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ABSTRACT

The Rio Salado of central New Mexico is an ephemeral stream
that rises along the continental divide, flows approximately 90
miles eastward, and empties into the Rio Grande near San Acacla,
New Mexico. The Rio Salado drains approximately 3635 km2.
Streamflow in the Rio Salado occurs only in the late summer Iin
response to intense thunderstorms. The Rio Salado flows in an
alluvial, sand-bedded channel throughout most of its reach. The
Rio Salado drainage basin consists predominantly of relatively
flat-lying Mesozoic and Cenozoic clastic and volcanoclastic
rocks, with occasional exposures of Tertiary intrusives and
Paleozoic rocks. Ongoing uplift centered over the Socorro Magnma
Body includes approximately the lower half of the Rio Salado
drainage basin,

~Quantitative _analysis of the Rio _Salado drainage basin and

channel network indicates that the Rio Salado behaves predlctably

according to Horton's laws. Analysis of channel geonmetry,
however, indicates that the Rio Salado does not behave according
to models for ephemeral streams proposed by other investigators.
The channel geometry of the Rio Salado appears to be controlled
by the tectonic uplift over the Socorrc Magma Body.

iii



ACKNOWLEDGEMENTS

This study grew out of a series of class discussions and
assignments for the Quantitative Geomorphology class taught by
Dr. G. W. Gross, during the Fall semester, 1984. Many
individuals provided support and assistance during the various
phases of this study. Most notable are: The New Mexico Geological
Society who provided financial support through a grant-in-aid;
Dr. G. W. Gross, Dr. Dave Love, and Dr, John Hawley who provided
the author with new ideas, moral support, and encouragement; the
ranchers and landowners who allowed access to the Rio Salado
accross their property, and opened up their ranches to myself and
my field assistant, especially, Mr. and Mrs. Tom Kelly, Mr. and
Mrs. Mike Kelly - the managers of the Criswell Ranch, the
managers of Red Lake Ranch, the manager of Spears Ranch, the
manager of Ligon Ranch, and Mr. Ted Stans, the manager of the

_ _gevilletta National . Wildlife Refuge; and lastly, my highly
skilled and ever patient field assistant, Janice.

iv




page
ABSTRACT . . . e e e e e e e e e e e e e e e e P I 4 1
ACKNOWLEDGEMENTS e e e e e e e e e e e e e e e A A+ 4
TABLE OF CONTENTS . . ¢ v « « o s & o o o o s o o o o A 4
LIST OF FIGURES . o v v v v o o o o o o o s 5 o o o « = ., wvii
LIST OF PLATES . . + « v ¢ o o o s o s s o s s o o« « . Vvii
LIST OF TABLES . . . v ¢« 4 ¢« o s « o o« o s o o s o o viii
LIST OF APPENDICES . . v v v v o v o & o & s o o « = viii
1.0 INTRODUCTION . . . e e e e e e e e e s e e e e S §
1.1. INTENT OF STUDY e e e e e e e e s e e e e e e . 1
1.2. RELATED WORK . . . e e e s e e e e e e 1
1.3. DESCRIPTION OF STUDY e e v s 4 e s . . 3
1.4. REPORT ORGANIZATION . . .+ v v v o o o « +o o s o 4
2.0 THE RIO SALADO DRAINAGE BASIN . . . . + .+ v « & + . 5
2.1 BASIN GEOGRAPHY . . . . v v 4 4 o 4 s s s+ s » « +» « b

e 2,1, LOCATION v v e e e e D
2.1.2. CULTURE . . -
2,.1.3. CLIMATE . . . &« & ¢ v s + 3 s« 4« o « s o +« « B
2.1.4. VEGETATION . . . &« v o o + o o« « o o . . 8
2.1.5. PHYSIOGRAPHY . . . ¢« ¢ « « & + « o+ = . . 8
2.2. BASIN GEOLOGY . . . e e e e e e e e e e e+« 9
2.2.1. GEOLOGIC UNITS « e e e e e e e e 9
2.2.1.1. PRE-CAMBRIAN ROCKS e e 9
2.2.1.2. UPPER~PALEOQOZOIC ROCKS . . . . . 9
2.2.1.3. MESOZOIC ROCKS . . . 10
2.2.1.4. CENOZQIC ROCKS 11
2.2.1.4.1. TERTIARY SYSTEM e e e e e i1
2.2,1.4.2. QUATERNARY SYSTEM . . . . . . 14
2.2.2., GEOLOGIC AND TECTONIC HISTORY . . . . 15
2.3. QUANTITATIVE BASIN PARAMETERS, . . . . . ., . I A §
2.3.1. BASIN AREA . . v v v v v v v v v v W 19
2.3.2. TERRAIN ANALYSIS . ¢ « v v s o o « s+ . .19
3.0 THE RIO SALADO CHANNEL NETWORK . . .« + « v v v « & 21
3.1 MAP ANALYSIS . . . e e e e e e e s 21
3.1.1., CHANNEL DELINEATION e e e e e s . 21
3.1.2. CHANNEL ORDERING . . « « « + + & =« 22
3.1.3. PARAMETER MEASUREMENT 23
3.2. FIELD INVESTIGATION e e e e e e 24
3.2.1., HYDRAULIC GEOMETRY . . . . . . . 26
3.2.2. CHANNEL GRADIENT e h e e e e e . 26
3.2.3. PARTICLE SIZE . . . v e e e e e 28
3.2.3.1. SAMPLE COLLECTION o e . . 28
3.2,3.1.1. RANDOM CHANNEL SAMPLES . 28
3.2.3.1.2. LOW-FLOW CHANNEL SAMPLES 28
3.2.3.1.8. OVERBANK 'SAMPLES . . . 29
3.2.3.2, PARTICLE SIZE ANALYSIS . . . . . 29
3.2.4. MISCELLANEOUS FIELD OBSERVATIONS 31
4.0 ANALYSIS AND DISCUSSION . . . v v « v o + 4 w o 33
4.1.HYDRAULIC GEOMETRY 33
4.2 .RESPONSE OF LONGITUDINAL PROFILE TO ACTIVE TECTONICS 44
4.3.BASIN AND CHANNEL NETWQRK RELATIONSHIPS . » 46
5.0 CONCLUSIONS . .« v v « v v v v v v s« 4 o & « » b7

TABLE OF CONTENTS



RECOMMENDATIONS FOR FURTHER WORK
1. EXPANSION OF THE CURRENT STUDY

6.
6.

6
6
6
RE

2. INVESTIGATION OF THE RESPONSE OF THE RIO SALADO
TO TECTONIC UPLIFT

PALEOHYDROLOGIC RECONSTRUCTION
SURFACE-WATER MODELING

ERENCES . .

3

.4,

.5. MISCELLANEOUS WORK
F .o

vi

58
58

59
59
60
60
61



LIST OF FIGURES

FIGUR

_______ E page
1 Channel Gradient vs Distance Along Mainstem . . . . 34
2 Particle Size vs Distance Along Mainstem . . . . . 35
3 Width:Depth Ratio vs Distance Along Mainstem . . . 36
4 Particle Size vs Width:Depth Ratio . . . . . . . . 38
5 Channel Gradient vs Width:Depth Ratic. . . . . . . 39
6 Channel Gradient vs Particle Size . . . . . . . . 40
7 Channel Sinuosity vs Distance Along Malnstem . e 41
8 Width:Depth Ratio vs Schumm's "M" . . . . 43
9 Approximate Extent of Tectonic Uollft Over the

Socorro Magma Body . . . . . . . 45
10 Longitudinal Profile of the Lower RlO Sa¢aao ... 4T
11 Stream Number vs Strahler Order e+ 4 . . . . 48
.12  Stream Length vs Strehler Order . . . . . « « . . . 850
i3 Dvalnage Area vs Strahler Order . . . . . . . . . . bl
14 Stream Slope vs Strahler Order . . . . . . . . . . 52
15 Shreve Magnitude vs Strahler Order . . . . . . . -. b5
LIST OF PLATES
{in pocket)
Plate
1 Location Map (A summary version of Plate I is included p. ii &
at the beginning of Appendix C: p. 131l.
2 Generalized CGeology of Rio Salado Drainage Basin

vii




TABLE

O W N

LIST OF TABLES

Climatic Parameters . . o « ¢ ¢ « « s 5 s o o o s
Basin Parameters . . . . . « + « « &
Channel Network Parameters . . . . .
Channel Geometry at Field Sites . . . . . . .
Particle Size . . . ¢ v « v ¢« « 4+ o s ¢ & v e

LIST OF APPENDICES
(Contained in Volume II)

Normalized Longitudinal Profiles, Magnitude Input,
and Hypsometric Curves.

Working Maps

Channel Cross Sections

Paticle Size Distribution Plots

Field Station Maps

Data Diskettes

Computer Programs

viii



1.0 INTRODUCTION
1.1 Intent of Study

This study was undertaken in an attempt to dquantitatively
and qualitatively describe the Rio Salado of Central New Mexico.
Another important intent of this study is to provide a foundation
for future investigations, and to develop a better understanding
of the conditions and processes which have contributed to the
development of the Rio Salado and its drainage basin.

In order to accomplish the above goals, the present study
was undertaken to provide base-line information about the
drainage basin and channel network of the Rio Salado from
morphometric and topologic analysis, and to investigate how such
information relates to the adjustment of the Rio Salado to its
environment. Historical and present-day adjustment of the Rio

“Salado incorporates channel incision, migration, and sediment

transport; stream-agquifer interactions; drainage basin and
channel network evolution; and response to climatic influences,.
It 1is hoped that an investigation into the relationship of the
physical nature of the drainage basin and channel network to
certain - of the above dynamic variables will help to provide an
understanding of how the system functions, and aid in the
development of predictive methods.

1.2 Related Work

Quantitative geomorphologists have long been involved in the
attenmpt to better understand the nature and behavior of fluvial
systems. Considerable work has been done to identify and gquantify
the parameters which best describe fluvial systems and their
adjustment to their environment. The implicit purpose of such
undertakings has been to provide a means for predicting the
response of rivers to a given set of inputs, as well as to
derive information about past and present climatic, geolegic,
tectonic, and geomorphological conditions.

Many investigators have contributed to the science of
gquantitative basin and channel analysis, as well as to the
application of theory based upon such analyses. Among the most
notable are:

i) Horton (1945), who pioneered the discipline of
guantitative drainage basin analysis. Horton was the first to
develop methods for the guantitative classification and analysis
of drainage basins and channel networks. In order to accomplish
these goals, Horton developed a series of morphometric
parameters, often known as Horton's Laws, which describe certain
hydrophysical aspects of the drainage basin. He also proposed a
method of channel ordering. With these tools Horton was able to
guantitatively describe any drainage basin, with the ultimate
intent of developing a better understanding of the
interelationships and physical nature of the wvarious features
contained in the drainage basin.



ii) Leopold and Maddock (1953) proposed the concept of
hydraulic geometry to relate channel dimensions of a stream to
the dynamic variables of streamflow. They developed a set of
empirical power functions to describe the relationships. With
these allometric relationships, Leopold and Maddock were able to
investigate channel response to various inputs, and the orderly
downstream changes in channel geometry and streamflow variables.

iii) Wolman (1955) utilized the allometric relationships
proposed by Leopold and Maddock in a study of a perennial creek
in Pennsylvania. He expanded on some of Leopold and Maddock's
original work by using the allometric relationships for a
detailed investigation of channel equilibrium and grade.

iv) Strahler (1952 and 1964) refined the Hortonian method
of stream ordering, thereby greatly expanding its wutility. He

also proposed the use of hypsometric curves and integrals for the =

gquantitative study of the erosional stage of drainage basins.

v) Schumm (1960, 1961) looked at the relationship of silt
and clay sized material along the channel perimeter and
width:depth ratios to channel stability. To accomplish this goal,
he proposed the use of the parameter "M", which is a weighted
silt-clay content of the channel perimeter. Channel stability is
identified by the position of a particular channel cross section
on a plot of width:depth ratio versus "M",

vi) Shreve (1966) used combinatorial and statistical theory
to describe the mathematical structure of channel networks. In
order to allow such a detailed analysis of the network, Shreve
found it necessary to develop an alternative method of channel
ordering. He proposed the use of link and basin magnitude as a
mathematically more meaningful system of ordering. Shreve's work
also initiated the formulation of a theoretical basis to Hortons

Laws, which allowed the development of predictive methods for the

generation of synthetic streamflow.

vii) Rodriguez~Iturbe and Valdez (1979), Valdez et al

(1979), and Rodriguez-Iturbe et al (1982), used the
geomorphological structure of a drainage bhasin as a basis in the
development of methods to g¢generate synthetic instantaneocus

hydrographs for the outlet of a basin. They were able to express
the instantaneous unit hydrograph {(IUH) as a function of certain
of the Horton numbers. Their model heavily draws on the
statistical work pioneered by Shreve (1966).

Although it 1is apparent that considerable work has been
accomplished in the area of drainage network analysis, most of
the studies have been directed towards perennial streams in humid
climates. Very little work to date has been aimed specifically at
the description and functioning of ephemeral systems. Leopold and
Miller (1956) were able to successfully apply the relationships
developed by Leopold and Maddock (1953) during their study of
small ephemeral streams in northern New Mexico. Cherkauer (1972}
investigated the interrelationship of certain morphometric



parameters of several small ephemeral streams in southeast
Arizona. Cherkauer developed empirical regression relationships
to describe channel gradient as a function of basin and dry-
channel geometry. More recently, Begin and Inbar (1984) were able
to use channel geometry and particle size as a basis for the
estimation of discharge-frequency relationships for a 1410 km?
ephemeral drainage basin in Israel.

1.3 Description of Study

Work undertaken for the study has involved the generation of
information by means of field observation, along with map and
aerial photographic interpretation. Existing sources were
consulted for additional information.

Channel characteristics were determined from field surveys
and data collection reconnaisance conducted during the summers of

1985  and 1986. Office-~based analyses were initiated during the

spring of 1985. Whenever possible, field visits were designed to
complement information obtained during office-based
investigation.

