INVESTIGATION OF THE POTENTIAL USEFULNESS OF QUARTZ IN GEOCHEMICAL EXPLORATION FOR PORPHYRY COPPER DEPOSITS Research Report

Ъy

Henry H. Koehn

TABLE OF CONTENTS

	rage
INTRODUCTION	1
SUMMARY OF PAST RESEARCH	1
SAMPLE DESCRIPTION	9
SAMPLE PRE-PREPARATION	10
QUARTZ ISOLATION	11
Magnetic Separation	12
Heavy Liquid Separation	13
Cationic Froth Flotation	14
Differential Comminution	15
Fusions	15
Selective Acid Digestion	16
Summary of Quartz Isolation Procedure Used	17
ANALYTICAL METHOD	19
Quartz Digestion	19
Instrument Description	20
Precision and Accuracy	22
ANALYTICAL RESULTS	25
QUALITATIVE INTERPRETATION OF DATA	26
Major Elements (Al, Ca, Fe, K, Mg, Mn, Na, & Ti)	26
Minor Elements (B, Ba, Be, Cu, Li, Mo, Sr, & Zn)	29
QUANTITATIVE INTERPRETATION OF DATA	31
Major Elements (Al, Fe, Mg, & Ti)	31
Alkali Metals (Li, Na, & K)	31
Alkaline Earth Metals (Be, Mg, Ca, Sr, & Ba)	34
Other Elements Found in Quartz (B, Cu, Fe, Mn & & Zn)	36
Unique Features of Quartz from Porphyry Copper Deposits (B, Be, Cu, Li, & Zn)	36
CONCLUSIONS	39
APPENDIX A - SAMPLE DESCRIPTIONS	
APPENDIX B - ANALYSIS SUMMARY	
APPENDIX C - ANALYTICAL ACCURACY	•
APPENDIX D - STATISTICAL SUMMARY OF DATA	

 I_{i}

LIST OF TABLES AND FIGURES

TABLES		Page
1	ELEMENTAL IMPURITIES FOUND IN QUARTZ	2
2	AVERAGE ABUNDANCES OF THE ELEMENTS	6
3	SPECIFIC GRAVITY OF MINERALS	14
4	TYPICAL INSTRUMENTAL OPERATING PARAMETERS	22
.5	ANALYTICAL WAVELENGTHS	23
6	REAGENT BLANK LEVELS	24
7	PRESENCE OF MAJOR ELEMENTS IN QUARTZ FROM VARIOUS ROCK TYPES	27
8	PRESENCE OF MINOR ELEMENTS IN QUARTZ FROM VARIOUS ROCK TYPES	30
FIGURES		
1	COMPARISON OF MAJOR ELEMENT IMPURITIES IN QUARTZ FROM VARIOUS ENVIRONMENTS	32
2	DISTRIBUTION OF THE ALKALI METALS IN QUARTZ FROM VARIOUS ENVIRONMENTS	33
3	DISTRIBUTION OF THE ALKALINE EARTH METALS IN QUARTZ FROM VARIOUS ENVIRONMENTS	35
4	DISTRIBUTION OF Zn, Mn, B, Fe, AND Cu IN QUARTZ FROM VARIOUS ENVIRONMENTS	37
5	DISTRIBUTION OF Be, B, Zn, Li, AND Cu IN QUARTZ FROM VARIOUS ENVIRONMENTS	38

INTRODUCTION

The following report deals with a research project conducted to determine the trace impurity content of quartz from porphyry copper deposits. Furthermore, the study was to determine whether the trace impurity content of porphyry copper related quartz might be useful as an exploration guide in the search for porphyry copper deposits such as those found in the southwestern United States and northern Mexico. Classical geochemical methods of soil, rock and mineral analysis for various elements as well as various geophysical techniques have been quite "hit or miss" in their ability to delineate such deposits.

SUMMARY OF PAST RESEARCH

A considerable volume of literature pertaining to fluid inclusions in various minerals from a variety of geologic environments is available (Nash & Theodore, 1971; Roedder, 1971, 1972; and Roedder et al., 1968). Fluid inclusion studies generally tend to address themselves to questions of temperature and pressure of the environment of crystallization of the host mineral. Data on the composition of the fluids is sparse and where available (e.g. Roedder, 1972; Pinckney & Haffty, 1970) covers few elements.

