

test site can be explained as (Linderfelt, 1994):

Table 5.1. The parameters for the backward-in-time model of the Borden site:

Parameters

Description

Domain

30mx30m

Grid characteristics

Ax=02 m, Ay=0.2 m
22500 square elements, 22801 nodes.

Homogeneous and isotropic hydraulic
conductivity '

Kx=Ky=7.09 m/day*

Longitudinal dispersivity a;, =008 m*

Lateral dispersivity ar =0.001 m*

Porosity 0.33*

Aquifer thickness 7.3 m*

Gradient of the hydraulic head time (days): Ja B

and direction 0-66 4.1E-3, 254
67-118 3.8E-3, 90
118-124 29E-3, -3.5

Pumping well location x=15, y=20m

Pumping rate 2.16 m3/day*

Forward-in—-time tracer transport:

(1) initial condition C=0 for =0

(2) boundary conditions 8C"9x=0;  all boundaries
Backward-in-time PDEs model:
(1) initial condition =0 for t=0
(2) boundary conditions third type boundary condition at the PW
ofy/ 0x;=0; otherwise
* from Linderfelt, 1994.
Noing Qo x |1
Vi = | qesing 27T 52 + )’2 OB (5.1a)
B Q "
_ inf-2o_ Y | L
Vy = | gasinf 25T+ 52 | OB (5.1b)
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where g, is the ambient flow rate per unit of aquifer thickness [L2/T1, and Q, is the pumping
rate [L3/T], x is positive to the east, y is positive to the north, 8 is the compass angle, and B

is the thickness of the aquifer [L].

The first tracer test site, which consisted of one full penetrating extraction well, 15 injec-
tion wells, and 26 multilevel sampling wells, is shown in Figures 5.2 and 5.3. Figure 5.3
shows a schematic cross—section for the pumping well, injection well and multilevel sam-
pler. The pumping well produced from the aquifer at a constant rate, 2.16m3/day, for over
four months. Eight different tracers were injected at 15 different locations upstream of the
fully penetrating wgll. The injection mass and starting date are shown in Table 5.2. The
groundwater samples collected in the pumping well were analyzed in the HPLC Lab at New
Mexico Tech. The concentration data is replotted in this research and the concentration
breakthrough curves of eight tracers are shown in Figure 5.4. The tracer concentrations are
normalized by the total mass injected into the injection well, and the normalized curves are

estimates of the arrival time probability of the tracers (Jury and Roth, 1990; Henley and Ku-

mamoto, 1992). The normalized curves for the eight tracers are shown in Figures 5.5-5.11.

For the Borden site tracer test, the tracer transport forward-in-time simulation model
is shown in Figure 5.12. The pumping well is located at (15,20) pumping at 2.16 m3/day.
The groundwater flows toward the northeast. One of eight tracers was injected into one or
more injection wells, then the tracer moved downstream and possibly was captured by the
pumping well some time later. Assuming two-dimensional flow, the tracer transport can be
described by equation (4.3). The boundary and initial conditions for the simulation are
shown in Table 5.1. The resident concentration is simulated using the Laplace transform-in—
time Galerkin finite element method (Sudicky and McLaren, 1992). The normalization of
concentrations in the pumping well or the arrival time PDFs for injection sites I5 and I8 are
shown inFigure 5.13. Figure 5.13a and Figure 5.13brepresent the arrival time PDF for injec-
tion sites IS and I8, respectively. Figure 5.13c shows the arrival time PDF for two source

locations where unit mass is introduced into the aquifer at IS5 and I8 at the same time.
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Figure 5.2 Plan view of the tracer test site showing location of injection sites, multilevel
sampling wells (MW and SW) and the pumping well (PW) (after Linderfelt,
1994),
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Figure 5.3. Schematic cross-section of the Borden tracer test with a fully penetrating pumping
well (after Linderfelt, 1994).

Table 5.2. Tracer injection sites, dates and masses ( after Linderfelt, 1994).