Field work involved the derivation of quantitative

information about channel geometry, pattern, and gradient;
channel bottom characteristics, including low-flow channel and
overall channel sediment particle size distributions; bank and

floodplain geometry and material characteristics; along with more
gualitative investigations into the geologic and geomorphic
nature of each station visited. A total of fourteen field
stations were investigated. These stations were selected on the
basis of their geographical distribution along the mainstem of
the Rio Salado, and their relationship to major tributaries.
During the selection of field station locations, every attempt
was made to  obtain representative information from each of
several initially identified segments of the main channel.
Station sites were also selected according to their geographical
placement within the drainage basin.

Map analysis work regquired the initial identification of
channel segments, and the classification of each channel segment
according to two different schemes. The majority of the map work
was completed using United States Geoclogical Survey 7.5 minute
series topographic maps. An entire set of 39 topographic maps was
regquired for complete coverage of the basin. Several smaller
scale maps were also consulted.

Once the channel pattern was clearly defined on the
topographic maps, gquantitative information was extracted. Among
the most important are: channel length, channel elevation,
channel gradient, channel sinuosity, mainstem valley side slope
and cross section, tributarv location and class, as well as basin
elevation at discrete points.



1.4. Report Organization

This report is organized into two volumes and seven major
chapters. Volume I contains the text portion of the report;
Volume II contains the appendices under separate cover. The first
chapter of Volume I contains the introduction. Chapter 2 contains
brief descriptions of the geography and geology of the Rio Salado
drainage basin. Chapter 3 contains a brief discussion of the Rio
Salado channel network. Chapters 2 and 3 also contaln discussion
of the methods used during the present study to describe the
channel network and drainage basin parameters of the Rio Salado.
Chapters 4 through 7 contain discussion, conclusions,
recommendations, and a list of references, respectively. All
pertinent data and maps are included within the appendices in
Volume II. '



2.0 THE RIO SALADO DRAINAGE BASIN

2.1 Basin Geography

2.1.1. LOCATION

The Rio Salado drains approximately 1404 square miles in
Socorro, Catron, Cibola, and Valencia counties in central New
Mexico. The drainage basin of the Rio Salado lies between 106
51'12" and 108 02'07" west longitude, and 34 00'54" and 34 43'45"
north latitude. The major axis is 70 miles long, and is oriented
approximately east-west. The drainage basin is just under &0
miles wide in the north-south direction. Plate 1 shows the
important features of the drainage basin. (see map on p. ii for gquick reference),

- The basin is bounded to the north and northwest by the Rio
San Jose arm of the Rio Puerco drainage basin, to the south and
southwest by the closed drainage of the San Augustin Plains, and
to the east by the Rio Grande and associated minor tributaries.
Several small, closed basins lie along isolated portions of the
borders, however the size and impact of these areas on the
drainage of the Rio Salado is considered to be negligible.

2.1.2. CULTURE

Land use within the drainage basin is almost entirely
devoted to range-land cattle ranching. Several large scale
ranching operations are headguartered within the basin, including
the Criswell, Drag-Ace, Field, Red Lake, Martin, La Jencia,
Majors, and Ligon Ranches. Approximately 86 sguare miles near the
center o©of the basin is included within the Alamo 'Band Navajo
Indian Reservation. Most of the land within the reservation is
devoted %o sheep and cattle ranching. The Sevilleta National
Wildlife Refuge comprises the portion of the basin lying roughly
east of 1067 05', and includes a total of approximately 80 square
miles. Since the late 1960's the Sevilleta National Wildlife
Refuge has been administered by the U.S. Fish and Wildlife
Service. Land use within the refuge has been restricted to small
scale, non-destructive scientific  research. The wvillage of
Magdalena, population 1,200, encompasses approximately two sguare
miles aleng U.S. Highway 60. A total of 55 miles of two-lane
blacktop roads lie within the southern portion of the basin.
However, many - improved and unimproved gravel and dirt roads
provide access to the interior of the basin.

2.1.3. CLIMATE

The Rio Salado drainage basin lies near the northeast corner
of the Sonoran Border Meterologic Zone. The climate within the
basin is predominantly semi-arid. Magdalena (elev. 6556 msl) is
the site of the only Class A, 1long term Natiocnal Weather Service
weather station within the basin. Approximately one half of the
total annual precipitation falls during late summer
thunderstorms. Climatic parameters are included in Table 1.
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Two Class A, long term weather stations lie just outside the
periphery of the basin: Socorro, 38 miles to the southeast of the
center of the basin, and Grants Airport, 40 miles to the north of
the center of the basin. Climatic parameters for these stations
are also included in Table 1.

Mean annual precipitation within the basin, as interpolated
from climatic data provided in part by the Magdalena, Socorro,

and Grants weather stations (UsSDA, 1985), ranges from
approximately 10 inches at lower elevations, to over 18 inches
along mountain crests. Isohyetal contours provided by the USDA
(1885), along with maximum rainfall intensity isohvyets

indicate that considerable orographically induced precipitation
occurs along the mountain ranges within the basin. Mean annual
air temperatures throughout the basin wvary predominantly
according to land surface elevation. Comparison of the mean
annual air temperatures at the three stations listed above
suggests that the mean annual lapse rate ranges between 3 and 4

—Fper-1000-feet-elevation— However,;—the—instantaneocuslapserate -
may be considerably greater during the dayvlight hours of the
summer months. This may provide a mechanism for the generation
of orographically induced, localized thunderstorms in response to
the convergent lifting of warm air along mountain slopes.

As indicated earlier, most of the annual precipitation
within the basin occurs during the late summer months as intense
thunderstorms. The moisture which contributes to these storms is
predominantly from the Gulf of Mexico (Thomas, 1962), in response
to a seasonal shift in the position of the Bermuda High,
Precipitation events during the remainder of the vyear are
typically 1less intense, and occur in response to eastward
tracking storm cells which move inland from off the Pacific
Ocean. These storms are mostly depleted of moisture by the time
they reach New Mexico, due to orographically induced
precipitation wupon the mountain ranges of California and Arizona
{Thomas, 1962).

The weather station at Magdalena has been in near-continuous
service since 1889. Total July through September precipitation
during the period of record ranges from a low of 1.55 inches in
1922, to a maximum of 14.72 inches in 1914. Although isolated

instances of wet-following-dry vyears do exist, there does appear
to be a general tendency for clustering of wet vyears and dry
vears. The time-series of precipitation at Magdalena for the

period of record indicates that precipitation was greatest during
the first 15 years of the 20th century. Records of other long-
term weather stations throughout the region also indicate a
similar distribution of precipitation during the past century.
For example, the time-series of precipitation at Magdalena is
remarkably similar to that of Lordsburg, New Mexico, as shown by
Thomas (1962, figure 7), even though the geographic situation of
the two stations is dissimilar.

The entire region has undergone considerable climatic
fluctuations during the past 12,000 years, as is evidenced from




archeological, palynological, paleobotanical, paleontological,
and sedimentological studies. Several investigators cited by Gile
et al (1981) have concluded that the period following the last
full glacial was warm and dry, excepting for several brief
pluvial periods which occurred around 11,500 to 11,000 vyears
before present (YBP), 10,500 to 10,000 YBP, and 8,500 to 8,000
YBP. It is generally agreed that the period from 7,500 to 5,000
YBP was warm, with intense warm-weather precipitation events, and
may represent a period of considerable landscape instability and
erosion-sedimentation (Gile et al, 1981). Love (1979) lists
several arroyo cut-and-fill sequences in Chaco Canyon during the
past 10,000 vyears which may be attributable to climatic
fluctuations.

Thomas (1962) quotes Schulman in reference to more recent
climatic changes in the southwest, who states that the period
since 1870 has been more climatically variable than the previous
several centuries, largely in response to a major disturbance in

~~the upper~atmospheric circulation over western North America. -

2.1.4. VEGETATION

The density and type of vegetation varies widely within the
basin according to elevation, soil type, drainage, and depth to
water. Predominant upland species include grasses, such as grama,
dropseed, and galleta; shrubs - chamisa, rabbitbrush, sagebrush,
snakeweed, cholla, mahogany; pinyon and juniper trees, as well as
ponderosa pine, tree oaks, cedar, and mountain mahogany at higher
elevations (Maker, et al, 1985). Locally thick stands of tamarisk
interspersed with cottonwoods, willows, and oak occur along creek
bottoms and where the water table is near to the surface.

2.1.5. PHYSIOGRAPHY

The Rio Salado drainage basin encompasses a wide variety of
landforms within portions of the Datil-Mogollon Section and the
Rio Grande Subsection of the Basin and Range Physiographic
Province, and the Acoma-2Zuni Section of the southern Colorado
Plateau. Most of the basin lies within the Datil-Mogollon
Section, which represents a transition zone between the Basin and
Range Province and the Colorado Plateau, and exhibits
characteristics of each, including volcanic upland with basins;
high tablelands, with fault-block ranges, basins, and canvyons
(Gile et al, 1981). Other features included within the basin are:
hogbacks and cuestas, basalt-capped mesas, pediment remnants,
broad alluvial plains, and piedmonts. The geographic distribution
of these elements within the basin reflects local geology and
tectonic activity. Elevations within the drainage basin range
from Jjust under 4700' msl at the Rio Grande, to over 9000' msl
along the mountain divides.



2.2. Basin Geology

Information included within this report regarding the
geology and tectonic history of the Rio Salado drainage basin
has been assembled from several sources. Principal investigators
who have studied the geology of portions of the basin include:
Winchester, 1920; Spiegel, 1955; Dane, Wanek, and Reedside, 1957;
Givens, 1957; Tonking, 1957; Jicha, 1958; Bruning, 1973; Chapin
and Seager, 1975; Callender and Zilinski, 1976; Condie, 1976;
Machette, 1978; Massingill, 1979; Meverson, 1979; Harrison, 1980;
LaRoche, 1980; Reilinger et al, 1980; Coffin, 1981; Robinson,
1981; Cather, 1982; Osburn, 1982, 1983, 1984, 1985; Barker, 1983;
Chamberlin, 1983; Johansen, 1983; Ouchi, 1983; Sanford et al,
1983; Cather and Johnson, 1984. These, and other, sources have
been used to develop the following discussion.

2.2,1,., GEOLOGIC UNITS

Most of the drainage basin of the Rio Salado is underlain by
nearly flat-lying Triassic through Tertiary clastic and
volcanoclastic rocks. Locally thick sequences of Quaternary
alluvial £fill covers the older consolidated units across several
wide interior basins and along the course of the present drainage
net. However, considerable exposures of bedrock occurs along the
flanks of mesas and hillslopes, and along the erosional scarps of
the drainage network. Plate 2 is a generalized depiction of the

more prominent geologic features of the Rio Salado drainage
basin.

2.2.1.1. Precambrian Rocks

Exposures of Precambrian rocks within the drainage basin is
limited to the upper elevations of the Ladron and Magdalena
Mountains. Within the Ladron Mountains several rock types occur,
including metasedimentary and metavolcanic rocks, and granite,
guartz-monzonite, and pegmatite plutons (Condie, 1976). Exposures
of these units 1is limited to the high mountain slopes. The
combined effects of land surface slope, orographic precipitation,
and the low permeability of the outcrops may serve to make the
Ladron Mountains an important source area for runoff within the
lower reach of the Rio Salado. The Precambrian rocks within the
Magdalena Mountains are similar to those of the Ladron Mountains
in 1lithology and occurrence, but their limited exposure and
distance from the Rio Salado reduces their importance as a source
area for runoff into the Rio Salado.

2.2.1.2. Upper-~Paleozoic Rocks

Rocks of Mississippian through Permian age underlie the
northeast margin of the drainage basin. Representative units

include the limestones, sandstones, and siltstones of the
Pennsylvanian Magdalena Group and the Permian Abo, Yeso, and San
Andres Formations. The Yeso and San Andres Formations contain

intercalated bheds of gypsum. Differential weathering of the
Paleozoic rocks has led to the formation of irregular topography



north of the Rio Salado between The Box and Puertecito (see Plate
2 for locations). Depending upon exposure, structural attitude,
and degree of dissolution of the limestone, these rocks may
serve as important sources of ground-water recharge, as well as
sites of localized discharge. The near-perennial streamflow of
the Rio Salado in the area of The Box is primarily a result of
springs within the Pennsylvanian limestone walls (Spiegel, 19565).
The source of this water is to the north along the southwest
flank of the Ladron Mountains where several hogbacks are crossed
by low-order ephemeral streams which carry runoff from the
Precambrian rocks of the Ladron Mountains. A similar situation
occurs at Riley Spring which surfaces along the contact between
the Permian San Andres formation and the overlying mudstones and
shales of the Triassic Chinle within the channel of the Rio
Salado. This spring is the source of considerable input of water
into the channel of the Rio Salado, and contributes greatly to
the perennial flow of the Rio Salado along the reach downstream
through Riley. The area surrounding The Box and portions of the

reach between Riley and Puertecito are the only places within the
basin where the mainstem of the Rio Salado or any of its major
tributaries cross limestone or any other rocks of Paleozoic age.

2.2.1.3. Mesozoic.Rocks

Much of the drainage basin of the Rio Salado is underlain by
rocks of Mesozoic age. The most important are the mudstones,
siltstones, and sandstones of the Triassic Chinle Formation; and
the near-shore marine to continental c¢lastic rocks of the
Cretaceous System.

Exposures of the Chinle Formation are limited to the Riley-
Puertecito area. Along the mainstem between Riley and the
junction with Canada Bonita the Rio Salado has cut a narrow
canyon into the Chinle Formation. The thickness of channel
alluvium along this reach is presumed to be thin, and there are
several exposures of the mudstone and siltstone facies of the
Chinle Formation along the bottom and sides of the channel. The
lower contact of the middle, resistant sandstone unit of the
Chinle Formation roughly parallels the Rio Salado. This suggests
that the Rio Salado between Puertecito and Riley preferentially
follows the imcompetent mudstone and siltstone facies of the
Chinle Formation, bordered to the south by the overlying,
resistant sandstone facies of the Chinle Formation. Several
springs occur at the facies contact along this reach. The Chinle
Formation floors a large north-south trending basin just west of
Sierra Lucerc. However, Quaternary alluvial £fill has all but
covered the Chinle Formation within this basin, and exposures are
limited to scattered outcrops. A narrow, fault emplaced wedge of
the Chinle Formation crosses the channel of the Rio Salado
adjacent to the west edge of the Red Lake Fault just east of D
Cross Mountain.