Numerous workers, typically limiting themselves to one or a few elements, have investigated the trace impurity content of quartz from various environments. Table I presents a summary of the impurities that have been reported. In addition to the

TABLE 1

.

ELEMENTAL INPURITIES FOUND IN QUARTZ

Element	Average/Range Concentration (ppm)	Association Reference
Aluminum	40-110 0-500 1-8	Quartz kyanite schist 4 Granite 3 Various 6
Barium	trace	Not Reported 6
Beryllium	3-7-2	Zoned granite pegmatite 12
Boron	0.25 25 1 1-4 70	Biotite granodiorite 14 Chalcopyrite deposit 5 Veins in granite 14 Pegmatite with tourmaline 14 mineralization Quartzite 5
Calcium	3 - 100. 1000	Various 6 Rhyolite 3
Cesium	trace	Various 6, 12
Chromium	0-30	Various 6
Cobalt	0-0.8	Various 6
Copper	0-100 1-15 2.7-138	Various 6 Mineralizing quartz 11 monzonite Various 9
Gallium	2 5	Various9Granite2Granodiorite2
Germanium	1.8 2.5-7.1 2.8	Granite 1 Pegmatite 1 Hydrothermal vein 1
Gold	<1.7-12.6	Various 9
Hydrogen	35-1200	Zoned quartz 6
Iron	32-2620 0-216 550 0-256	Various9Various6Rhyolite3Granite3

TABLE 1 (Continued)

Element	Average/Range Concentration (ppm)	Association	Reference
Lead	trace 3 4	Not reported Quartz diorite Granodiorite & biotite granite	6 10 10
Lithium	0-38 0.3-1.9 0.5-3.3 19-220	Various Granite Barren pegmatite Lithium-bearing peg- matite	6 13 13 13
	110 <0.08 - 2.16	Zoned pegmatite Various	12 9
Magnesium	5-100 0-8	Various Granite	63
Manganese	0-0.5	Various	6
Molybdenum	0.01 0.5-5.5 0.1	Biotite granite Granite Vein in granite	15 15 7
Potassium	1100	Optically clear quartz from zoned pegmatite	12
Rubidium	trace	Not reported	6
Silver	1 <0.75 - 9.7	Smoky quartz & Amethys Various	t 6 9
Sodium	0-104 <1000	Various Zoned pegmatite	6 13
Tin	Qual*	Granite & granite pegmatite	16
Titanium	0-26 8-128 200	Various Granite Granodiorite	6 3 3
Uranium	0.9 1.0 trace	Quartz seyenite Leucocratic granite Not reported	8 8 6
Vanadium	trace	Not reported	6-

TABLE 1 (Continued)

Element	Average/Range Concentration (ppm)	Association	Reference
Zinc	trace 0.6-18	Not reported Various	6 9
Zirconium	trace	Not reported	6
*Qual = Qual	 itative analysis	only.	
References:	 Jennen (1964) Jennen (1964) Junaev (1956) Frondel (1967) Kuroda and 2000 Rabinovich 2000 Solodov (1960) Stavrov (1960) 	nd Tauson (1959) 4) 6) 62) Sandell (1954) Pogiblova (1961) agland (1966) and Baskova (1959) and Proctor (1962) 60)	

Stavrov and Khitrov (1960) Studennikova et al. (1957) Tatekawa (1954) 14. 15. 16.

cations listed, such anions and complexes as Cl^{-} , F^{-} , SO_{4}^{+} , HCO_{3}^{-} , CO_{3}^{-} , and OH^{-} have been reported to be present in some quartz samples (Frondel, 1962; Roedder, 1972). The data in Table II, taken from various authors, presents the average abundances in igneous rocks of the elements reported to be present in some quartz samples. It is interesting to note that in some cases, notably beryllium, boron, chromium, copper, germanium, gold, lithium, molybdenum and silver, the impurity content of quartz can exceed the average crustal or igneous rock abundance.