Injection  Injection Date, 1992

Sitt . Calender  Julian FBA, (g)
I1 July 1 0 o-TFMBA; 30.2
12 July 1 0 m-TFMBA; 30.2
I3 July 6 5 3,4-DFBA; 60.4
I4 July 1 0 PFBA; 60.3
I5 July 1 0 2,3-DFBA; 60.4
16 July 3 2 2,6-DFBA; 60.4
I7 July 6 5 3,5-DFBA; 60.3
I8 July 3 2 2,3-DFBA; 60.4
9 July 3 2 PFBA; 302
I10 July 1 0 3,4-DFBA,; 60.8
I11 July 3 2 3,5-DFBA; 60.4
I12 July 6 5 PFBA; 60.3
113 July 3 2 o-TFMBA; 60.4
114 July 6 5 m-TFMBA; 60.3
I15 July 6 5 2,6-DFBA; 30.2

Notes: DFBA - difluorobenzoic acid
TFMBA - trifluoromethylbenzoic acid
PFBA - pentafluorobenzoic acid
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Figure 5.4. The measured concentration breakthrough curves from the pumping well for the 8 trac-
ers at the Borden tracer test. The data was published by Linderfelt (1994).
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Figure 5.5. Simulations of the travel time PDFs from the backward-in~time (BIT) model and em-
pirical arrival time PDF for the tracer 2,3 DFBA. a. Plots present the simulation from
BIT model for injection well I5 (solid line), and 2,3 DFBA experimental breakthrough
curves normalized by mass injected (dotted line); b. for injection well I8; c. for injec-
tion wells I5 and I8.
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Figure 5.6. Simulations of the travel time PDF and arrival time PDF for the tracer 2,6 DFBA. The
solid line presents the simulation from the backward-in-time (BIT) model for injec-
tion well I15, and the dotted line describes the tracer test.
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Figure 5.7. Simulations of the travel time PDFs and arrival time PDF of the tracer 3,4 DFBA. Solid
line presents the simulation from the backward-in-~time (BIT) model for injection well
110, and the dotted line describes the tracer test.
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Figure 5.8. Simulations of the travel time PDF and arrival time PDF of the tracer 3,5
DEFBA. The solid line presents the simulation from the backward-in-time
(BIT) model for injection well, I7, and the dotted line describes the tracer
test.
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Figure 5.9. Simulations of the travel time PDF and arrival time PDF for the tracer m-TFMBA. The
solid line presents the simulation from the backward-in-time (BIT) model for injec-
tion well 12, and the dotted line describes the tracer test.
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Figure 5.10. Simulations of the travel time PDF and arrival time PDF for the tracer o-
TFMBA. The solid line presents the simulation from the backward-in-time
(BIT) model for injection well I1, and the dotted line describes the tracer test.

5.2 Modeling Arrival Time of Tracers Using the Backward-in-time Method

For the domain in Figure 5.12, the travel time PDF in the backward-in-time model is
expressed by equation (4.6). The boundary and initial conditions are given in Figure 5.12
and Table 5.1. Figure 5.13 demonstrates the travel time PDF simulations for injection sites
I5 and I8 vs. travel time. Compared to the arrival time PDF simulated from the forward-in-
time model, the travel time PDFs from the backward-in-time PDEs model are in close
agreement to the arrival time PDFs. BIT travel time PDF simulations for the 15 injection
sites are shown in Figures 5.5 - 5.11, and compared to the empirical data. Only previously

published data are used. No additional calibration or curve fitting has been done.

The tracer 2,3-DFBA was injected into I5 and I8, and the concentration breakthrough
curve observed from the pumping well is shown in Figure 5.4a. The normalized concentra-
tion is shown in Figure 5.5. The normalized curve illustrates the difficulty of separating three
peaks from two injection wells. Simulations of travel time probability density functions for

injection wells IS5 and I8 are shown in Figure 5.5a and Figure 5.5b, respectively. Figure 5.5a
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Figure 5.11. Simulations of the travel time PDF and arrival time PDF for the tracer PFBA. Plots
present the arrival time PDF of PFBA (dotted line) and the travel time PDF from the

backward-in-time (BIT) model for injection wells: a.14; b.I112; ¢. I9; d. 14, I9, and
113.
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Figure 5.12. Mustration of the physical dimensions of a two-dimensional model at the Borden
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located at (15,20), and the tracers are introduced in the injection wells. For forward-
in-time mass transport, second type boundary conditions are used in all boundaries.
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Figure 5.13. Simulations of the travel time PDFs from the backward-in-time (BIT) PDEs model
and arrival time PDF from the forward-in-time (FIT) model in the Borden tracer test.
a. Plots shows simulations for injection site I5. b. Plots show simulations for injection