The Cretaceous System includes the Dakota Sandstone, the

Mancos Shale, the Tres Hermanos Formation, and the Mesa Verde
Group, which includes the Gallup Sandstone, and the Crevasse
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Canyon Formation. Of these units, the Crevasse Canvon Formation
is the most ubiquitous, and is exposed throughout much of the
basin interior from the Riley-Puertecito area westward.
Differential erosive and weathering characteristics of rocks of
the Cretaceous System contribute to the major landscape elements
of the basin. Resistant sandstones typically form the crests of
mesas and cuestas and less competent shales and siltstones form
the adjacent valleys (Tonking, 1957). Landslide deposits commonly
occur where large blocks of resistant Dakota Sandstone have slid
downslope across the incompetent Chinle Shales, and where
Cretaceous Sandstones have similarily slid off of mudstones of
the Mancos Shale (Tonking, 1957; Osburn, 1982). The sandstones,
mudstones, and shales of the Crevasse Canyon Formation contain
thin intercalated beds of coal, dolomite, and limestone (Osburn,
1982). Large ironstone concretions have been documented within
the Crevasse Canvon-Formation (Tonking,—1957; - Osburn,-1985), and

have been observed along the channel of Miguel Chavez Canyon just
north of Red Lake Ranch.

2.2.1.4. Cenozoic Rocks

2.2,1.4.1, TERTIARY SYSTEM. Rocks of Tertiary age crop out
throughout the basin, and comprise the majority of bedrock
exposures within the basin. The Tertiary System contains a wide
variety of rock types and represents a considerable range of

geologic processes. Included within the Tertiary System are the
Eocene Baca Formation of continental intermontane basin fill
{Cather and Johnson, 1984 ; the prograding alluvial fan

volcanoclastics and associated flows of the Oligocene Spears
Formation (Osburn, 1982; Massingill, 1979); the late Oligocene
Hells Mesa and A-L Peak Tuffs; the Neogene LaJara Peak Basaltic-
Andesite and associated mafic intrusives; and the Late Miocene-
Pleistocene Santa Fe Group (Massingill, 1979).

The Baca Formation comprises a wide range of fan,
lacustrine, meanderbelt, and arrovo-fill facies which represent
deposition into the extensive Baca basin during Eocene time
{Cather and Johnson, 18984). Principal exposures of the Baca
Formation within the Rio Salado drainage basin occur as broad
outcrops of redbed sandstone, siltstone, shale, and conglomerate
along the north slopes of the Datil, Gallinas, and Bear
Mountains.

The Oligocene Spears Formation consists of several distinct,
mappable, lenticular units of moderately to poorly welded ash-
flow gquartz-latite tuffs, tuff breccias, 1laharic breccias,
tuffaceous sandstones, pebble-cobble conglomerates, agglomerates,
and basaltic-andesite flows, with occasional intercalated thin
beds of siltstone and claystone (Givens, 1957; Tonking, 1957;
Massingill, 1979; Harrison, 1980; Osburn, 1982). Principal
exposures of the Spears Formation are confined to the higher
elevations of the Datil, Gallinas, and Bear Mountains. The Spears
Formation weathers easily to form rounded hills and ridges
(Givens, 1957). The conglomeratic units within the Spears
Formation are considered to be good aquifers (Tonking, 1957).
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Several springs occur within the Bear Mountains along the upper
contact of the Spears Formation with the overlving Hells Mesa
rhyolitic tuff (Tonking, 1957). In the Datil and Bear Mountains,
many springs occur within the Spears Formation itself, presumably
in response to intraformational facies changes as well as to
lithological differences between units.

The Spears Formation forms a basal volcanoclastic apron upon
which the remainder of the Tertiary units were deposited
(Massingill, 1979). The rhyolitic ash-flow tuffs of the Hells
Mesa and A-L Peak Tuffs were deposited disconformably upon the
Spears Formation along a north-sloping surface in response to the
eruption of wvolcanic centers in the Magdalena and San Mateo
Mountains (Massingill, 1979). Exposures of the Hells Mesa and A-L
Peak Tuffs occur in the Datil, Gallinas, and Bear Mountains. The

-e——————Hells——Mesa —Tuff—3 S"**'EY’p'i*C’a’l*l’Y’* -moderately—to—poorl y—welded;

crystal rich, and contains interbeds of water-laid volcanic

conglomerate (Givens, 1957; Willard and Givens, 1958; Harrison,
1980). The A-L Peak Tuff is crystal poor, moderately to densely
welded, and contains interbedded basaltic—~andesite flows

(Harrison, 1980). Exposures of the Hells Mesa and A-I, Peak Tuffs
are limited to the higher elevations along or just below the
crests of the Datil and Bear Mountains.

The remainder of the Neogene volcanic units includes a
number of isclated, although possibly correlated basalt and
basaltic~andesite flows throughout the center and northern
portions of the basin. Several different episodes of volcanism
have been identified, with distinct pulses occurring from the
Late O0Oligocene through the Pliocene and into the Pleistocene.
Many volcanic vents and necks have been identified as source
areas for the individual flows. Correlation of basalt flows,
source area distribution, and elevation suggests deposition onto
widespread geomorphic surfaces which may have existed during
Pliocene and Pleistocene times (Jicha, 1958; Massingill, 1979)
(eg.the Ortiz surface of Wright <1946>). However, exact
reconstruction of the surfaces is complicated by post-emplacement
normal faulting and vertical tectonisn.

The most important Pliocene-Pleistocene flows include: the
La Jara Peak basaltic-andesite (Tonking, 1957; Massingill, 1979;
Meyerson, 1979), which crops out along the crest of the Bear
Mountains; the Sierra Lucero basalts {(Jicha, 1958) which cap

Chicken Mountain along the western slope of Sierra Lucero and
appear to have been extruded onto portions of the Miocene-
Pliocene Sierra Lucero Surface (Jicha, 1958); the basalt and
basaltic—-andesite of the Gallinas and Datil Mountains which is in
part equivalent to the La Jara Peak Dbasaltic-andesite (Willard
and Givens, 1958; Osburn, 1982); the Blue Mesa ollivine-tholeiite
basalts of the northeastern Datil Mountains {(Harrison, 1980); the
vesicular porphyritic Santa Fe Basalts of Table Mountain, D Cross
and Tres Hermanos, Techado, and Victorino Mesas (Givens, 1957;
Osburn, 1984, 1985); and the basalt of Twin Peaks (Coffin, 1981);
Some of the older flows contain interbedded units of the Lower
Santa Fe Group (Massingill,1979), whereas the younger flows
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overlie and are interbedded with channel-fill of the Santa Fe
Formation on Table Mountain and Tres Hermanos Mesa (Givens,
1957). Depending on the thickness of individual flows,
vesicularity, the amount of fracturing, and the degree of
weathering and soil formation, the basalt-capped mesas may serve
as important source areas for ground-water recharge.

Concomitant with the onset of widespread volcanism during
the Late Oligocene, numerous mafic to intermediate dikes, stocks,
and sills were emplaced (Tonking, 1957; Massingill, 1979;
Osburn, 1982). The majority of these intrusions occur north of
the Bear Mountains between Riley and Puertecito and northward.
The dikes trend predominantly north-northwest, and are typically
less than 30 feet thick {Tonking, 1957), and average just over 9

feet thick (Massingill, 1979). The majority of the dikes appear
to have been emplaced along the traces of the many north-trending
normal faults which were developed during - the time. A

considerable number of the dikes cross the present channel of the
———Rio Salado between Riley and Puertecito, —and are locally exposed
along the channel bottom and banks.

The Santa Fe Group is made up of the Miocene Popotosa
Formation, and the Pliocene-Plelistocene Sierra Ladrones
Formation. The Popotosa Formation consists of bolson-£fill,
fanglomerates, and piedmont slope deposits which were deposited
into the Rio Grande Rift and the Popotosa Basin during Middle
Miocene (Machette, 1978; Massingill, 1979). The Popotosa
Formation consists of locally derived subangular pebbles,cobbles,
and boulders that have been well cemented with calcite. The
Sierra Ladrones Formation is made up of typically weakly cemented
alluvial fan, piedmont slope, alluvial flat, flood plain, and
stream deposits. The La Jencia Basin and the Mulligan Gulch
Graben between the Bear and Gallinas Mountains which were
included within the Popotosa Basin were filled with rocks of the
Santa Fe Group prior to segmentation of the basin during the late
Pliocene (Massingill, 1879). Members of the Santa Fe Group are
exposed along erosional scarps within the La Jencia Basin, and
along the west flank of the Bear Mountains. Other less extensive
outcrops of the Santa Fe Group occur within a belt which runs
approximately along the central axis of the Rio Salado drainage
basin (Osburn, 1984).

Isolated remnants of late Pliocene to Pleistocene piedmont
and pediment gravels occur throughout the western half of the
basin, along the north slopes of the Datil, Gallinas, and Bear
Mountains, and along the western slope of Sierra Lucero. The
oldest piedmont gravels generally indicate transport to the
north, and deposition on a deeply eroded, northward sloping

surface (Mayerson, 1879; Harrison, 1980; Coffin, 1981; Osburn,
1982), which may be approximately correlative to the ancestral
Ortiz Surface. The voungest piedmont and pediment gravels grade

towards the ancestral Rio Saladoe {(Osburn, 1982; Maverson, 1979).
Development of the pediments and piedmonts appears to have
continued into the Pleistocene, and may be contemporaneous with
the later stage deposition of the Upper Santa Fe Group.
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Conseguently, Tertiary pediment and piedmont gravels have
frequently been mapped as members of the Santa Fe Group (Givens,
1957; Harrison, 1980).

2.2.1.4.2. QUATERNARY SYSTEM. The Quaternary System within
the drainage basin represents a variety of surficial processes,
including alluvial fan, stream channel and terrace, piedmont
slope, eolian, spring, and colluvial deposition, as well as
several episodes of volcanic activity. At least three separate
Pleistocene basalt flows cap Mesa del Oro in the northern portion
of the basin (Jicha, 1958). Jicha (1958) suggests that these
flows were extruded onto the Pleistocene Ortiz Surface.

Spring deposits of banded travertine occur within the Upper
Santa Fe Formation 600+ feet above the Rio Salado from The Box
westward nearly to Puertecito (Massingill, 1979). These deposits
may be Late Pliocene to Early Pleistocene in age. Massingill

- o= —(1979) TTPROS tulates—that—the travertine ﬂwa'sﬁ'de'pes'i*ted" “din—a—warm;——-

spring—-fed lake which may have existed on the Plio-Pleistocene
Ortiz Surface. Similar, possibly related travertine deposits
occur on a surface which is correlated to the Ortiz Surface along
the north end of Mesa del Oro (Jicha, 1958).

The +travertine deposits described by Massingill (1979) have
also been studied by other workers. Most recently, Barker (1983)
has investigated the origin of the travertine deposits (generally
referred to as the Riley Travertine). Barker concludes that the
Riley Travertine is nonpedogenic, and is primarily the result of
proximal and distal secondary carbonate deposition related to
lateral groundwater flow. Barker (1983) further postulates that
during the time of deposition of the Riley Travertine (Plio-
Pleistocene), the drainage was from the north to the southeast
throughout much of the area occupied by the Riley Travertine.
Near the southernmost portion of the travertine area, the flow
merged with an east-flowing drainage which flowed towards the Rio
Grande Jjust north of San Lorenzo Canyon. The Riley Travertine
generally slopes several degrees to the south and southeast.
However, near the southern limit of its occurrence just south of
the Rio Salado approximately between La Jencia and Silver Creeks,
the Riley Travertine slopes less than one degree to the south,
and one to two degrees to the west (Barker, 1983).

Quaternary alluvial fan and piedmont g¢gravels and sands
overlie the Santa Fe Formation within the La Jencia Basin and the
smaller Dbasins of Canada Bonita, Gallegos Creek, and along the
slopes of the Datil, Gallinas, and Bear Mountains (Massingill,
1979; Meyerson, 1979; Harrison, 1980; Laroche, 1980; Osburn,

1983, 1984). The many fans along the mountain fronts are
typically coalesced into broad bajadas which slope towards the
present day drainage. However, Massingill {1979) concludes that

the incision of the present channel of the Rio Salado along the
north end of the La Jencia Basin post-dates the onset of
Quaternary piedmont development in the immediate area, since the
Rio Salado dissects the piedmont gravels as well as the
underlying Santa Fe Formation.
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0lder Quaternary alluvium has been mapped adjacent to the
course of the present drainage network. These deposits represent
0ld channel and valley fill, and tributary mouth alluvial fans
which are dissected by the present drainage (Massingill, 1979;
Laroche, 1980). Younger Quaternary valley alluvium occurs along
the course of the present drainage network. This alluvium
consists of Rio Salado and tributary channel sands and gravels,
and flood plain deposits. Several flights of terraces have been
mapped adjacent to the channels of the Rio Salado and several
major tributaries (Jicha, 1958; Maverson, 1979; Machette, 1978).
At least four terraces have been identified along a reach of the

Rio Salado near Riley (Love, 1987, personal communication).
Because of the difficulty in distinguishing between young and old
alluviun, both have often been mapped together as

undifferentiated Quaternary Alluvium (Coffin, 1981).

The investigation and correlation of terraces along the Rio
Salado and major tributaries is difficult, due to the lack of
preserved exposures. Channel entrenchment and subsequent valley-
wall erosion and badland development have apparently destroved
most of the older terraces.

Tonking (1958) and Meyerson (1979) have mapped Quaternary
pediment gravels in the western Bear Mountains. Near the
mountains the pediment surface on which the gravels rest slopes
approximately 2 degrees northward, becoming discontinuous as it
approaches the Rio Salado near Puertecito. The surface is graded
to approximately 100 feet above the elevation of the present-day
channel of the Rio Salado.

Talus, avalanche, landslide, and colluvial deposits form
extensive aprons around the basalt and resistant sandstone-capped
mesas and ridges. Although these deposits are isolated features,
the total area that they encompass is gquite 1large. Because of
this, and the generally coarse nature of the materials and
irregular topography, it is likely that these deposits, along
with the mesa-~capping fractured and vesicular basalts, contribute
greatly to the overall ground-water recharge of the basin. This
may be evidenced by the occurrence of springs along the base of
Mesa del Oro and Techado Mesa.