Most authors concerned with the non-fluid inclusion impurities in quartz (Balitskiy et al., 1969; Cohen & Sumner, 1958; Deer et al., 1963; Dennen, 1964, 1966, 1967; Dennen et al., 1970; Dennen and Puckett, 1972; Frondel, 1962; and Ritter & Dennen, 1964) generally agree that some solid solution substitution occurs. Ti⁺⁴ and Ge⁺⁴ can substitute for Si⁺⁴ in the tetrahedral site. Al⁺³ can also substitute for Si⁺⁴. Small alkali ions such as Li⁺, Na⁺, or H⁺ then must enter the interstitial site to maintain charge balance. Alternately, one interstitial Al⁺³ ion can balance three substitutional Al⁺³ ions provided balance is not achieved through oxygen vacancies. Dennen and Puckett (1972) also make a case for substitutional Fe⁺³.

Another mode of occurrence of impurities in quartz is microscopic and sub-microcopic inclusions. According to Dennen (1966), such inclusions are properly included in an analysis of

TABLE	2
Statistics and a state of the s	-

AVERAGE ABUNDANCE OF THE ELEMENTS

(all data in ppm unless otherwise stated)

			REFERE	NCE		•
ELEMENT	1	2	3	<u> 4 </u>	5	6
Aluminium			8.13%	8.9%	7.7%	8.13%
Barium	640	830	425	650	830	250
Beryllium	4.2	5.5	2.8	•		2-6
Boron	13	15	10			3-30
Calcium			3.63%	4.7%	1.6%	3.63%
Cesium			3			7
Chromium	117	25	100	50	25	35-530
Cobalt	18	5	25	10	5	8-80
Copper	70	30	55	35	- 20	60-70
Gallium			15	20	20	15
Germanium			1.5			4
Gold		0.01	0.004			0.005
Hydrogen			1400			
Iron	4.65%	2.7%	5%	5.9%	2.7%	5.0%
Lead	16	18	13	15	20	16
Lithium	50	70	20	20	40	65
Magnesium			2.09%	2.2%	0.6%	1.26%
Manganese	1000	600	950	1200	600	1000-2200
Molybdenum	1.7	.1.9	1.5			2.5
Potassium			2.59%	2.3%	3.3%	2.59%
Rubidium			90	100	200	310
Silver	0.2	0.15	0.07			0.10
Sodium		•	2.83%	3.0%	2.8%	2.83%

TABLE 2 (Continued)						
ELEMENT	1	2	REFE 3	RENCE 4	5	6
Tin	32	45	2	•		40
Titanium	4400	2300	4400	8000	2300	4400
Uranium	2.6	3.5	1.8			4
Vanadium	90	40	135	100	40	150-310
Zinc	80	60	70			132
Zirconium			165	260	200	220

References:

1. Hawkes and Webb (1962), Average Igneous Rocks

2. Hawkes and Webb (1962), Average Felsic Igneous Rocks

3. Mason (1966), Average Crustal Abundance

4. Krauskopf (1967), Average Intermediate Igneous Rocks

5. Krauskopf (1967), Average Felsic Igneous Rocks

6. Rankama and Sahama (1950), Average Igneous Rocks

high temperature quartz. He maintains that "the large change in volume of the interstitial site in the high-low inversion implies that larger ions dissolved at high temperatures must be exsolved when quartz inverts to the low form."

According to Stavrov (1961), Dennen (1966), and Balitskiy et al. (1969), the dominant contaminants of quartz are those ions which are most abundant in the environment in which the quartz was formed and not necessarily those of best structural fit.

Some practical applications of quartz elemental impurity data have been suggested by Dennen (1966, 1967), Dennen et al., (1970), Kamentsev (1963), Price and Ragland (1966), Stavrov and Khitrov (1960), and Stavrov (1961). Preliminary work by these investigators indicates that grossly different rock types exhibit reasonably systematic differences in the impurity element content of their associated quartz.

Dennen (1964) has attempted to show that at least the major element impurities (Mg, Fe, Ti, Al) in quartz are unique for individual intrusives. He has used the impurity content of quartz as an additional bit of evidence to prove or disprove the genetic relationship between spatially related stocks.

Dennen (1967) has also suggested using the impurity element "fingerprint" of quartz in quartz-bearing sedimentary rocks as a means of determining provenance.