site I8; c. Plots show simulations for injection sites I5 and I8.
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shows that the travel time was about 32 days from IS to the pumping well, and that the simula-
tion is very close to the first peak of the tracer 2,3 DFBA in shape. Figure 5.5b shows that
the travel time is about 55 days from I8 to the pumping well, and that the simulation can be
fitted to the last two peaks of tracer 2,3 DFBA. For the interpretation of tracer 2,3 DFBA,
we need to consider the travel time probability for two or more injection wells. When the
tracers were injected into wells at the same time, their arrival time probability can be com-
puted by totalling their arrival time probabilities. Figure 5.5¢ presents the travel time proba-
bility for I5 and I8, which is very close to the empirical arrival time PDF of tracer 2,3 DFBA
in shape. Asa resuli, the first peak of tracer 2,3 DFBA represents the arrival time PDF for
I5, and the last two peaks describe the arrival time PDFs for I8.

The tracer 2,6-DFB A was injected into 16 and 115, and the concentration breakthrough
curve is shown in Figure 5.4b. The simulations for I6 and 115 demonstrate that the tracer
from I6 was not captured by the pumping well. Figure 5.6 presents the the travel time proba-
bility for location I15. The estimated travel time from I15 to the pumping well is about 75
days. For the normalized concentration of 2,6-DFBA, the arrival time of the tracer ranged
from 60 days to 95 days, with a most likely arrival time of 90 days. The comparison demon-

strates that the simulations are reasonably close to the most likely arrival time.

The tracer 3,4 DFBA was injected into I3 and 110, and the tracer concentration break-
through curve is shown in Figure 5.4c. Figure 5.7 shows that the most likely arrival time of
3,4 DFBA was about 60 days. The simulations show that the tracer 3,4 DFBA. injected into
I3 was not captured by the pumping well, as was also suggested by the forward—in-time
model by Linderfelt (1994) and his tracer test interpretation. The most likely possible travel
time is about 48 days which is 12 earlier days than the actual arrival time of 3,4 DFBA.
Compared to the arrival time probability of the tracer 3,4 DFBA, the simulation is similar

to the normalization of the tracer concentration in shape.
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The tracer 3,5 DFBA was injected into 17 and I11, and its breakthrough curve is shown
inFigure 5.4d. Figure 5.8 shows the most likely arrival time ranging from 50 days to 85 days.
The simulations show that the tracer 3,5 DFBA injected into I11 was not captured by the
pumping well, afact also predicted by the forward-in-time model (Linderfelt, 1994). Figure
5.8 presents the travel time probability distribution for former location I7. The estimated
travel time is about 55 days. The comparison of the simulation and tracer test demonstrates

that the simulation is roughly similar to the empirical arrival times.

The tracer m—TFMBA was injected into I2 and 114, and its normalization is shown in
Figure 5.9. The estimated arrival time ranges from 20 to 50 days. The simulations from the
backward-in-time PDEs model illustrate that the tracer from 114 was not captured by the
pumping well, and that the normalization in Figure 5.9 represents the arrival time probability
from location I2 only. Simulations in the figure demonstrate that the most likely travel time
from I2 to the pumping well is about 40 days, a value between the two peaks of the normal-
ized concentration of m-TFMBA. The difference from the tracer test can be explained by

the spatial variability of hydraulic conductivity (Linderfelt, 1994).

The tracer o-TFMBA was injected into I1 and 113, and the normalization of concentra-
tion is shown in Figure 5.10. The arrival time probability has one peak at about 5 days. The
simulations illustrate that only the tracer from I1 was captured by the pumping well, and that
the tracer from 113 flowed out through the multilevel sampler zone. The predicted travel time
from I1 to the pumping well is about 4.5 days, which agrees with the arrival time of o—

TFMBA.