Considerable eolian material is present adjacent to and
within the mainstem of the Rio Salado throughout much of its
reach. A major dune field exists north of the main channel, near
the mouth of the Rio Salado (Machette, 1978). Blow sands occur on
the top of Techado Mesa as discontinuous, topographically
distributed patches (Osburn, 1985), and along tributaries to the
Rio Salado (Laroche, 1980).

2.2.2. GEQLOGIC AND TECTONIC HISTORY
Although the region has undergone a complex series of

geologic and tectonic events throughout geologic time, only
those events which have an obvious direct bearing on the
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development of the morphology and drainage network of the Rio

salado drainage basin need be considered here. The tectonic
events which have most influenced the present-day drainage
network are: Laramide compressional folding and uplift; Neogene

extensional faulting, drag folding, and associated volcanic
activity; Neogene onset of epeirogenic uplift of the Colorado
Plateau; and the Plio-Pleistocene onset of uplift associated with
the Socorro Magma Body.

The Laramide orogeny occurred during the period 80 to 40
m.y. B.P. as a result of east-west compressive forces (Jicha,
1958: Cather and Johnson, 1984). Several uplifts and sags, along
with low, broad folds occurred in the area of the Rio Salado
drainage basin. The most prominent of these features are the
Lucero Uplift, which marks the eastern boundary of the Colorado
Plateau; the Zuni uplift to the northwest of the drainage basin;
__the Mogollon highlands to the south and far-west; the Baca basin
within and to the west of the Rio Salado drainage basin; and the
Acoma sag between the Lucero and Zuni uplifts (Cather and
Johnson, 1984). Most of these features had been leveled by
erosion and deposition to an extensive surface of low relief
prior to the onset of Neogene tectonic activity (Massingill,
1979; Mayerson, 1979; Harrison, 1980). However, their presence
has greatly influenced the distribution of lithologic units
throughout the basin.

Late Oligocene-Neogene extensional faulting, horst and
graben related mountain building, and volcanic activity
corresponds to the relaxation of Laramide compressional forces
and the development of tensional forces contemporaneous with the
opening of the Rio Grande Rift (Jicha, 1958; Mayerson, 1979;
Harrison, 1980; Laroche, 1980). Numerous north-trending normal
faults and associated north-trending mafic to intermediate dikes
were developed near the center of the basin during this period.
The distribution of faults and dikes along the center-axis of the
basin increases in number from west to east, and is suggestive of
the effect of activity along the Rio Grande Rift (Laroche, 1980).
Most of the faults have displacements in the range of tens of
feet, however, several major faults and fault =zones have
experienced considerable movement. The important north-trending
fault zones which cross the channel of the Rio Salado are: the D
Cross, Red Lake, and Puertecito fault zones., Faulting has
resulted in some disruption in the attitude of the previously
near-horizontal dip of older strata. These effects are relatively
minor throughout most of the area except where drag and reverse
drag folding has accompanied faulting (Mayerson, 1979). Several
faults have been active up to recent times {(Massingill, 1979;
Laroche, 1980). Fault-induced springs and seeps occur where less
permeable rocks have been juxtaposed against more permeable,
water-bearing units (Givens, 1957; Mayerson, 1979).

Starting around 24 m.y. B.P. the Southern Colorado Plateau
began to undergo epeirogenic uplift. Uplift has continued through
the Neogene and Quaternary, on through to Recent time. Based upon
the correlation of Plio-Pleistocene geomorphic surfaces with the
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present day elevation of the outward-flaring volcanic necks of La
Jara and La Cruz Peaks, Massingill (1979) has estimated that the
southern Colorado Plateau has risen 700 feet during the past 3.5
million vears. The most evident result of the uplift has been the
southward tilting of previously near flat-lyving strata and
structural features along the southern margin of the Colorado
Plateau (Massingill, 1979). A further conseguence of the uplift
has been the reversal of the predominantly northward flowing
drainage in the area which presently encompasses the northern
portion of the Rio Salado drainage basin. It appears that this
reversal occurred during the late Pliocene, and may indicate the
onset of development of the ancestral Rio Salado (Osburn, 1984).

Beginning 1in the late Plioccene to early Pleistocene, rapid
uplift of the land surface has occurred in response to inflation

~of the Socorro Magma Body (Reilinger et al, 1980; Larsen and

Reilinger, 1983; Ouchi, 1983; Sanford, 1983; Sanford et al, 1983;
Larsen et al, 1986). The area of uplift 1is approximately
coincident with the extent of the Socorro Magma Body, and
includes most of the lower portion of the Ric Salado drainage
basin. The zone of nmaximum uplift occurs approximately at the
confluence of the Rio Salado with the Rio Grande. The rate of
uplift during about the last 20,000 vears is thought to be on the
order of 1 to 5 mm per year. This rate of movement is about two
orders of magnitude greater than the rate of uplift of the
Colorado Plateau (Massingill, 1979), or Late-Pliocene-through-
Quaternary vertical movement along some of the faults associated
with the Rio Grande Rift (Chamberlin, 1983).

2.3. Quantitative Basin Parameters

Quantitative information about the Rio Salado drainage basin
was developed during the course of the present study. Reference
material included U.S.G.S. topographic maps, wvarious aerial
photographs, and first-hand aerial and land-based observations.
At the outset of the study it was hoped that a detailed,
gquantitative investigation of the Rio Salado drainage basin would
provide information to be used in conjunction with basin geology,
streamflow, and channel network information in order to explore
the functioning of the entire system. Primary data derived

include main and tributary basin areas, and hypsometric
information.
Drainage area and hypsometric information (Table 2) was

computer generated from a large data base, using a series of
terrain analysis routines developed specifically for the present
study (see volume II). The data base used for the analysis was
compiled from U.S.G.S. 7.5 minute series topographic maps, and
consisted of 3635 sets of point location and elevation data.
Point locations were selected at the intersections, or nodes, of
one-kilometer coordinate lines of the Universal Transverse
Mercator (UTM) grid system, which is indicated on the U.S.G.S
topographic maps. The coordinates of the UTM grid system are
based on the distance east (easting) and north (northing) of the
reference origin of the grid. Each grid cell defined by the UTM
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Table 2: Basin Parameters ’
Hypsometric

Basin Order Area (km2) Integral(%)
Rio salado 7 3635 40.67
Canada Popotosa 4 26 33.27
Silver Creek 4 25 49.90
Mule Canvyon 4 13 34.04
La Jencia Creek 6 781 33.56
Ligon Creek 4 108 41.44
Arrovo Gato 5 204 24.33
Hop Canyon 4 33 47.20
Arroyo Gato 4 154 16.69
La Jencia Creek 5 265 48.67
Arrovo Montosa 4 65 42.04
La Jencia Creek 4 163 44.50
Rio Salado 6 2627 37.00
Bear Springs Canyon 5 87 43.00
Cedar Springs Canyon 4 13 37.88
Bear Springs Canyon 4 55 36.68
Unnamed I 4 14 37.50
——————Canon de las Cabras 4 24— —— 3000
Unnamed II 4 41 31.65
LaJara Canyon 4 101 , 41.16
Canada Bonita 5 433 33.14
Juan de Dios Creek 4 20 ' 41,25
Field Ranch Creek 4 45 22.72
Waterbury Draw 4 108 38.29
Chicken Mountain Draw 4 46 37.61
Canada Bonita 4 107 38.44
Cottonwood Draw 4 44 23.64
Jaralosa Creek 5 156 41,06
Chavez Canyon 4 54 35.28
Jaralosa Creek 4 88 49.55
Alamo Creek 4 46 32.28
Navajo Creek 4 56 33.93
Jaramillo Canyon 4 60 39.83
Gallegos Creek 5 234 36.75
Canon de la Mosca 4 39 48,27
Gallegos Creek 4 34 51.76
Dog Springs Canyon 5 121 48,90
Chavez/01d Canyon 4 38 60,79
Dog Springs Canyon 4 55 43.77
Miguel Chavez Canyon 5 222 45.08
Unnamed III 4 22 31.36
Pine Springs Canyon 4 37 45.61
Wild Horse Canyon 4 13 53.27
Miguel Chavez Canyon 4 29 50.76
Rio Salado 5 554 35,03
Rock Tank Canyon 4 37 41.01
Pasture Canvyon 4 40 40,50
Rock House Canyon 4 12 43.75
Red Canyon 4 92 34.46
Ox Springs Canyon 4 67 29.74
Harrington Canyon 4 30 42.17
Third Canyon 4 21 47.50
WH Canyon 4 18 33.33
Rio Salado 4 88 38.64
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grid is 1 square kilometer, and has four associated nodes - one
at each corner. For each node, UTM easting and northing were
read directly from the UTM grid superimposed on each U.8.G.S.
topographic map, and were entered into the data base as X,Y
respectively. Nodal point elevations were interpolated from
adjacent contours on the USGS topographic maps.

2.3.1, BASIN AREA

Drainage areas were computer—-generated for the Rio Salado
drainage basin, and for selected nested tributary sub-basins. The
selection of tributary basins to be included in the analysis was
based upon basin order, as defined by the highest order channel
included within the tributary basin (channel ordering is
discussed in section 3.1.2.). All tributary sub-basins of order
four and higher were included in the analysis.

The routine for generating sub-basin areas used several data
bases for performing the calculations. The nodal point location
and elevation data base was used to supply raw data to an
algorithm which computed sub-basin areas based upon the number of
nodal points enclosed within the boundaries of each sub-basin.
The algorihm utilized a second data base which contained the UTM
coordinates of the drainage divides between the sub-basins. Once
sub~basin boundaries were established, the computer routine
summed up the number of nodal points included within the
boundaries. This method used the assumption that the number of
nodal points within a sub-basin approximates the area enclosed
within the boundaries, since each nodal point represents one grid
cell of 1 km2. Each grid cell was uniquely referenced by one node
located in the southwest corner of the cell. The assumption that
the number of inclusive nodes approximates sub-basin area is most
valid for larger sub-basins. However, for several randomly
selected fourth order sub-basins, a comparison between areas
calculated by the above method with areas derived from
planimetering suggests that the computer method is correct to
approximately +/- 5%.

The sub-basin boundary data base was developed directly from
basin boundaries drawn onto U.S.G.S. topographic maps. Boundaries
were outlined on the topographic maps according to obvious
topographic highs and surface~water divides. Nodal points were
selected for inclusion according to the proportion of the ¢grid
cell they represent that lies within the boundaries of the sub-
basin. A particular node was included if over ©50% of the
corresponding cell lay within the sub-basin of interest.

2.3.2. TERRAIN ANALYSIS

Computer—generated hypsometric information was obtained for
all sub-basins of fourth and higher order. The computer routine
used for the analysis referenced the X,Y¥,Z and basin-boundary
data bases. Algorithms used for the generation of hypsometric
curves and hypsometric integrals were based on the definitions
proposed by Strahler (1952). Nodal point elevations were first
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normalized:
Z' = (Zi - Zmin)/(Zmax—-Zmin)

Where Z' is the normalized elevation of a particular node; Zi is
the absolute elevation (FMSL) of the node; Zmin and Z max are the

elevations of the lowest and highest nodes, respectively, within
the sub-basin of interest. Normalized elevations were then placed
into one of 20 equally spaced groupings between 0 and 1. The

number of nodes within each of the groups (normalized to the
total number of nodes within the sub-basin) was then used to
obtain a histogram approximation of the frequency distribution of
normalized elevations. The normalized cummulative distribution of
the histogram gives the hypsometric curve. Values for the
hyposmetric integral were obtained by numerically integrating the
area under the hypsometric curves.

Table 2 lists all fourth and higher order sub-basins, basin

order, area, and hypsometric integral. The Rio Salado and sub-
basins are nested in Table 2 in order to reflect basin hierarchy.
Hypsometric curves are included in Appendix A.
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3.0 THE RIO SALADO CHANNEL NETWORK

The Rio Salado rises along the northwest flank of the Datil
Mountains In eastern Catron county, and empties Into the Rio
Grande approximately 66 miles (92 river miles) to the east. The
channel is fairly steep, sand bedded, and braided throughout most
of its reach. Several large tributaries empty inte the Rio
Salado, including: La Jencia Creek, which drains portions of the
Mulligan Valley, the Bear and Magdalena Mountains, and the La
Jencia Basin; Canada Bonita, which drains the west slope of
Sierra Lucero and the southeast portion of Mesa del Oro; Jaralosa
Creek and Dog Springs Canvon, which drain the east and north
slopes of the Gallinas Mountains; Gallegos Creek, which drains
Broom Mountain, Victorino Mesa, and portions of Mesa del Oro; and
Miguel Chavez Canyon, which drains Techado (Bodenheimer) Mesa.

. The channel network formed by the Rio Salado and its tributaries

is essentially dendritic, except near the Bear Mountains where it
has developed a radial pattern. Further characterization of the
channel and drainage network requires the development of
guantitative parameters.

An investigation of certain quantitative parameters of the
channel and drainage network of the Rio Salado was undertaken
during the course of this study. Among the parameters
investigated are: mainstem and tributary length and longitudinal
profiles, channel geometry, channel sinuosity, valley side slope,
bed and bank material particle size analysis, and channel
gradient.

3.1. Map Analysis
3.1.1. CHANNEL DELINEATION

The initial task in the study of the drainage network was

the definition and delineation of channels. There has been
considerable debate among workers as to which method for channel
delineation is the most representative of actual field
conditions. Most workers rely on existing topographic maps for
information about channel networks. However, the main topic for
debate 1s whether or not to use the map compiler's definition of
channels verbatim. Morisawa (1957, 1961), Schneider (1961), and

Werritty (1972), among others, have addressed the issue, and have
arrived at sometimes conflicting conclusions.