Price and Ragland (1966) proposed that the iron content of the vein quartz that they studied may reflect the total

amount of metallic mineralization in the vein.

Stavrov and Khitrov (1960) suggest the possibility of using the boron content of quartz to distinguish tourmalinebearing from barren pegmatites.

Stavrov (1961) also proposes the use of the lithium content of quartz to distinguish between lithium-bearing and barren pegmatites. He found that quartz samples from lithium-bearing pegmatites contain at least an order of magnitude more lithium than quartz from barren pegmatites.

Kamentsev (1963), Komov & Novozhilov (1968) and Dennen, et al. (1970) propose the use of the impurity content of quartz, particularly the element aluminum, as a geothermometer.

Apparently no one has attempted to determine the applicability of quartz elemental impurity data to distinguish porphyry copper mineralized from barren intrusives. The presumed similar mode of origin and the close tectonic relationships among the various porphyry copper deposits are pointed out by Guilbert and Sumner (1961). Stringham (1966) points out the compositional and textural similarities of intrusives associated with porphyry copper deposits. It is reasonable to hope that if the fluids which formed porphyry copper deposits were grossly similar, then that fact should be reflected in the elemental impurity content of associated quartz. SAMPLE DESCRIPTION

Hand speciman size samples were collected at operating porphyry copper deposits in Arizona and New Mexico. The

deposits sampled include Ray, Inspiration, Christmas, Twin Buttes, San Manuel, San Juan, Arizona and Tyrone and Santa Rita, New Mexico. Samples from Kennecott's Safford, Arizona property were also obtained. The personnel at Ray, Arizona were kind enough to provide several diamond drill core samples in addition to outcrop samples. Samples of Sandia Granite, Embudo Granite and an unnamed Precambrian granite south of Tyrone were also collected for comparison.

Several miscellaneous samples collected from areas of non-porphyry copper mineralization were available and were analyzed. These include samples from the fault fissure vein lead/copper deposit at Bingham, New Mexico, the fault fissure vein zinc/lead/silver deposit at Silverton, Colorado, the fault fissure vein gold deposit at Goldfield, Nevada, the volcanogenic massive sulfide copper deposit at Elizabeth, Vermont, and igneous iron ore deposit at Durango, Mexico. Appendix A contains a brief description of each sample.

SAMPLE PRE-PREPARATION

Samples were disaggregated with a jaw crusher. Thin quartz veins were isolated by slabbing the samples with a diamond saw prior to crushing. The disaggregated samples were then sieved and the -20 +60 standard mesh size fraction retained for subsequent separation of the quartz. This size fraction provided physical isolation of most of the quartz grains from other minerals in the samples. In addition, this size fraction provided individual grains of sufficient size to be easily

manipulated under a binocular microscope. Whatever subsequent quartz concentration procedure was to be tried, the final procedure was to be that of separating contaminated and inclusion-bearing quartz from pure quartz by hand picking under a microscope. In addition, it was determined that a sample much larger than the 2 to 5 milligrams typically used by Dennen (1964, 1966) would be required. A larger sample size reduces the problem of obtaining a representative sample as well as improving the limits of detection within the sample. <u>QUARTZ ISOLATION</u>

A research project, tributary to the main question of interest, was embarked upon in an effort to devise a rapid method of quartz isolation. The ideal method hoped for was one that would be amenable to batch processing wherein unique sample characteristics, such as degree of alteration, would not require a unique procedure for each individual sample.

I was as disturbed as Clocchiatti and Touray (1971) apparently were to discover that isolation of pure quartz is neither as simple or as rapid as implied by Dennen in his numerous publications. It soon became apparent why many publications on the subject of the contaminating elements in quartz include a bare minimum number of samples (e.g. Shrivastava and Proctor (1962), 7 samples; and Price and Ragland (1966), 14 samples).

Quartz isolation procedures such as those described by Sheppard et al. (1971) require grinding to silt size particles

which are difficult to manipulate at the final purification stage. In addition, the methods typically result in a sample of only about 95% purity. When attempting to determine the concentrations of a large number of elements in a mineral normally as pure as quartz, 95% sample purity is obviously not acceptable.