The tracer p~TFMBA was injected into I4, 19 and I12. The concentration breakthrough
curve and normalization are shown in Figure 5.4g and Figure 5.11, respectively. The empiri-
cal arrival time probability presents one high peak at about 20 days and three low peaks over
a period of 50 days to 120 days. The simulations for the three injection wells are shown in

Figure 5.11a, Figure 5.11b, and Figure 5.11c. Figure 5.11a shows that the travel time proba-



99

bility for I4 agrees with the first peak of p~TFMBA, and the most likely travel time is about
20 days from I4 to the pumping well. Figure 5.11b shows that the travel time probability for
I12 has a range of 66 days to 90 days, which is close to the third peak of p-TFMBA. Figure
5.11c shows that the travel time probability for I9 is much less than for I4 or 112, and that
the distribution is close to the last peak of p-TFMBA. Figure 5.11d shows that the total of
the three travel time probabilities can be compared to the concentration normalization of p-
TFMBA. As aresult, the first high peak shows the arrival time PDF for I4, and the third low
peak shows the arrival time PDF for I12. The last peak should represent the arrival time for
I9. The second péak:is probably also I12, which split off and arrived earlier because of aqui-

fer heterogeneity.

5.3 Modeling the Capture Zone of the Tracer Test Using the Backward-in-time
Method

We can obtain the travel time CDF map using the backward—in~time model. How can
we examine the CDF map using the tracer test data? To begin with, we need to compute the
cumulative distribution for the arrival time of the tracer for each injection site. The cumula-
tive distribution can be obtained from the normalization of cumulative mass (Jury and Roth,
1990; Henley and Kumamoto, 1992). The cumulative mass of the tracer extracted from the

pumping well can be computed using the concentration and pumping rate:

k
me= Y 001, (5.2)

i=1
where my is the cumulative mass [M] for a time period less than #, C; is the flux concentra-
tion [M/L3] observed in time # from the pumping well, and Q,, is the pumping rate [L3/T].
Linderfelt (1994) computed the total cumulative mass for eight types of tracer over the entire
last period (to 124 days). The cumulative distribution for arrival time less than ¢ can be com-

puted by (Jury and Roth, 1990; Henley and Kumamoto, 1992):

b

P(f’ < tlx) = M (53)
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where P(f'<tlx) is the cumulative distribution for time less than 7, and M is the total mass

injected into the aquifer. In the tracer test, the cumulative distribution for 15 injection sites

are computed by equations (5.2)-(5.3) and the simulation results are shown in Table 5.3.

Table 5.3. The cumulative distribution of arrival time for eight tracers:

Injection Well CDF (t<66days) |CDF (t< 117days) [CDF*(t< 124days )
I1 1.0 1.0 1.0
I2 0.95 0.97 0.97
I3 0.0 0.0 0.0
14 1.0 1.0 1.0
I5 0.9 09 0.9
I6 0.0 0.03 0.03
17 0.46 1.0 1.0
18 0.8 1.0 1.0
19 0.0 0.17 0.17
I10 0.34 0.61 0.32
I11 0.0 0.0 0.0
I12 0.20 0.96 0.96
I13 0.0 0.0 0.0
I14 0.0 0.0 0.0
115 0.21 0.95 1.0

CDF* (t < 124 days ) is the ratio of recovery mass to total injected mass, after Linderfelt (1994).

In the backward-in-time model, the cumulative distribution of the travel time, F, (rlx),

for the Borden site can be expressed by equation (4.6), and the initial and boundary condi-

tions can be expressed by equation (4.9). Simulations of the travel time CDFs in the Borden

site are illustrated in Figures 5.14 and 5.15. Figure 5.14 presents the cumulative distribution

for atravel time of less than 66 days. Figure 5.15 shows the cumulative distribution for travel

time less than 117 days. The simulated capture zone extends upstream when the travel time

increases.
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Figure 5.14. Simulations of the travel time cumulative distribution function (CDF) from the
backward-in-time model, and normalization of the cumulative mass of § tracers
for 66 days.