Since an effort has been made throughout the present study

to eliminate operator bias and subjectivity, the channel network
used was that defined by dashed and solid blue lines on U.S8.G.S.
7.5 minute series topographic maps. This approach seenms

reasonable for the ephemeral channels of the Rio Salado net for
several reasons:

i) The delineation of channels on the 7.5 minute series maps
is based upon the visual identification of both wet and dry
channels according to established criteria. The only opportunity
for subjectivity is on the part of the presumably well trained
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map compiler. No additional bias is introduced. This provides a
consistent method for channel delineation.

ii) Ephemeral arroyos and rills in semi-arid regions are
easily distinguished on the aerial photographs used for map
compilation.

iii) The extreme number of contour crenulations which occur
as a result of the mountainous and highly irregular topography of
the Rio Salado drainage basin precludes the use of contour
crenulations as a basis for channel definition and extension.

iv) Leopold and Miller (1956) have demonstrated that only
direct field observation can identify all of the smallest
fingertip rills in an ephemeral system. They found that first
order channels as identified on a 1:32000 map were in actuality

fiifthuorderwehanneishasmidentiﬁiedrinwthe~field1—1hewscopeWofmthemw~rr~mr;

present study prohibited such extensive fieldwork.

v) Gregory, as cited by Werritty (1972), postulated that
contour crenulations might occasionally identify fossil drainages
which are not integrated into the modern day network.

vi) On all of the topographic maps which encompass the Rio
Salado drainage basin, the first order channels which cross over
the borders of the maps are continuous across the map boundaries
in all but a very small number of cases. This seems to verify the
correct and consistent application of U.S.G.S channel
identification criteria by the various map compilers.

vii) Most importantly, the definition of first order
channels need not be absolute for the present analysis (first
order channels are defined for this present study to be those
channel segments which are delineated by blue lines on U.S.G.S.
7.5 minute series topographic maps whose upstream ends terminate
without connection to other blue-line channel segments). Even if
first order channels as defined on 7.5 minute series maps are in
reality made up of several lower order channels, it may be safe
to assume that at very least they represent channel segments of
similar but undetermined order. Leopold and Miller (1956) used
this assumption to correct channels of map-defined order to field
observed order by simple order addition.

3.1.2. CHANNEL ORDERING

The channel network was classified according to two schemes:
stream ordering as proposed by Strahler (1952), and the 1link
magnitude scheme of Shreve (1966). It was felt that more
flexibility for future analyses would arise from the use of both
approaches. 1In addition, each of the methods includes different
information about the drainage network. For example, the link-
magnitude method carries direct information about the number of
sources upstream from any point along the network, which may be
useful in estimating the effective upstream drainage area
influencing streamflow and channel geometry at that particular
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point. The Strahler stream ordering method carries information
about the fit and inter-relationship of channels within the
network.

The Strahler method of stream ordering is based upon the
following principles: stream order increases by one wherever two
confluent streams of equal order join; affluent streams of lower
order do not affect the order of the dominant stream; source
streams (or exterior 1links; In Shreves methods these are
equivalent to first order channel segments) are assigned order
one. The 1link magnitude scheme proposed by Shreve (1966) simply
states that the magnitude of a stream at any point along its
length is equal to the number of exterior (source) links upstream
of that point.

First order streams - equivalent to magnitude one, exterior
links in _the Shreve system - were highlighted in blue _on__the

U.S.G6.S. topographic maps. First order streams were identified on
the topographic maps as the genérally-dashed blue lines, drawn by
the cartographer, whose upstream ends terminate without
connection to other stream segments, and are usually greater than
0.5 km long. The point where two first order streams join was
taken to be the head of a second order channel, which was
highlighted 1in orange on the U.S.G.8. topographic maps. The
process was continued  until the entire drainage network was
delineated. Each order was assigned a different color. Link
magnitude was penciled in alongside the terminus of each 1link.
Appendix B contains the working topographic maps.

3.1.3. PARAMETER MEASUREMENT

Quantitative information about the channel network was
extracted once the drainage network had been clearly defined on
the working maps. Upstream distances from the mouth along the
mainstem of each order 4 and higher system were recorded, as well
as channel elevation and link magnitude. This information was
entered into a computer data base.

All channel distances were measured on the naps using
dividers set at 0.19 inch (400 feet map scale). The dividers were
stepped upstream from the mouth, and the distance in feet from
mouth, channel elevation, tributary magnitude, and the UTM
coordinates of the tributary-mainstem junction were recorded into
the data base. Mainstem order, and tributary orientation (i.e.:
right - left handed tributary entry) were also recorded.

Every effort was made to accurately measure even the most
sinuous channels. Some approximation is inherent in taking the
measurements because of the relatively coarse setting of the
dividers. Distances measured along extremely sinuous channels are
therefore probably shorter than the channels are in reality, but
a compromise had to be achieved between underestimation and the
ability to manipulate the dividers. It was found that an increase
in measurement error resulted from divider settings of less than
0.17 inches because of difficulty in lifting the divider points
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off the paper, and flex of the divider legs. When divider
settings were less than 0.17 inches, measurements were repeatable
to within 10%. With the divider points set 0.19 inches apart,
measurements were repeatable to within 4%. Channel sinuosity was
obtained from the ratio of the distance between adjacent contour
crossings, as measured along the channel, to the straight-~line
distance between the contour crossings.

Valley cross sections were measured in order to allow future
investigation of the fit of the present-day Rio Salado into its
valley. This was accomplished by using dividers to step off the
perpendicular distance to points 20, 40, 60, 80, and 100 feet in

elevation above the bottom of the present-day channel,
Measurements were taken at each contour line crossing of the
channel, and entered into a computer data base. Valley cross

sections were used to generate valley side slope information,
which is listed in Table 3.

Channel gradient was measured by stepping the dividers along
the dashed blue line within the main channel represented on the
topographic maps. Channel gradient was measured on the maps for
each of the field station 1locations (discussed below). The
channel reach used for gradient measurement was typically 2000
feet in length, centered on the field station location.

Table 3 lists of the parameters derived from map analysis.
Fourth and higher order networks are included in the table.

3.2 Field Investigation

Since an initial intent of the present study was to identify
any interrelationships which may exist between the wvarious
hydrologic and morphometric parameters of the Rio Salado, a field
data collection program to quantify channel characteristics was
considered essential. Data obtained during the field portion of
the study supplements information developed through map and
aerial photographic interpretation.

Field sites were located along the mainstem of the Rio
Salado, and at selected points along major tributaries. The
locations of field stations are identified on Plate 1, A total
of 16 field sites were investigated. The geographical
distribution of the field sites was based upon the need for
information about the entire course of the Rio Salado. Several of
the sites were included specifically to investigate the effect of
major tributaries on the main channel.

Wherever possible, notes of the particular features of each
station were taken, and reconnaissance maps were drawn.
Information typically included a plan view of the channel reach
showing the location of the main channel, inner channels, the
thalweg, bars, banks, vegetation, terraces, cobble and boulder
accumulations, location of the cross section surveyed, and
channel and bank geology. Any obvious signs of recent highwater
marks were noted.
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3.2.1. HYDRAULIC GEOMETRY

At each station, channel cross-sections and channel
gradients were measured; sediment samples were collected, and
site reconnaissance maps were drawn. Notes were taken of any
information which might serve to augment the basic data set.

All channel cross sections were measured with a level and
stadia rod. Leveling traverses were run perpendicular to the main

channel. The leveling instrument was generally set at a control
point mid-channel, and shots were taken as the stadia rod was
stepped incrementally across the channel, generally in five foot
increments. However, some cross sections were so irregular that
smaller increments were necessary. Wherever channel bed
topography changed abruptly, or where the transverse slope was
steep, for example, near bars, banks, and inner, entrenched
_channels, increments as small as several inches were used _to
better define these features. The elevation of the base and top

of all steep bar and bank faces was measured. The leveling
equipment was recalibrated between each pair of readings.

For some stations it was necessary to establish several
control points, due to excessive channel depth and/or width. This
was accomplished by adjusting the level to a reference point
before and after moving to a new control point. Subsequent data
manipulation was necessary to reduce the assemblage of readings
to referenced channel depth.

Most horizontal distances were measured with a taut steel
tape stretched across the channel bottom. A horizontal measuring
staff was used wherever channel bottom irregularities warranted,
and near the banks where channel side slope was steep.

At most stations only one, presumably representative, cross
section was measured. The location for the c¢ross section was
selected based upon apparent upstream and downstream regularity
of channel dimensions, straightness of the reach, definition of
banks and/or high water demarcation, and representative channel
and channel bottom pattern and topography. At certain stations
more than one cross section was measured. Appendix C shows the
cross—-sectional channel profiles for each field station.

3.2.2. CHANNEL GRADIENT

Channel gradient was measured at each station with a level
and stadia rod. The standard method used was to level to a point
300 feet upstream and a point 300 feet downstream. Distances were
measured along the course of the main inner channel, so that the
gradient of the channel that was representative of a typical,
less than bank-to~bank flow c¢ould be measured. At several
stations the channel g¢gradient was measured in 5 to 50 foot
increments in an attempt to identify bed forms.

Table 4 summarizes the features of each field station.
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3.2.3. PARTICLE SIZE

Sediment samples were collected at most of the field
stations. Several different sets of samples were obtained at each
site, primarily: random channel, low-flow channel, and overbank
samples. At some locations, low-flow channel or overbank deposits
were so i1l defined and/or disturbed that only a random channel
sample could reasonably be ¢ollected.

3.2.3.1. Sample Collection

In order to insure a thorough understanding of each site
prior to sampling, the actual collection of the samples did not
occur until all other field work had been completed for the davy.
For example, low-flow channel samples were collected from that
ie—-portion of the channel which exhibited the most obvious signs -of -
flow; a  cursory identification of the deepest portion of a
channel segment was not considered sufficient to guarantee
consistency of low-flow channel samples from one station to
another. Every attempt was made to follow a consistent sampling
regimen throughout.

3.2.3.1.1. RANDOM CHANNEL SAMPLES. Random channel samples were
collected from within the main channel. Each random channel
sample is a composite of generally ten 100cc samples taken from
approximately equally-spaced points located across the width of
the channel. Before each of the ten partial samples was
collected, the top inch of surface material was removed in order
to avoid the inclusion of any deflation lag or aeolian material
within the sample. Since the primary intention of grain size
analysis within the present study is to investigate downstream
changes in channel bed size characteristics, a range of particle
sizes encompassing material found throughout the entire length of
the main channel was chosen. Only material smaller than 2 inches
was collected for analysis. The presence of larger cobbles and
boulders was noted wherever possible. A further rationale for
using this approach is that the inclusion of larger sized
particles in an analysis based upon weight fractions would
introduce considerable bias into the analysis of the small amount
of material that could be collected. An unbiased, representative
sample for material larger than 2 inches would require a total
volume of material far in excess of that which could be readily
carried from the site. Point pebble counts were not made, because
it was felt that sand-sized and smaller particles would not be
accounted for (Leopold, Wolman, and Miller, 1964).

3.2.3.1.2. LOW-FLOW CHANNEL SAMPLES. Low-flow channel samples
were collected from locations within the main channel which
exhibited signs of frequent flow, as mentioned previously. Such
signs include: a well-defined, linearly continuous inner channel;
distinctly different bed material; flow debris, especilally
aligned along a high water mark; and obvious signs of moisture.
Because most of the field work was done during the late spring to
mid-summer - just prior to the annual flow season - it was
difficult to satisfy certain of these criteria at several
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locations. The intervening months since the last flow had seen
these channels.
Aeolian deflation and deposition had occasionally
flow channels, making their identification somewhat tentative.
This was especially true for the station on Alamocita Creek (Rio
Salado} at the mouth of Pasture Canyon, and for the station on

considerable alteration of the character of

the Rio Salado just east of Puertecito,.

Low-flow channel samples were collected as

locations along a 100 foot reach of the inner
were collected from a depth of one inch in

representative sampling of undisturbed bed material.

3.2.3.1.3. OVERBANK SAMPLES. Overbank samples
from the nearest point on the bank closest

obscured the

combined, 100cc
to 200cc spot samples taken from approximately 5 discrete
channel. Samples
order to ensure

were c¢ollected
to

the current

thalweg. . These samples were generally collected from a depth of

one foot. Wherever the height of the banks

several feet, samples were collected directly from the face of
e the banks-, S — S— — o

was

greater than

Overbank samples were included in this study because at the
bank erodibility
estimates, as approximated by bank material character, may help
to explain any anomalous width:depth values that
Schumm (1960) defines a weighted mean percentage of silt and clay
which characterizes the material composition of the banks and of
the channel. This approach has utility in the estimation of the
erodibility and degree of equilibrium of a given reach of channel

outset it was felt that the inclusion of

(Gregory and Walling, 1983).

3.2.3.2. Particle Size Anaiysis

After collection and transport to the lab,

analyzed for particle size. Oven-dried samples were
minutes in a mechanical sieve. U.S. Standard sieve
10, 16, 40, 170, 140, and 200 were used for most

might occur.

the samples were

pebble gravel retained on the number 4 screen

intermediate axis diameter less than 1/2 inch,

as

sieved for 15
numbers 4, 6,
analyses. All
that had an
well as all

material accumulated in the bottom pan of the stack, was included
in the analysis. Each sample was split into several 150 to 250 cc
sub-samples, which were run individually through the sieve.
Weight retained on each screen was recorded for each sub-sample.
This procedure was used in order to eliminate the risk of bias
standard sample
splitter, and the inherent difficulty in using a sample splitter

which might be introduced by the use of a

on coarse material.

Table 65 summarizes the results of particle

vValues for Schumm's "M" are included in the table.

was calculated according to the formula (Schumn,

M= ((Sc x w) + (Sb x 24))/(w +

2d)

size analysis.

Schumm's "M"

1960):

Where Sc and Sb are the silt-clay content of the channel and
the banks, respectively; w is the channel width;

channel depth.

and 4 is the

Appendix D contains particle size distribution plots.
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3.2.4. MISCELLANEOUS FIELD OBSERVATIONS

In addition to ground-based field investigation, several low
altitude flights were made over points of interest within the Rio
Salado drainage basin. Although no gquantitative information was
obtained from these flights, several aerial photographs were
taken, and the general understanding of the overall fit of the
channel network within the basin was greatly enhanced.

One of the more interesting features observed during a
flight on May 30, 1986, was the presence of a steep drop-off,
approximately one foot high at the mouth of La Jencia Creek, as
well as at the mouths of several smaller tributaries to the Rio
Salado upstream towards Riley. These hydraulic discontinuities
indicate that a recent flow within the channel of the Rio Salado
along that reach had originated somewhere up-basin, and was not
complemented by an -influx of-water from tributaries between Riley-
and The Box. Since the low-flow channel was located along the
north bank, opposite to the entrance of La Jencia Creek, and the
knickpoint at the mouth of La Jencia Creek indicated that there
was considerable flow along the south bank, it appeared that flow
in the Rio Salado had been bank-to-bank along that reach. This
further suggests that during that particular event the reach of
the Rio Salado between Riley and The Box had carried a
considerable flow of water from upstream in response to localized
up~-basin precipitation, and that the input from La Jencia Creek
and nearby tributaries was negligible.