Several physical and chemical methods were investigated, with varying degrees of success, that promised a high degree of quartz concentration. The concentration methods investigated include magnetic separation, heavy liquid separation, cationic froth floatation, differential comminution, selective digestion with fluxes and selective digestion with acids.

<u>Magnetic Separation</u>. Separation of quartz from most other minerals, though difficult, is possible with a well tuned Frantz isodynamic magnetic separator. Published separation procedures typically require fine grinding of the sample (Rosenblum, 1958; Dean & Davis, 1941). As previously mentioned, this was deemed undesirable for the present study. At any rate, a commercial Frantz separator was not available for separating the samples used in this study. The possibility of using the magnetic properties of the minerals to effect separation was nevertheless investigated. A project was undertaken to build a magnetic separator. A large electromagnet with moveable ten centimeter diameter pole pieces and a power supply were available. An adjustable vibrating table similar in principal to those described by Allman and Lawrence (1972) and Dean & Davis (1941) was

constructed.

Tests were conducted to determine the optimum configuration and the separation efficiency of the equipment at hand. The configurations investigated included the uniform magnetic field and variable table orientation used in the Frantz separator as well as nonuniform field configurations suggested by Taggert (1954) and Gaudin (1939).

A nonuniform magnetic field employing tractive force was found to be the most effective for the coarse samples used. In the optimum configuration of the separator used in this study, the flux density across the 2.5 cm vibrating table varied from 5000 Gauss at one pole piece to 2000 Gauss at the other.

Separation of quartz from biotite, muscovite, chlorite and minerals with heavy iron oxide coatings was obtained. The separation of quartz from feldspar, both having very low and almost identical magnetic susceptibilities, was not obtained. Refinement of the magnetic separator in order to obtain this separation was not attempted because of the prohibitive cost in terms of design time, shop time and material. However, many of the samples were pre-concentrated with the magnetic separator.

<u>Heavy Liquid Separation</u>. An attempt was made to use bromoform and bromoform-acetone mixtures to effect separation of quartz. It soon became apparent that heavy liquid separations would be a messy and tedious procedure with only limited success.

Table 3, taken from Lange (1946) and Allman and Lawrence

Mineral	Average Range Specific Gravity
Quartz	2.65
Chlorite	2.65-2.94
Serecite	2.76-3.00
Orthoclase	2.56-2.58
Albite	2.60-2.62
Andesine	2.68

TABLE 3

SPECIFIC GRAVITY OF MINERALS

(1972) gives the specific gravities of the minerals most commonly found in the samples used in this report and whose separation is the most difficult.

The specific gravity range of feldspar overlaps that of quartz. The success, or lack thereof, of separating quartz from feldspar at the particle size range used in this study is intimately related to the initial composition of the feldspar as well as the degree of feldspar alteration. Sample separations proved to be unique for each individual sample and thereby were not amenable to routine processing of large numbers of samples. Because of the limited success, potential for contamination, and time consuming nature of the procedure, heavy liquid separation was abandoned as a practical routine sample concentration technique.

<u>Cationic Froth Flotation</u>. The separation of quartz from feldspar, micas, iron oxides, and clays is technically feasible as indicated by technical publications from Armour Hess (1974)

and other flotation reagent manufacturers. Cationic froth flotation is used in the purification of silica sand for the glass industry. However, flotation was not attempted in connection with concentration and purification of quartz for this study. Because of the diversity of physical properties, including mineralogic composition and degree of alteration of samples, each sample would have presented its own unique flotation problems, much as in heavy liquid separation.

Differential Comminution. Some concentration of quartz was possible for samples whose feldspar was appreciably altered. A portion of the +20 mesh fraction of the sample was placed in an iron mortar and ground with an iron pestle by applying no more pressure than that provided by the weight of the pestle. The size of the altered feldspar was more rapidly reduced than the size of the quartz grains. A fair degree of concentration of quartz was achieved by alternate light grinding and sieving. However, the samples were differentially contaminated with traces of iron from the mortar, and the resulting concentrate still had to be laborously hand picked. Differential comminution was also abandoned as a routine sample processing procedure.

<u>Fusions</u>. The potential for effecting quartz separation using several fluxing reagents in combination with various acid attacks was investigated.