For 66 days, Figure 5.14 indicates that the injection wells I1, 12, 14, and I5, with greater
than 0.9 actual recovery, are located in the area where the BIT simulations of travel time CDF
predict recoveries greater than 0.9. 18 is also in the zone, but actually had only 0.8 recovery.
The injection wells I3, 16, 19, 111, I13 and 114, with no actual tracer recovery, are located
where the simulations suggested zero recovery. Injection wells 112 and I15 had about 0.2

recovery and are located in the front of the predicted capture zone. The only data inconsistent
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Figure 5.15. Simulations of the travel time cumulative distribution function (CDF) using the
backward-in-time model and normalization of the cumulative mass of 8 tracers
for 117 days.

with the BIT simulations is from I7, with 0.46 actual recovery vs. a simulated recovery of
greater than 0.9. In general, the simulations demonstrate a good match to the tracer test.
Figure 5.15 presents the simulations and tracer cumulative distributions for travel time
less than 117 days. Injection wells I1, 12, 14, 15, 17, 18, 112, 115 are located where the actual
and simulated travel time CDFs are larger than 0.9. I3, I11, 113 and 114 are located where

simulated recoveries were nil. 16, 19, and I10 are in the intermediate, dispersed zone, in both
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the simulations and the data. The small differences could have been caused by the approxi-

mation of the transient flow field.

As a result, the backward—in-time method can be employed to predict the arrival time
probability of a tracer, or to delineate the capture zone of the tracer test. The new model can
also be utilized in assigning responsibility for observed contamination, pumping wellhead

protection, and aquifer remediation.



6. CONCLUSIONS

This report examines a new hypothesis that the travel time and location probabilities of
contamination can be directly formulated and solved from an advection-dispersion partial
differential equation with reversed flow. The results of this research are expected to have ap-
plications for groundwater monitoring, remediation and water supply well head protection.

The conclusions we have reached may be stated as follows:

(1) Using analytical solutions of one-dimensional backward-in-time models this work

successfully tests the new hypothesis.

(2) The new hypothesis is extended to a two-dimensional model, and its results are

compared to numerical simulations of a standard forward-in-time model.

(3) By proper selection of initial and boundary conditions at the pumping well, two types
of maps for travel time probability and location probability can be obtained for both a one-
dimensional and a two-dimensional model. The new appropriate boundary condition for the
travel time probability is a third type boundary condition at the pumping well, and it is de-
scribed by a delta function for the PDF or a unit one for the CDF. The new proper initial

condition for the location PDF is a delta function distribution around the pumping well.

(4) In the backward-in-time problem, both travel time probability and location proba-
bility refer to conditional probabilities. Although the probability solutions are complicated
by heterogeneity, chemical reaction and natural recharge, the relation of location and travel
time probability is described by the Bayes theorem. The relation can be employed to trans-

form one probability to the other.

(5) For the heterogeneity of conductivity and dispersion in a two-dimensional aquifer,
the travel time and location probability are directly simulated from the backward—in—time
partial differential equations. The travel time probability is successively compared to arrival
time probabilities computed from forward-in-time simulations. Numerical simulations

demonstrate that the highest probabilities tend to occur in the high permeable area. This re-

104
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port presents an example for a given hydraulic conductivity distribution; however, the new

model can also be used with the random fields of hydraulic conductivity.

(6) In the case of natural recharge, the travel time and location probability can be directly
simulated by backward-in-time partial differential equations. For the travel time probabili-
ty, the backward-in-time partial differential equation presents discharge of the probability
under the reversing of groundwater flow. The simulations of the travel time probability dem-
onstrate that the cumulative distribution becomes narrower and longer than it does for non—
natural recharge. For the location probability, the backward-in-time partial differential
equation does not present discharge of location probability while the groundwater flow is

reversing.

(7) In the case of first order decay, some contaminants are lost before they reach the
pumping well. The travel time probability and location probability, respectively, are com-
puted from two different backward-in-time partial differential equations. For the travel time
probability, the backward-in-time partial differential equation involves an exponential
decay of travel time probability. For the location probability, estimation of the contaminant’s
originlocation should not be impacted by first order decay, and the backward-in-time partial

differential equation does not involve decay of the location probability.

(8) For the case of sorption in an aquifer, the travel time probability and location proba-
bility can be described for: the aqueous phase, the sorbed phase, and the combined aqueous
and sorbed phases. Total probability for the combined phases is equal to the sum of the
aqueous phase probability and the sorbed phase probability. In the new method, the probabil-
ities can be directly solved from the backward~in-time partial differential equations, thereby
accounting for either linear equilibrium sorption or non-equilibrium sorption. For linear
equilibrium sorption, probabilities are retarded and reduced by the retardation factor. For

non-equilibrium sorption, non-equilibrium sorption retards the expansion of probability
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distributions, and the retardation is increased with the increasing equilibrium sorption coef-

ficient and the larger mass transfer coefficient.