Another interesting feature observed during one of the
flights was the excellent definition of braiding and inner
anabranches within the main channel near I-25. These features
were clearly visible from the air beacuse of the recent
deposition of reddish brown mud and silt within the inner
channels.

During the course of the field work, note was taken of
indications of the historical adjustment of the Rio Salado.
Morphological and sedimentary evidence of past episodes of
channel erosion and fill indicated that the Rio Salado has
experienced epicyclic cut and fill. The presence of terraces
along the flanks of the channel at most locations indicates that
aggradation within a previously cut valley had taken place. The
widespread occurrence, and inset relationships of the terraces to
the present-day channel indicates that the cut and fill episodes
had occurred along major reaches of the Rioc Salado.

The field station at Riley proved to be of particular
interest. The station was situated just above the mouth of Arrovo
Hondo, a tributary third order stream which drains the north end
of the Bear Mountains. The arroyo exhibits signs of recent
channel cutting. Within the lower reach, several short arrovyos
enter Arroyo Hondo discordantly at approximately 2 feet above the
channel of Arroyo Hondo. A large longitudinal bar separates the
present day channel of Arroyo Hondo from an old abandoned
channel. The elevation of the surface of the bar is approximately
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the same as the channels of the discordant arroyos. The surface
of the bar is strewn with recently deposited cobbles and 1large
boulders. Boulders were found piled up against the upstream sides
of young trees and vegetation, indicating deposition by a recent
flow of exceptional intensity. ' :

Subsequent discussion with a nearby landowner revealed that
three separate earthen dam failures upstream appear to have been
responsible for the boulder accumulations. The landowner stated
that the most recent failure was coincident with the 1985
earthquake that struck Mexico City. The downstream dam had been
constructed on an andesite dike which had been a natural
knickpoint prior to construction of the dam. The dike had acted
as a natural dam, as was evidenced by approximately 10 feet of
elevation difference between the channel above and below the
dike, and the accumulation of fine sand and silt behind the dam.

Approximately one mile upstream, evidence of past cut and
fill episodes was observed along a cut bank. The exposure showed
“the erosional truncation of an upward fining pébble gravel to
fine sand sequence. The erosional surface dips roughly 40 degrees
towards the central axis of the present day arroyo. A weak to
moderately developed paleosol was evident along the erosional
surface, This indicates that the fluvial seguence had been
truncated by a laterally shifting, downcutting stream, and the
erosional surface had remained exposed for some time. Subseqguent
aggradation covered the paleosol with an upward fining sequence
of pebble gravel to silt. The present day topographic surface
above these units is covered with coarse material, including
cobbles and Dboulders, It appears that after the hiatus during
which the paleosol developed, the channel gradually aggraded, and
the area became a flood plain. The presence of boulders on the

surface tends to indicate the return of a high energy
environment, possibly at the onset of a renewed episode of
erosion.

Many opportunities to witness fluvial processes were made
available during the course of field wvisits. Among the most
interesting observations were: the passage of several flood
waves, the lateral migration of the main channel, as well as the
meandering of the inner channels, the deposition of alternating
layers of grey and red clays during the waning stages of several
flows, ©bank sloughing, channel cut and f£fill, and, most notably,
the initiation of a moderate flow event along the lower reach of
the Rio Salado in response to a localized summer thunderstorm
along the southeast flank of the Sierra Ladrones.
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4.0 ANALYSIS AND DISCUSSION
4.1 Hydraulic Geometry

At the outset of the present study it was anticipated that
functional relationships between the various basin and channel
parameters could be developed. An orderly downstream increase in
channel width:depth ratios with a concomitant decrease in mean
bed particle size and channel gradient are primary to the
development of the desired relationships. Such empirical
functions have been investigated by many workers, most notably
Leopold and Miller (1956). More recently, Cherkauer (1972)
investigated these relationships in the study of several small
ephemeral streams in southern Arizona.

Cherkauer developed regression equations to express channel
gradient as a function of upstream drainage area and relief, mean

bed particle size, and channel width:depth ratio. He successfully

used these variables as ephemeral stream surrogates for
discharge, sediment load, and channel roughness. He developed two
sets of equations, one for sedimentary channels, and the other

for granitic channels. Each of the lithologically based sets of
equations contained separate equations for the two segments of
the longitudinal profiles of the ephemeral streams that he
studied: high-concavity upstream, and low-concavity-to-straight
downstream.

Cherkauer speculated that the apparent segmentation of the
longitudinal profiles of ephemeral streams was primarily a
function of the discharge the channel carried. The high-concavity
upstream segments are adjusted to the higher drainage density
and to the rapid increase in discharge with distance downstrean
that exists in the mountainous upstream reaches of smaller
ephemeral streams. Conversely, the low-~concavity-to-straight
downstream segments are adjusted to a different set of
conditions which exist in the intermontane basins below the
mountain front, specifically, 1limited tributary input, little
direct precipitation, and an overall decrease 1in discharge
downstream due to channel and evaporative losses.

The success of Cherkauer's analysis hinged on the orderly
downstream decrease 1Iin channel gradient and mean bed particle
size with a corresponding increase in channel width:depth ratio
for the streams that he studied. A similar analysis for the Rio
Salado 1is not presently possible due to the lack of such
relationships. Figures 1 through 3 show channel gradient, mean
bed and low-flow channel particle size, and channel width:depth
ratios plotted against distance along the Rio Salado. Based on
the results illustrated in Figures 1 through 3, there do not
appear to be significant correlations between any of the
variables and location along the channel. Further analysis based
upon any assumed relationships would be meaningless.
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Further, the above variables do not appear to be correlated
among themselves. Figures 4, 5, and 6 show mean bed particle size
and channel gradient plotted against channel width:depth ratio
(after Cherkauer, 1972), and channel gradient versus mean bed
particle size (after Wolman, 1955}, respectively. The extreme
scatter of points suggests that there 1is no consistent
relationship between any of the wvariables.

The lack of correlation between the parameters is somewhat
anomalous. It is expected that certain correlations do indeed
exist, at least for certain segments of the Rio Salado, but could
not be revealed within the scope of the present study. For
example, an overall downstream decrease in channel gradient is
indicated by the overall upward concavity of the Ilongitudinal

profile (Appendix A), at least in the upper-half of the profile.
However, this is not evident on Figure 1, due to the scope of the
study and the selection of field site locations. Sinmilarly, it

is reasonable to assume that the bed material in the far upstream

reaches is predominantly gravel, and that an overall decrease in
particle size exists but is not evident on Figure 2.

Several additional observations can be made:

i) It appears that the Rio Salado behaves as a moderately
well integrated series of three or more distinct systems. The
systems are roughly defined as the uppermost system, which
includes that portion of the Rio Salado from its head to the
confluence with Miguel Chavez Canyon; the middle systen,
extending from the confluence of Miguel Chavez Canyon to Canada
Bonita; and the Jlower system, from Canada Bonita to the Rio
Grande. Definition of these three systems is based primarily upon
the observation that channel width:depth ratios appear to define
three separate segments on Figure 3, and upon map and aerial
observations of changes in channel width,

These divisions correspond to points where major tributaries
join the Rio Salado. Channel characteristics immediately
downstream o¢f the major tributaries appear to have adjusted
themselves according to an increase in stream power and different
flow characteristics supplied by the tributaries. The far
downstream portions °of the three systems also correspond +to
reaches on the Rio Salado with relatively little tributary inflow
and at a considerable distance from mountainous source areas.

Since the Rio Salado flows only in response to intense
precipitation events and is influent throughout most of its
course, 1t seems reasonable to expect that discharge decreases

with distance from mountainous areas as the water infiltrates
into the permeable alluvium. This may lead to aggradation along
the downstream reaches of each segment.

Further indication that the major tributaries influence the
channel characteristics of the Rio Salado is given by Figure 7,
which shows channel sinuosity along the Rio Salado. Channel
sinuosity is seen to increase immediately upstream of the points
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of confluence of the Rio Salado with several of the major
tributaries - most notably: Gallegos Creek, Canada Bonita, and La
Jencia Creek. The increase in sinuosity is presumably due to the
adjustment of the Rio Salado to alluviation at the mouths of the
tributaries. Based on field observation, it appears that
aggradation is presently occurring along the reach which includes
the confluence of the Rio Salado and Canada Bonita.

ii) Because the basin is dJeologically diverse, it is
possible that the apparent lack of correlation between some of
the gquantitative parameters may be the result of localized
lithologic control. Supporting evidence for this is given by the
low width:depth ratio of the Rio Salado between Canada Bonita and
Riley where the channel crosses the Chinle Shale and numerous
mafic to intermediate dikes, and at The Box where the channel
crosses Pennsylvanian limestone. Although the geology along the
remainder of the channel of the Rio Salado is fairly uniform

—throughout,- it is possible that channel geometry and bed particle — - -
size could reflect the character and gquantity of sediment
delivered by tributaries which drain nearby areas of diverse
geology and topography.

iii) Channel geometry may, in part,v be controlled by the

occurrence of ground water. Along reaches of the channel where
ground water is shallow, the depth of scour of the unconsolidated
alluvium may be limited (see Love, 1979). Since few wells have

been completed along the Rio Salado and depth to ground water |is
largely unknown throughout most of the reach of the Rio Salado,
it is difficult to speculate as to the extent of ground-water
controls.

iv) The lack of orderly downstream decrease in channel
gradient appears to be the result of geclogic and tectonic
controls (see section 4.2.).

v) The lack of orderly downstream decrease in particle size
may be the result of several factors: a) The distribution of
grain sizes of channel material may be an artifact arising from
the composition and geographical distribution of the sedimentary
source material. The particle size distribution of the
sedimentary source material may greatly influence resulting
particle size distribution of the channel material. b) The
temporary storage of material within the channel and sporadic
nature of streamflow nmay lead to the accumulation of 'pulses'of
material from widely scattered source areas,

Although little correlation exists between channel geometry
and particle size, application of Schumm's "M" to determine
channel stability appears to have some nmerit. Figure 8 shows
channel width:depth ratio plotted against "M" for several field
stations, From the figure it appears that all of the stations
included in the plot are relatively stable, except for the lower
station on Miguel Chavez Canyon (Ml). This is in agreement with
observation. The lowest station on Miguel Chavez Canyon appeared
to be actively degrading, as was evidenced by a channel deeply

42



10° <

$
10 ? SSA* \)“m

WIDTH:DEPTH RATIO

10

10 ™ 10

1
SCHUMMS 'M!

Figure 8. Width:Depth Ratio vs
Schumm's 'M'

43



entrenched in the alluvium, and obvious fresh cut banks just
downstream of the station. A knickpoint occurs approximately 1/4
mile downstream of the station, where the channel drops nearly 15
feet over a ledge of Crevasse Canyon Sandstone. The main channel
of Miguel Chavez Canvyon 1s cut approximately 8 feet into the
sandstone ledge. Just upstream of the knickpoint a flight of
several cut terraces descends from the elevation of the top of
the ledge and considerable sandstone debris has collected
downstream from the ledge below the knickpoint, suggesting that
recent breaches in the knickpoint have led to episodes of channel
degradation.

4.2 Response of the Longitudinal Profile to Active Tectonics

The longitudinal profile of the Rio Salado does not appear

to conform to the idealized concave-upward throughout profile so
commonly proposed by geomorphologists, nor does it conform to the
two-segment model for ephemeral streams discussed by Cherkauer
(1972). In contrast to these idealized models, the longitudinal
profile of the Rio Salado is convex-upward throughout much of
its lower half, from approximately Puertecito to the Rio Grande
(Appendix A). One immediate result of the convex-upward profile
is that the shallowest gradient does not occur near the mouth,
but rather along an upstream reach within the convex region. This
is in keeping with field observations (Figure 1).

It appears that the longitudinal profile of the Rio Salado
is the result of a complex set of geologic and tectonic
conditions. The key elements in developing the convex-upward
profile appear to be:

1) Rapid uplift associated with the Socorro Magma Body. The
approximate extent and magnitude of uplift in relation to the
lower Rio Salado are shown in Figure 9. The reach of the Rio
Salado that is convex-upwards approximately coincides with the
western extent of uplift over the Socorro Magma Body.

‘ 2) The wedge of resistant Pennsylvanian limestone at The
Box. The limestone acts as a barrier, preventing upstream
adjustment of the Rio Salado to base-level changes.

3) The numerous intermediate to mafic dikes and associated
down-to-the-east normal faults which cross the channel of the Rio
Salado between Puertecito and Riley. The dikes act as barriers to
upstream channel adjustment, and the most active faults provide
limited offset of the longitudinal profile.

4) The Rio Grande. The Rio Grande 1is responsible for
establishing the base level to which the Rio Salado must adjust.
The Rio Grande has entrenched at least 120 feet into the alluvium
in response to uplift over the Socorro Magma Body(Ouchi,1983a,b).
Because of its great stream power, near-perennial nature, and the
easily eroded nature of the sediments across which the Rio Grande
flows, the Rio Grande has nearly kept pace with the rate of
uplift. The magnitude of entrenchment (120+ feet) nearly equals
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the cumulative extent of uplift (180+ feet) (Ouchi, 1983).
However, the longitudinal profile of the Rio Grande still does
exhibit a slightly convex-upward section along the reach which
includes the uplift, due at least in part to the influx of
sediment provided by the Rio Salado (Ouchi, 1983).