Maxwell (1968) suggests the use of a potassium pyrosulfate fusion to obtain separation of quartz and opal from other silicates in a rock. Potassium pyrosulfate fusions in borosilicate

glass were tried on several of the samples. The resulting fusion cakes were leached with hydrochloric, nitric and sulfuric acids. Quartz in the samples was apparently not attacked. Micaceous minerals and sulfides were digested, but feldspars were not digested or sufficiently attacked to permit their removal by sieving the samples again.

Selective decomposition of several samples was attempted with a fusion mixture of sodium and potassium carbonate in platinum crucibles at 1000[°]C. Quartz and feldspar were both etched by the fusion to about the same degree. Fresh unaltered feldspars were considerably bleached but proved to be no more amenable to acid attack than untreated feldspars.

Low (150°C) and high (600°C) temperature fusions with variable fusion times were attempted with sodium and potassium hydroxides in iron and nickel crucibles. Both quartz and feldspar were attacked by these fluxes. Sodium hydroxide was slightly more effective and appeared to attack feldspar more rapidly than quartz. From sample to sample the predictability of the degree of preferential decomposition of feldspar over quartz was not sufficient to warrant routine use of the basic fluxes.

Lithium metaborate fusions in graphite crucibles at 950° C proved to have the same short-comings of predictability as the alkaline hydroxide fusions.

Selective Acid Digestion. It is not possible to obtain the separation of quartz from feldspar by digestion of the sample

with the more common mineral acids. Syers et al., (1968) suggest a method of obtaining a high purity quartz concentrate with hydrofluosilicic acid. Their method involves fine grinding of the sample and fusion with sodium pyrosulfate which removes most minerals except quartz and feldspar. They treat the fusion residue with hydrofluosilicic acid $(H_2SiF_6, "Fluosilicic Acid"$ of Fisher Scientific), which they claim completely removes the feldspar. The method was tried and found to work remarkably well, even on the large size fraction employed in this study. It was discovered that the sodium pyrosulfate fusion was not necessary in order to obtain quartz isolation.

Summary Of Quartz Isolation Procedure Used. A standard procedure was finally settled upon for isolation of quartz for the purpose of this study. The -20 +60 standard mesh size fraction of the samples were pre-concentrated with the magnetic separator that had been manufactured. That served to remove a substantial amount of the more magnetically susceptible minerals in the The samples were then placed in polypropylene beakers samples. and leached with fluosilicic acid for approximately 24 hours. The fluosilicic acid was then decanted and the samples rinsed two times with deionized water. The samples were next leached with aqua regia for approximately 24 hours. The aqua regia served to remove sulfides not attacked by the fluosilicic acid and to further alter the feldspars. The aqua regia was then decanted and the samples rinsed two more times with deionized water.

At that stage of digestion the feldspars in the samples were not completely digested but were highly altered to an opaque white material resembling kaolinite. The original volume of the feldspar grains was still retained but their structure consisted of a delicate and friable open boxwork-like lattice of aluminum oxide. That delicate structure of the feldspar was taken advantage of in subsequent treatment.

A third portion of deionized water was then placed in the sample container. The delicate feldspar residue was disaggregated by insertion of a ultrasonic probe into the sample container. The instrument used for this purpose was a Lab-Line Ultratip Labsonic System fitted with a half wave titanium step horn. The probe was operated at 80 watts power output for one minute for each successive treatment. The 80 watts of power was dissipated by the one half square inch surface area of the probe tip. The ultrasonic probe effectively disrupted the delicate altered feldspar framework and produced a milky white slurry. The slurry was carefully decanted and the procedure repeated until the ultrasonically treated sample rinse solution remained clear. This was typically accomplished in four or five applications of the probe.

A few grains of altered feldspar remained in the samples after this treatment. Most of these were easily removed by sieving the sample again through a 60 standard mesh nylon screen.

The next step in the procedure was to purify the quartz by removal of grains that contained inclusions. This was accomplished

in a manner similar to that described by Dennen (1964).

The samples were placed on a glass plate and viewed first against a black background and then against a white background with a 10X binocular microscope. The black background facilitated identification and removal of any remaining feldspar contaminants. The white background served to identify inclusions and surface coatings on the quartz grains. Unwanted minerals and inclusionbearing quartz grains were pushed off the glass plate with a 17 gauge stainless steel hypodermic needle.