(9) The travel time PDF from the new backward-in-time method is employed to inter-
pret the normalization of tracer concentration or arrival time probability in the Borden site
capture zone tracer test. By running one backward-in-time simulation, we obtain the travel
time probabilities for all injection sites. The simulations for most injection sites can match
the tracer arrival time probability very well, especially, for the injection sites close to the

pumping well.

(10) Using the backward-in-time model we delineate a travel time cumulative distribu-
tion map that can be employed to fit the observed time-dependent capture zone of the Borden

tracer test.

(11) The new model can also be utilized in assigning responsibility for observed con-

tamination, pumping wellhead protection, and aquifer remediation.

Recommendations For Future Work

During the course of this research it has been shown that the new hypothesis can be
employed in a one-dimensional and two-dimensional model addressing dispersion, first or-
der decay, sorption, heterogeneity, and natural recharge. Although time did not permit us to
test a three-dimensional model and to apply the new model to the identification of the source

location and release history, it is felt that future tasks as described below may be fruitful:

» Extend the backward-in-time method to the cases of double porosity (mobile—
immobile pore space), non-Fickian dispersion, chemical production, multi-

phase, and transient flow.
« Test the backward-in-time method’s ability in a three—dimensional model.

» Extend the new method for the pumping well system to a monitoring well sys-

tem.
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» Use the new model to yield a joint probability for two or more observed con-
centrations from one pumping well or monitoring well, and to identify the

source location or release history.
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APPENDIX A: THE ANALYTICAL SOLUTIONS OF ONE-
DIMENSIONAL MODELS

Al. Solution of the Resident Concentration in Advection and Dispersion

The resident concentration of contamination, C'(x, 1), is described by the one-di-

mensional advection and dispersion governing equation:

oCr _ a3 Cr , y,9CT
s =P8 TV (Al.1)

For the example in Figure 2.1, the boundary and initial conditions are:

r
K —oarx=0; (Al.2a)
C'=0, as x — (A1.2b)
CTx, 1) = %a(x—xo), fort =10 (A1.2c)

The Laplace transform in time (¢ —p) of resident concentration is written as:

LIC(, 0] = CTx, p) = I C(x, e P'dy (A13a)
) 0
L aa_c,;r] = pCr-C"(t = 0) (A1.3b)
L“a_o] _Cr
Tox | T Tox (Al.3c)
L'Q?Q] _ %
ax2 A2 (Al1.3d)

where C" (x,p) is the Laplace transform of resident concentration. Equations (Al.1) and
(A1.2) can be rewritten as:

%Cr  aCr A Mae
D ) +V e pC" + eé(x xo) =0 (Al.49)

with boundary conditions:

aCr _ 0.
So=0atx=0; (Al.5a)
C'"=0, asx = (Al.5b)
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The double Laplace transform-in-time (+—p) and space (x—s) of the resident concentration
is:
20 oo [+ ]

C'(s, p) = ] I C'(x, e Ple~dtdx = I i (x, p)e dx (Al.6)
0
The double Laplace transform~in-time-space of equations (A1.4) and (A1.5) can be rewrit-

ten as:
Cop) = — DsyC"(0) + VC(0)-4 e~ Ds)CT(0) + VC(0)-Fe-s% ALY
’ D(s5-57) §-5, §-8 '
where:

5y = ‘"2%(1 + &) 5= —ﬁ(l &) E=[1 f‘%D (A1.8)

After inverting the Laplace transform-in-space the Laplace transform in time is expressed

as:

Crx,p) = %V%e—:.ﬁx—xae—zzu-x»& + %Vige—;ﬁx—xa>e~%<x+xo>&

M1 Heex) - x)E
O VEQ + g)e D e’ (Al1.9)

The solution of the resident concentration after inversing this Laplace transform is:

2
C'x, 1) = ‘/#Dt%exp [—(x—xZD-i; Vi) ] {1 + exp( g;x)}

ol fo2gn]