The convex-upward profile of the lower Rio Salado appears to
be the result of the interplay of the above four factors.
Specifically, uplift centered over the Socorrc Magma Body
provides the initial mechanism for disruption of the longitudinal
profile. The Rio Grande provides the base level to which the Rio
Salado must adjust. Adjustment of the Rio Salado to the base
level set by the Rio Grande is hampered by the occurrence of
resistant limestone at The Box and the many dikes between Riley
and Puertecito (Figure 10). The resulting longitudinal profile is

convex~-upward, with an oversteepened reach downstream of The Box,

and an understeepened reach from about Puertecito to Riley.
4.3 Basin and Channel Network Relationships

Analysis of certain of the gquantitative varameters derived
during the course of the study indicate that in spite of active
uplift over the Socorro Magma Body, the Rio Salado drainage basin
and channel network behave predictably according to Horton's laws
(Horton, 1945). That is, there exist interrelationships among the
guantitative descriptors that are in accordance with the
postulates of Horton, specifically, the law of stream numbers,
the law of stream lengths, the law of drainage area, and the law
of stream slope. Relationships among other variables tend to
support the generally good adjustment of the Rio Salado.

Horton numbers have historically been used by gquantitative
geomorphologists in the analysis of drainage basins. Recently,
their utility has been greatly enhanced by their incorporation
into deterministic and stochastic streamflow models. Several
workers have successfully used the Horton numbers as Iinput
parameters for predictive numerical models. Most notable among
these are the Instantaneous Unit Hydrograph (IUH) based models of

Rodriguez-Iturbe and Valdez (1979), Valdez et al, {(1979), and
Rodriguez-Iturbe et al (1982). The IUH models use Horton numbers
as deterministic input parameters. Their work has subsequently
been expanded to include climatic data as well. The development

of such quasi-deterministic numerical models has fostered a new
interest in quantitative basin description. The discipline of
.drainage basin analysis has been greatly rejuvenated by the
advent of such new applications.

Figure 11 is a plot of the number of streams of a given
order versus stream order. The close fit of the regression line
indicates that there exists an inverse geometric relationship
between the number of streams of different orders. This suggests
that the basin behaves according to Hortons law of stream
numbers. The concave-upward tail at higher orders is in keeping
with Shreve's (1966) analysis of computer—-generated,
topologically distinct channel networks, where he found that for

46



£31x3au0) Jo ®A1y Burnoyg
operes ory jo d[Tjoid [eurpmajduog 01 2in81j

YLINOR YQYNYO -
Ol1J3l¥iNnd -

47



NUMBER OF STREAMS

10*
N
N
\

10° S
e \\

BN

~N
N
1 O 2 \\
\\
\\\
AN
N
\\
10 K
S
N
\‘ “
\ <
N\
N
1 N
2 3 4 5 6 7
STRAHLER ORDER
Figure 11. Stream Number vs Strahler Order

48




both randomly generated and real networks, stream number plots
display a characteristic concave-upward tail.

The slope of the regression line in Figure 11 is 3.5.
According to Horton's law of stream numbers, the slope of the
line is equal to the bifurcation ratio, which is a measure of
drainage composition. The bifurcation ratio is somewhat sensitive
to geological control, and highly sensitive to structural
control. Bifurcation ratio therefore gives an indication of the
relative influence of geologic and structural controls on the
structure of the channel network.

The value of 3.5 for the bifurcation ratio falls within the
typical range of values for basins developed in areas of
homogeneous lithology in the absence of structural controls.
Bifurcation ratio may exceed 10 for basins influenced by extreme
structural controls (Chorley, Schumm, and Sugden, 1984). A

bifurcation ratic of 3.5 for the Rio Salado network therefore =

tends to indicate that even though the basin is geologically
diverse, the channel network has developed in the absence of
significant geologic and structural controls.

Figures 12, 13, and 14 show stream length, drainage area,
and overall stream slope plotted against stream order. Figures 12
and 14 were developed using data for mainstem streams of all

channel networks of order 4 and higher. The use of all channel
networks of all orders within the Rio Salado drainage basin would
be prohibitively time intensive, since there are 3240 distinct

channel segments of all orders within the basin. The data set
used for Figure 13 included areas for order 4 and higher Dbasins
only. The inclusion of lower order basins is not appropriate for
the present analysis due to the increase 1in basin area
approximation error with decreasing basin size when using a unit
cell length of 1 km in the numerical determination of basin area.

The generally good fit of the regression lines on Figures
12, 13, and 14 suggests that the Rio Salado tends to obey
Horton's laws of stream length, drainage area, and channel slope.
Implicit within these plots is an inverse geometric relationship
between stream lengths and stream slopes of different orders, and
a direct geometric relationship between drainage areas of
different orders.

These geometric relationships have their greatest utility in
allowing the estimation of input parameters for numerical surface
water modeling. The actual measurement of certain of these
parameters often requires a prohibitive amount of work, which may
be beyond the scope of the modeling effort. For example, a
rainfall-runoff model wused for determining streamflow at many
points within the basin requires the measurement of drainage area
upbasin from each point investigated. This could be extremely
time consuming for all but the smallest basins.

One product of Figure 12 1is the ability to estimate the
average length of the streams of a given order. Reference to
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Figure 12 gives the length of the average first order stream to
be 5800 feet. This is in good agreement with photogrammetric
criteria for definition of first order streams on 1:24000
topographic maps. Further use of Figure 12 allows the estimation
of the total length of channel with%n the Rio Salado drainage
network. Considering that there are ,;(N; — Nj#t ) = 3240 distinct
channel segments within the network,: where N is the number of
streams of order i, Figure 12 shows a total of 4166 miles of
channel within the Rio Salado network. Consequently, the overall
drainage density and stream frequency for the basin are 3.0
mi/mi2, and 2.3 /mi2, respectively. Where drainage density is
given by:

Dd = (the total length of channel) / (basin area)

and stream freqgquency:

F = (number of stream segments of all orders) / (basin area).

The value of 3.0 mi/mi2 for drainage density is quite low,
suggesting that much of the Rio Salado drainage basin is poorly
drained. This may be true for some of the broad intermontane
plains within the Dbasin. However, the low value may be an
artifact of the delineation of first order streams from blue
lines on 1:24000 series topographic maps. In spite of this,
drainage density may have utility in comparing sub-basin drainage
characteristics, provided a consistent method of delineating
first order streams, and maps of the same scale and quality are
used. Stream frequency is similarly sensitive to map scale and
first order channel delineation. The value of 2.3 may likewise be
artificially low.

The average length of overland flow is another parameter
with application to rainfall-runoff modeling. Like drainage
density and stream frequency, average length of overland flow is
a measure of drainage composition which is sensitive to map scale
and the delineation of first order channels. Average length of
overland flow may be approximated from drainage density via:

L = 1/2Dd

For the Rio Salado drainage basin, the average length of overland
flow is 0.167 mile. This suggests an average spacing between
channels of 1760 feet.

One consequence of Figure 13 is that it allows estimation
of the average drainage area for streams of any order. The
primary use of such information is the estimation of the size of
the area drained by a particular stream, which allows an
approximation of the minimum area needed for channel initiation
{in the case of first order streams) and maintenance.

Figure 13 <can be used in conjunction with a functional

relationship between distance from source and stream order
(implicit in Figure 12) to estimate the total contributing
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drainage area upbasin from any point on the Rio Salado. The
regression line for the basin-wide points on Figure 12 shows that
the average first order channel drains approximately 0.74 km2.
Information about upbasin drainage area is often useful for
rainfall-runocff modeling. For example, the U S Soil Conservation
Service uses a model which regquires upbasin drainage area as an
input parameter in a deterministic runoff model.

Figure 14 shows stream slope versus stream order. One
important feature of this figure is the concave-upward tail. This
implies that the slope of the 7th order segment of the Rio Salado
is oversteepened. Inspection of the longitudinal profile of the
Rio Salado (Appendix A and Figure 10) shows this to be the case.
Oversteepening is a consequence of geologic and tectonic control
along the reach between Puertecito and the Rio Grande valley, as

discussed in section 4.2.

Figure 15 shows Shreve magnitude vs Strahler order. Figure
15 was developed in order to 1investigate the relationship
between Shreve magnitude of the mainstem,  and Strahler stream
order. All networks of order 5 or higher are plotted individually
to allow for comparison. The figure shows an apparent direct
geometric relationship between stream magnitudes of different
orders.

The bold dashed curves on the figures in Appendix A show the
downstream growth of Shreve magnitude. The point of steepest
slope Iindicates where tributary input is greatest. For networks
within the Rio Salado system this typically occurs at
approximately 60% to 70% of the distance from the head to the
mouth. The region of greatest tributary input, therefore, tends
to be near the middle of the individual basins. This appears to
be a function of a small number of high-magnitude tributaries
joining the mainstem, rather than a large number of low-magnitude
tributaries. Typically, little tributary input occurs below this
point.

The figures included in Appendix A also show longitudinal
profiles and hypsometric curves for all basins of order 4 and
higher. Detailed analysis of all of these curves is not included
in the scope of the present study. However, several observations
may be made:

i)} The longitudinal profiles of all but a few of the streams
are concave upward throughout, and generally indicate good
adjustment. An important exception is the concave-downward
profile of the Rio Salado below Puertecito. This is presumably
due to geologic and tectonic control, as discussed in section
4.2. The longitudinal profile of La Jencia Creek is anomalously
straight, and may also be the result of uplift over the Socorro
Magma Body.

ii) The shapes of most of the hypsometric curves are in

keeping with the ideal shapes proposed by Strahler (1952),
suggesting relatively small proportion of the extreme highland
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and lowland areas. Many of the 4th order curves display fairly
steep slopes at their ends, reflecting irregular mountainous
topography. There are no signs of obvious remnants of old
geomorphic surfaces within any of the curves. If isolated
portions of the Ortiz surface remain, they are not obvious, and
they were not made evident from the scale of the present
hypsometric analysis. Hypsometric integrals are generally within
the range proposed by Strahler (1952) as being representative of
uniformly erodible material.
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5.0 CONCLUSIONS

* Hydraulic geometry and bed material size relationships of
the Rio Salado do not conform to the results other investigators
found for smaller ephemeral streams in the semi-arid southwest
U.S. There are no predictable downstream trends in any of these
parameters.

* The downstream distribution of channel geometry indicates
that the Rio Salado may behave as an integrated system of three
segments. The differentiation of these segments is due to the
effect of major tributaries on the channel downstream from their
respective confluences with the main channel.

*  Morphometric drainage basin analysis shows that the Rio
Salado drainage basin and channel network behave predictably and
in accordance with other river systems.

* The longitudinal profile of the Rio Salado is convex-
upward from Puertecito to the Rio Grande. This is presumably the
result of the complex interplay of several geologic and tectonic

factors. The major factors in producing the convex profile are
rapid uplift over the Socorro Magma Body, the ability of the Rio
Grande to maintain regional base level, and the resistance of

different geologic materials at The Box and along  the reach
between Riley and Puertecito.

* The impact of geology, tectonics, and geologic structure
appears to have played a minor role in the development of the
remainder of the Rio Salado drainage network.

* The Rio Salado has undergone several epicycles of erosion
and channel filling in the past. The present day episocde of
downcutting is Jjust the most recent in a series of cut and fill
episodes.

*Further work is required to fully understand the Rio Salado.
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6.0 RECOMMENDATIONS FOR FURTHER WORK

6.1 Expansion of the Current Study

The most evident need for further work involves a detailed
investigation of the anomalous results of the present study
regarding hydraulic geometry and particle size relationships. The
inconclusive results may reflect reality (i.e., the results of
Cherkauer are valid for certain sizes or types of systems only);
Cherkauer's findings may not be applicable to systems which are
presently undergoing tectonic activity; or the present results
may be an artifact of sampling methodology or site selection,
among other causes. Although it is important that the results of
the present study do not agree with Cherkauer's findings, it is
equally important to investigate why they do not.

It 1is apparent that the orderly downstream decrease in

of the convex-upward nature of the longitudinal profile due to
active tectonics within the lower reaches. However, it is not
readily obvious why channel particle size, and width:depth ratios
do not show typical correlations.

One proposal for additional work requires an expansion of
the current study, focusing on channel geometry and bed material
size investigation only. Additional field sites should be
selected along reaches not included within the present study,
including several further upstream and in the headwater reach.
During the course of the investigation, the use of different
sampling and analysis methods should be considered. Point pebble

counts, although tedious and possibly biased, may prove to be
more appropriate., Channel width and depth should be carefully
referenced to readily identifiable high-water marks.

Consideration should also be given to scheduling the field
activities shortly after the flow season.

This study could be expanded to include an investigation
into the apparent segmentation of the Rio Salado into 3 sub-
systems. Such a study would require detailed investigation
upstream and downstream, as well as within the approximate
boundaries of each of the segments. All available geologic and
hydreologic information should be included. Hand or power-driven
coreholes may be necessary to determine the depth of alluvial
fill beneath the channel, and the depth to groundwater.
Additional work could include an investigation of channel bottom
permeability using an air-entry permeameter.

It is hoped that such an investigation may help to identify

whether the system behaves as 3 integrated segments, and if so,
what are the causes.
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6.2 Investigation of the Response of The Rio Salado to
Tectonic Uplift

The present study presented tentative evidence of the
response of the Rio Salado to tectonic uplift over the Socorro
Magma Body. While there are certain indications that such an
adjustment is indeed taking place, the extent of the adjustment
as well as the extent of the uplift itself are poorly defined.
The present set of circumstances provides an excellent, and rare,
opportunity to investigate the response of an alluvial, ephemeral
river to active tectonics, and to allow a direct comparison with
the response of a near-perennial river {(e.g., Ouchi, 1983).

The expanded study of the response of the Rio Salado to
active +tectonics could include an attempt to map and correlate
the oldest preserved terraces of the Rio Salado. If a set of

terraces at least 10,000 to 20,000 years old is found, then the
present elevation of the terraces could be plotted in a fashion
similar to that used by Ouchi (1983) and Bull (1984). This would
allow better definition of the geometry and extent of uplift, and

the entrenchment and response of the Rio Salado. If sufficiently
0ld enough terraces could not be found, then an old geomorphic
surface (e.g., the Ortiz Surface), or a marker geologic horizon

(e.g., the Riley Travertine) could be used.

The investigation of the response of the Rio Salado should
also include a detailed study of the channel of the Rio Salado.
This could include an in-depth survey of channel gradient at many
locations, a determination of the depth of alluvium beneath the
channel at various points along the profile, and an
identification of aggradational and degradational reaches. The
main focus of the study could center on the area along the convex
portion of the profile, preferably near The Box or along the
reach between Riley and Puertecito.