In order to check the purity of quartz at this stage, the samples were immersed in acetone and viewed against a white background. The refractive index of acetone is close to that of quartz. Any inclusions missed in the first examinations became obvious under the acetone, and the remaining inclusionbearing grains were removed.

The purified samples were than transferred to 9 dram polystyrene snap cap vials for subsequent weighing, digestion and analysis.

ANALYTICAL METHOD

The analytical method employed consisted of digestion of the samples and qualitative emission spectrographic analysis.

Quartz Digestion. The particular emission spectrographic analytical method used for analysis required that the sample be in solution form. 0.3000 to 0.5000 grams of the purified quartz samples were weighed on a Ainsworth chainomatic balance and transferred to a 50 milliliter polypropylene tri-pour beaker.

Ten milliliter portions of reagent grade hydrofluoric acid were then measured with a ten milliliter capacity Nalgene graduate cylinder and added to each sample beaker. The samples plus acid were then allowed to stand overnight in a fume hood. The following morning, 25 milliliters of concentrated reagent grade nitric acid was measured into a 50 milliliter Nalgene graduate cylinder and added to each sample. The samples had been placed on a sand bath on a variable temperature hot plate. After addition of the nitric acid, the hydrofluoric/nitric acid solution of each sample was evaporated to dryness at 100°C. The resulting residue was digested in ten milliliters of one Molar hydrochloric acid. Lids were placed on the tri-pour beakers while the samples awaited analysis.

Instrument Description. A Spectrametrix Inc., Model 101, SpectraSpan Atomic Analysis System was used for all determinations. The instrument is a direct reading, high resolution, high dispersion, high energy throughput spectrometer coupled with a high temperature argon plasma excitation source. The instrument has been updated by the addition of SpectraSpan III System echelle grating, SpectraJet, and signal handling electronics package.

The plasma jet utilizes argon ions to dissociate the sample molecules into atomic vapor and "excite" the resulting atoms to high emissive levels at approximately 10,000[°]K. Samples are introduced into the plasma by nebulizing a solution and pre-mixing the resulting mist with argon. The sample

solution is delivered to the nebulizer mixing chamber through a memory free 0.030 inch I.D. silicone tubing with a six rotor peristaltic pump.

The spectrometer of the instrument consists of a echelle grating and quartz prism in a modified Czerny-Turner configuration. The prism is oriented to disperse normal to the optical plane of the Czerny-Turner resulting in a two dimensional or stacked spectral display. The instrument has a 0.75 meter focal length, f/10 speed, reciprocal linear dispersion of 0.65 Angstroms per millimeter and a resolution of 0.006 Angstroms at 2000 Angstroms. The position of the spectrum may be shifted by rotating the grating and thereby allow positioning of a desired wavelength on the exit slit.

The readout section of the instrument provides automatic background correction by means of a triple exit slit and tuning fork chopper that alternates the signal received by a photomultiplier tube between the two side slits and the exit slit. The chopped output signal of the photomultiplier tube is demodulated by an lock-in amplifier. The readout signal is presented as the voltage output of an operational amplifier with a variable time constant. A Hewlett-Packard strip chart recorder was used to record the output signal.

Instrumental operating parameters are given in Table 4. Table 5 gives the analytical wavelengths used and the order of magnitude of the sensitivities obtained for the various elements investigated.

Operating Mode	Emission
Argon Flow Rates (at 42 P.S	5.I.)
Aspirator/Nebulizer	5.5 c.f.h.
Anode/Cathode	3.5 c.f.h.
Plasma Current	6.0 amps
Time Constant	1
Entrance Slit	200 X 200 microns
Exit Slit	200 X 400 microns with two
	100 X 400 side slits
Sample Aspiration Rate	0.5 milliliters per minute

TABLE 4

TYPICAL INSTRUMENTAL OPERATING PARAMETERS

Analytical working curves were constructed on three by five cycle full logarithmic paper. Data for constructing the curves were obtained by aspirating prepared standards of suitable concentrations so as to bracket sample concentrations for the various elements. The working curves were all linear over the concentration ranges encountered in the samples.