A2. Solution of Travel Time Probability in Advection and Dispersion
The travel time probability density function f(z/x) is described by the backward—in-
time (BIT) partial differential equation:

g_f_ — DaZfT aff
at axz ax

(A2.1)
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For the example in Figure 2.1, the appropriate boundary and initial conditions can be written

as:
ofy _
f@lx) =0, at x = (A2.2b)
fe@l) =0, fort =0 (A2.2¢)
The Laplace transform-in—time of travel time PDF in equation (A2.1) can be rewrit-
ten as:

3% af. a
DS ){2’ -V% of =0 (A2.3)

And the equation (A2.2) can be rewritten as:

A

ofr _ _
E =V, atx =0 (A24a)

Vi.-D
fi@ly) = 0, at x — o (A2.4b)
The solution of the Laplace transform in time can be solved from equations (A2.3) and

(A2.4):

A 2 V. E
4pD

After inverting the Laplace transform, the solution of the travel time PDF £, (zlx) is expressed

as:

% -(x-V2)?| 2 [Vx ] x+ Vr
Thx) = ex, -—exp| 5= lerfc] =¥——== A2.6
For the same example, the cumulative probability distribution of travel time, F,(tlx),

is described by equation (A2.1) replacing f; with F; along boundary and initial condi-

tions:
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F‘r DaFt

V s =1, atx=20

(A2.7a)
Ft(TI.X) = 0, arx —= « (A2.7b)
F(rlx) =0, fort =0 (A2.7¢c)
The Laplace transform of travel time CDF, F,(zlx), leads to
92F, _ oF,
= A2.8
ax2 = pFr =0 (A2.8)
Equation (A2.7) can be rewritten as:
. y OF, vy B
VFI_DW = P?, atx =20 (A29a)
Fe(rh) = 0, at x— o (A2.9b)
The solution of the Laplace transform-in-time can be solved from equations (A2.8) and
(A2.9):
2 2 VX
4pD (A2.10b)
1+ — :
£ = '

After inversing the Laplace transform, the solution of the travel time CDF F;(zlx) is

I % 1 (x-V1)2 (x-V1)
F.(tlx) = \/ﬁ exp[ D, ] + 5{ erfc [ i :l}

e L e C - [

A3. Solution of Location Probability in Advection and Dispersion

Location probability density function, f;(xlr) is described by the equation

a_f:t Da_fx Vafx

= 7V a0 (A3.1)

For the example in Figure 2.1, the appropriate boundary and initial conditions can be written
as:
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afx

Vie-D=— =0, atx =20 (A3.22)
fx(xlr) =0, at x— (A3.2b)
filxlr) = 8(x), fort =0 (A3.2¢)

The Laplace transform-in-time of travel time PDF, f;(zlx), leads to:

92 )
D af‘ f"—pfx +8(x) =0 (A3.3)
Equation (A3.2) can be rewritten as:
. fo fx O, atx =0 (A34a)
fdxp) =0, at x — o (A3.4b)
The double Laplace transform-in-time-space from equations (A3.3) and (A3.4) can be
written as:
s 1 |Dspfk0)-1 Dsif0)-1
fx(Svp) = D(S2—S1)[ S_SZ - S,,Sl (A35)
where:

5= 58 5= s+ E= [1+%2 (436)

After inversing the Laplace transform-in-space, the Laplace transform in time is;

1ie.p) = pses | e s 0)-1)-e 05,0 1) | (43.7)

Asx—> 0, (Ds:,ﬁ\c(O)—l) = 0, so that the Laplace transform in time can be rewritten as:

> _ 1 sx01752
fx(x’p) - D(Sz_sl)["e ( 52 )] (A38)

This can be simplified to:

A _ 2 Vx Vg
JAap) = T Eve? (21))‘”‘? ( 2D ) (A3.9)
So that the solution of the location PDF is derived as:

Ay 2
£ty = /n_lp? exp[ (];1;/:) ]_%exp[% ]erfc[%] (A3.10)
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Location cumulative distribution function, Fy(xIt), is described by equation (A3.1),

replacing f; with F; along boundary and initial conditions:

Fe@lt) =0, arx =0 (A3.11a)
Foxlt) =0, at x — o (A3.11b)
Fx(xh-) f— 1’ for T =0 (AB].].C)