6.3 Paleochydrologic Reconstruction

The present study found evidence for past degradation and
aggradation at several locations along the Rio Salado. The
existence of features such as longitudinally extensive terraces,
flood plains above the present erosional level, interfingering
tributary and mainstem deposits all suggest that several
epicycles of erosion and sedimentation have occurred in the past,
possibly in response to climatic variations. An investigation
into the paleohydrology of the Rio Salado may help to Dbetter
define the chronology and circumstances under which these cycles
occurred. The study would require extensive and detailed geologic
mapping of the sediments and geomorphic features along the Rio
Salado. Provenance studies could also be used for determining the
source areas of the sediment, and consequently the chronology of
drainage development. Clay minerology could be included in the
provenance study. Radio carbon dating of organic debris, and tree
ring dating could be used for dating particular features. Sites
for this study should be selected downstream from major
tributaries in order to identify the response of the Rio Salado
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to the development of additional drainage areas.

The area near Riley is a good choice for conducting such an
investigation, largely due to the presence of terraces, flood
plain deposits, tributary mouth fans, and organic debris within
the sediments.

6.4 Surface-Water Modeling

The information and data bases developed during the present
study could be used in conjunction with streamflow and sediment
discharge/erosion modeling. The digitized topographic data base
could be used in the guasi-deterministic runoff and sediment
discharge numerical model of Gupta and Solomon (1977). The model
uses digitized topographic data incorporated into a Universal
Transverse Mercator (UIM) based grid. Each grid cell within the
—— model carries information on elevation, flow direction, —and the —
channel network, represented as numerical "levels”.

A Geomorphologic Instantaneous Unit Hydrograph (GIUH) model
(Rodriguez-Iturbe and Valdez, 1979) could be attempted using
input parameters derived from the present study. The model could
be calibrated wusing existing streamflow hydrographs (eg.,
Stephens, Cox, and Havlena, 1987).

Alternatively, a model could be developed which uses the
channel network data base to investigate the chronology of sub-
basin drainage in response to a uniform, instantaneous, basin-
wide precipitation event. Such a model could use river distance
to points on the drainage network as a surrogate for time,

6.5 Miscellaneous Work

Additional work could also include an analysis of the
geographic distribution of the various basin parameters,

including Horton numbers and hypsometric integrals, and an
attempt to correlate the parameters with geologic, climatic,
topographic, and soils information. Such an investigation may be

possible with the data set produced from the present study.
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APPENDIX A: Normalized Longitudinal Profiles, Magnitude
Input, and Hypsometric Curves.
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EXPLANATION

Solid lines: Longitudinal profile, normalized according to:
x =(distance from source)/(total length)

y =(elevation - minimum channel elevation)/
(total channel relief)

Long dashed lines: Shreve Magnitude Input; Normalized According to:
x =(distance from source)/(total length)
Y = 1-(magnitude)/(total magnitude)

Short dashed lines: Hypsometric curves, normalized according to
procedures described in section 2.3.2.
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APPENDIX B: Working Maps
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Appendix B consists of the working USGS topographic maps,
which are included under separate cover.

NOT INCLUDED IN THIS DISTRIBUTION COPRY
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APPENDIX C: Channel Cross Sections
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EXPLANATION

Cross sections plotted looking upstream, the left bank is taken as
the origin.

Dashed line depicts the approximate location of the high-water
surface, based on observed high water marks.,
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APPENDIX D: Particle Size Distribution Plots
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EXPLANATION

Sample Numbers: Station Number + Identifier

where Identifier = RC: Random Channel
Th: Low-Flow Channel
B: Overbank
EB: East Overbank
WB: West Overbank
NB: North Overbank
SB: South Overbank

©i = Mean Particle Diameter = [(d16+d50+d84)/3]
Cu = Uniformity Coefficient = (d60/d10)
Cc = Coefficient of Curvature = [(d309/d10 X d60]
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APPENDIX E:

Field Station Maps
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EXPLANATION

Field maps redrawn from originals., All distances and
locations are approximate,

Hachures indicate slope. Down towards hachured side of line

P/ vegetation, predominantly low grasses and tamarisk.

<} Trees, predominantly cottonwoods and juniper.

Geologic descriptions placed where appropriate.
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PFROGRAM  NORM-MAG s

10 DIM DIST CE00) G MAG (500) ,ELEV (500)

20
30
40

INFUT "in $ile "3INFILESF
INFUT "out file "sOTFILES
INFUT "elev at mouth "EL

=20 OFEN "1 W1 INFILES

&0
70
80

I=2:TOTOIST=0: TOTELEV=0:TOTMAG=1
IF EOF (L) GOTO 150 '
ITNFUTH 1,DI8T(I) \MAG (D) LELEV(D

Q0 FRINT DISTD ,MAGCD LELEVD)

1 (:) (:)
110
1240
130
140
150
160

170

180
120
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
4320
430

TOTMAG=TOTMAG+MAGB (I

TE DIST D >TOTHIST THEN LET TOTDIST=DIST (D)
IF ELEV(D *TOTELEV THEN LET TOTELEV=ELEV (D)
T=1+41

GOTH 70

CLOSE #1

DIST (1) =0 sMAB (1) =0 ELEV (1) =EL

MAG (-2 =MAG(I-2) +1 i

Te=T-1

FOR k=1 T0O I

FOR J=1 TO I-k

IF DIST () “DIST(I+) BOTO 260

XTEME=D ST (I+E) 1 Y TEMP=MAG (J+ED) s ZTEMP=ELEY (J+E)

OTST (IR =D TET (Y s MAG CI+R) =MAG (KD 1ELEV (J+ED) =ELEV (K)

OIST () =X TEMP s MAG (K) =Y TEMP 1 ELEY (F) =ZTEMF
NEXT J
NEXT K

FRINT " "aPRINT " "

OFEN "ot L, O0TFILES

NORMITST=0 s MAGETE=0 s NORMMAG=0 t BORCOIST=0 : INCMAG=0
FOR M=(-1 TO 1 STEF -1
SORCOIST=TOTOIST-DIST (M)
NORMOIST=80RCOIST/TOTRIST
INCMAG=MAG (M) +INCMAG
NORMMAG=TNCMAG/ TOTMAG
NORMELEV= (ELEV (M) ~EL) / (TOTELEY-EL)
MAGEH T E= | ~NORMMAG

FRINT DIST M JMAGEIE (NORMELEY
WRITE# 1 NORMDIST MAGGILE ,NORMELEV
NEXT M

CLOSE #1

GOTO 20
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FROGRAM HIFSAREA: Calculates basin area, hypsometric integrals
and generates hvpsomebtric curves.

10 DIM X {(3000) ,Y (2000) ,Z (3000) ,COUNTY ( 100) EE (100)
20 INFUT "infile "sINFILES®

30 IMPUT "out fitle “3;0TFILE®

40 ZHIEM=0 8 ZL.0W=100001T=0

S0 OFEN "i", 1 INFILEF

&0 IF EQF (1) GOTO 120

70 INFUTH L, X I+1) g Y (I+1) 2 (T+1) R -
80 IF Z(I+1)>ZHIGH THEN LET ZHIGH=Z(I+1)

Q0 IF Z(I+1)«<ZLOW THEN LET ZLOW=Z(I+1)

100 I=I+l

110 6OTO 60

120 CLOSE #1

150 OFEN "o" 1. 0TFILE#

160 =1

170 FOR k=1 TO -.001 STEP~.0S

180 COUNT=0

190 FOR J=1 TQ I

200 ZED=(Z (D) ~ZLOW) / (ZHTGH~ZL.0W)

210 IF ZEDXK THEN LET COUNT=COUNT+1

220 NEXT J

230 IF E«<.001 THEN LET K=0

240 COUNTY=COUNT/I

2E0 COUNTY (L) =COUNTY

260 KE (L) =i

270 WRITEH L COUNTY K 2PRINT COUNTY K

280 L=l+d

290 NEXT K

300 CLOSE #1

310 7

320 SLICE=QD

330 FOR H=1 TO L

340 IF KE {(M=-1)=kK (D GOTO 360

250 GLICE=GL TOE+ ¢ (KK (H=~1) +KE (H) ) % CCOUNTY (H) —COUNTY (H-1323 33 /2
360 NEXT H

370 HIFSO=8LICE*100

379 PRINT " M

2380 LFRINT INFILE#," area= "3$I1:" km sqg ","Hypsometric integral=";HIFS0
390 GOTO 20
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FROGRAM SUBBASIN: Selects u,vy.2 data for sub-basin from main elevation
file, using sub-basin boundary file

10 DIM X (H00) , Y (500) ,2 (500)

20 OFPEN "i",1."nodeslev.dat”

30 INFUT "in-file"y INFILE®

40 INFUT "out file"; OTFILES®

=50OOFEN it L2, INFILES

&0 OFEN "o 3O0TFILES

70 INFUTH 2. MAXY JMAXXLZED
80 INFUTH 2 ,MINY , MINX,ZED

0 FRINT MINY  MAXY MINX MAXX

100 I=1 ’

110 IF EQF (1) BOTO 150

120 INPUTH 1.,4,8.C ,

130 IF AMINY AND A<MAXX AND B:MINY AND RBEIMAXY THEN LET XD =AY (I)=ReZ2 (D)=C1l=]
+1

140 GOTO L10

150 K=0PRINT 1

160 IF EQF(Z2) GATO 220

170 INPUTH 2,XX,YMIN,YMAX

180 FOR J=1 TO I-1

190 IF XX=X(J) AMD YOI :YMIN AND Y (D <YMAX THEN PRINT X3 ,Y (1) ,Z(D) sWRITE# 3,X(
IV, Y 24 LET Rkl

200 NEXT J

210 GOTO 160

220 CLOSE #1 ,#2,#3

230 FRINT Ks" km sg"

240 END
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PROGRAM  SUBDIVID: Eutracts rectangul ar sub-—areas from main basin
Usetul For looking at cross—sections across the
width or height of the basin

10 OFEN "i",1,"nodeelev.dat”
20 INFUT "outfite" j0UTFILES
30 INFUT "3 Tow "3XLOW
A0 INPUT "x high " sXHIGH
=0 INFUT "y Tow "3YLOW
60 INPUT "y high "3YHIGH
70 OFPEN "o",2, OUTFILES®
80 INFUTH 1.X.,Y,2Z
90 IF EQF (1) GOTO 120 .
100 IF X <=XHIGH AND X »=XLOW AN Y <=YHIGH AND Y »=YLOW THEN WRITE# 2,X,Y.Z PRI
NT X,Y,Z
110 6OTO 8O
120 CLOSE #1 :CLOSE #$2
130 END

-,
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FPROGRAM INCREMENT: Calculates cross sectional areas and corresponding
hvdraul ic radii for given flow depth at a given
cross section.

Developed during, but not used for, the present
study .

10 DM X (2000 ,Y (200)

20 =1

30 INFUT "infile" s INFILES®

40 INFUT "depth of streamflow"j; H
00 INFUT "depth increment” i STEFF
HO OFEN™L" , 1L, INFILES

70 01IF EOF (1) GOTO 120

8O INPUTH 1, X,Y

3 X(I)y=X:Y (J)=Y

100 J=J+1

110 GO0TO 70 o T
120 FOR I=0 T0Q M STEF STEFRP
130 FOR #=1 TO J+1 .

140 IF YR ST (I=Y (kD)) XETERF THEN NEXT K

1580 Z=X(E—=1) s ZZ=X (K+1)

160 IF Y (k=-1)<I AND Y (E+1)>I THEN GOSUER 230

170 IF Y{—-1)<1 AND Y(RE+1)<I THEN GOSUER 300

180 IF Y{k-1)x1 AND Y(E+1)>1I THEN GOSUER 360

190 IF Y{E=-1) =1 AND Y d<+1)<1 THEN GOSUB 400

200 NEXT K

210 NEXT 1

220 LFRINT "flow depth: ":I,"cross-sectional area: "i8,"hydraulic radius: "jFERI
M

230 CLOSE 1

240 END

2EO ZmX )~ (Y (R T # (X (ED) =X (B=1)) /(Y (k) =Y (K~-1))

D0 Gl { ((Z7=Z2) /2) R Y (DY D) ) (Y (AL Y (RD) ) (ZZ~-X (KD ) /8

290 PER=GOR ( (X () =Z) " 2+Y (E) =132 +80R (((ZZ~X () ) /2) "2+ CCY (B 1) Y (B ) /728 &)

280 PERIM=FER+FERIM ‘ .

290 RETURN :

300 ZmX (ED) ~ (Y () ~T) % (X (ED) =X (K~1)3) /(Y (D) =Y (k-1

10 ZZ=X R A Y () —1) % (X (kA1) =X (B ) /(Y (ED =Y {k+1))

320 S=5+3% (Y () ~1) % (ZZ2-2)/8 ,

2730 PER=SOR( ({(ZZ=X () ) )2+ ((Y (E) =D )2y +80R C (X (K =2 2+ (Y () =10 ) &)

340 FERIM=FERIM+PER

3m0 RETURM

260 GG (Y () ~1) ¥ (ZZ2=Z) /24 (Y (K+1) =Y (R )% (ZZ=X (KD )= (Y (K) =Y (K~1) ) % (X (k) ~Z)) /B
70 FER=SOR ( (X () ~Z) /2) 24+ (Y () =Y (=10 /2) 23 +80R ( ({(ZZ~X (K) ) /2) "2+ (Y (K+1) ~Y (K
1)/2y 3D

380 FERIM=FERIM+FER

390 RETURN

BO0 ZZ=X (B (Y (B =) % (X (KA1 —-X (KD ) /(Y (B —Y (E+1))

810 S=8+ (Y () ~I)R(ZZT-Z) /24 (Y (K=1) =Y (kD) ¥ (X (K)~Z) ) /8 ‘

420 PER=SOR((Z2Z=X (E)) ™2+ (Y () ~1) “2)+BOR ( ( (X (K) ~Z) /2) "2+ ( (Y (E=1) ~Y (E) ) /2) "2)

430 PERIM=FERIM+FER

440 RETURN

450 END
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APPENDIX G:

Data Diskettes
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EXPLANATION

All Data files are in DOS ASCII format. Diskettes are 256K
format, double-sided, double density.

Fach diskette contains a directory, which is 1nc1uded as
a file named "READ.ME".

All data generated and used during the study is included
in this appendix., )

NOT INCLUDED IN THIS DISTRIBUTIQN CORY
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