The Laplace transform of location CDF leads to:

_62]«'"\x *V.aiax

VPt 1=0 (A3.12)

= D
The Laplace transform of equation (A3.11) can be rewritten as:

Fi=0,atx=0 (A3.13a)

Foxlt) = 0, at x — (A3.13b)

Solution of the Laplace transform-in-time is solved from equations (A3.12)-(A3.13) by:

Fix,p) = %-ﬁl{exp[g—g(lu 1+ 4%)]} (A3.13)

i) = 1-3 {e;fcl:(%) ] N exp[% ]erfc[%t_) ]} (A3.14)

A4, Solution of Resident Concentration for the Case of Non-equilibrium Sorption:

For non-equilibrium sorption, the resident concentration can be described by:

aCcr , 9CY  _a2cr oCT (Ad.1a)
o T TP TV

acr K

ol = a[__.ffb Cr- ;] (A4.1b)

The initial and boundary conditions for the example in Figure 2.1 can be expressed by:
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aCr

Fria Qarx=0 (A4.2a)
C'=0, asx — © (A4.2b)
¢ = %6(»%), fort=20 (Ad.2¢)
Cl=0, fort=20 (A4.2d)

The double Laplace transform-in-time-space is described by:

Gro 1 Ds,Cr(0) + VCr(0)-B e~
"~ D(sy-s1) D(s-5,)(s-5;) (A4.3)
Spe= s (14 ) 5 =35 (1-5

V2 + 4AD - oK@
§=,/% A"[1+9(p+a)]

M oKk 2
B, = 9[1 +9(p+a)]

After inversing the Laplace transform-in-space, the Laplace transform-in-time is:

¢ =

exp(s,(x-x5)) Mexp(s1(x-xo)) | s -VEx,
%“ﬂuzvg—[l_U(x—xo)]_—é—%/—E[Tzl_exp 5 )“U(x—xo)] (A4.4a)

=@+ )0 (Ad.4b)
Oatx =< x,
Vox) = Y1 arx > Xo
-V =_Y -

_ oK@ V2 + 4ADp
4 (1+9(p+a)) E=

Using the inversing method of the Laplace transform in time (Toride, al et., 1993;

Lindstrom and Boersma, 1989), the analytical solution of A4.4 can be written:
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t

C = %exp(-mo + a)t) 42000 f 1,[2Bo(t-030) 2|8 (x)de

(A4.5)
0
(x-x, + V)2 Vao\| V. Vxo X+ xp + Vit
8o(®) = ﬂexp<———~—-—z~b~;—){l + exp(-F)} 5D exp( D )erfc(——~——~—-—-—-——-—-4Dt )
0K _ 0Kpo
4, =" a B, =5

where I is the Bessel function of order one.

AS. Solution of Travel Time Probability for the Case of Non-equilibrium Sorption:

For non-equilibrium sorption, the travel time PDFs can be expressed as:

e, 98 _ p 3 1, (AS5.1a)
a‘L' K3 ax2 6x

9

%e _ a(@%ﬂz 3 gt) (A5.1b)

For the example in Figure 2.1, the initial and boundary conditions in the one-dimensional

domain are described by:

Vfr—D-c?-]:f = Vo), atx =0 (A5.2a)
Ji=0 ax > (A5.2b)
fr=0 forr=0 (A5.2¢)
g: =0, forz =20 - (A5.2d)

Using the Laplace transform in time of (A5.1) and (A5.2), we can obtain:

A 2

fr(xyp) == exp((l)irl)g() E) (A5.3a)
~ 0Ky

8 = flg + p)ﬁ (A5.3b)

V2 + 44D _ _0Ka
E=‘/—-+*V2—p A_[1+9(p+a)]

Using the reversing method of the Laplace transform (Toride, al et., 1993; Lindstrom and
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Boersma, 1989), the solution of the travel time PDF can be written:
t

fiie) = exp(~(4o + @) {1ol0) J L2Bo-om) 2 fo@dr b (a5
0

_ Vv [ V2 v2 vk x + Vi
fo® = /J?Eexp( D1 ) 2Dexp(D)erfc( @)

legda a B, = ek

A, =

where I is the Bessel function of order one.
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