Reagent blanks were generally quite low or below the detection limit for the various elements. Where positive blanks were encountered, the values were subtracted from the values obtained for the samples. Table 6 provides a list of the mean and standard deviation of blank levels encountered for 22 blanks analyzed through the course of the study. Absense of an element from Table 6 indicates a consistent blank level below the detection limit.

Precision And Accuracy. Precision of the analytical method was determined by six to ten replicate determinations

	INDEE	
	ANALYTICAL WAVELENGTHS	Order of Magnitude of
Element	Line Used	Detection limit
Aluminum	3961.5	0.1
Barium	4554.0	0.001
Beryllium	2348.6	0.01
Boron	2497•7	0.1
Cadmium	2288.0	0.1
Calcium	4226.7	0.001
Cobalt	3453•5	0.1
Copper	3247•5	0.01
Iron	3737•1	0.1
Lead	4057.8	0.1
Lithium	6707.8	U•01
Magnesium	2852.1	0.01
Manganese	4030.8	0.1
Molybdenum	3864.1	0.1
Nickel	3524•5	0.1
Potassium	7664•9	0.1
Rubidium	7800.2	0.1
Sodium	5890.0	0.01
Strontium	4077•7	0.01
Titanium	3653•5	0.1
Vanadium	3093.1	0.1
Zinc	2138.6	0.1
Zirconium	3438.2	1.0

TABLE 5

In addition, 20% of all the samples on five different samples. were analyzed in duplicate. The average range in concentration for all elements was found to vary by less than + 15%. Dennen (1964) reports a considerably greater variation within a given hand speciman size sample. His data indicate a lognormal

distribution of analytical values within a given hand speciman size sample. The fact that the sample size used in this study was approximately 100 times greater than that used by Dennen probably obscures this lognormal pattern. In fact, the lognormal distribution obtained by Dennen may be an affectation induced by the very small sample size that he used.

•	TABLE 6	
	REAGENT BLANK LEVELS	3
Element	Mean Content (ppm)	One Standard Deviation
Aluminum	0.23	0.07
Boron	0.10	0.06
Calcium	1.4	0.36
Copper	0.02	0.0015
Iron	1.0	0.23
Potassium	0.41	0.31
Magnesium	0.13	0.06
Sodium	1.05	0.13
Titanium	2.0	0.30

It is not the purpose of this paper to review the myrid problems associated with insuring a representative sampling because they are generally well known.

An effort was made to obtain at least a qualitative estimate of the Overall accuracy or the analytical method. Aliquots of the U.S.G.S. and Canadian Department of Energy, Mines and Resources silicate rock standards were digested by the procedures outlined above and analyzed. The standards used were U.S.G.S. W-1, G-2, AGV-1 and GSP-1 and Canadian SY-2 and SY-3. Appendix III, compiled from data by Blackburn et al. (1971),

Fleischer (1969), Faye (1969), and Flanagan (1969) gives the recommended values for the standards and the values found in this study for the various elements. Agreement is generally within one standard deviation for those elements reported by Blackburn, et al. (1971). Agreement between recommended values and values found in this study is better for the U.S.G.S. standard rocks than for the Canadian rock standards. It must be kept in mind, however, that the values for the relatively new Canadian standards are only provisional. One has only to recall the analytical history of the U.S.G.S. standards to appreciate the inherent implications of a provisional value. The notable exceptions to the analytical precision claimed herein are the cases of boron and molybdenum. This author has joined the rest of the world in the apparent confusion over best boron values (see previous references) for the various rock standards. Molybdenum values reported herein are high by approximately one order of magnitude for half of the standards. Because molybdenum did not appear to be present in significantly large numbers of samples, the cause for the analytical difficulty was not pursued in connection with this investigation.

ANALYTICAL RESULTS

All samples were routinely analyzed for aluminum, boron, barium, beryllium, calcium, copper, iron, lithium, magnesium, manganese, molybdenum, potassium, sodium, strontium, titanium,

and zinc. After these analyses were completed, the remaining sample solutions were used to randomly check for the presence of cadmium, cobalt, lead, nickel, rubidium, vanadium, and zirconium.

In addition, twelve samples from Ray, Twin Buttes, and Santa Rita were analyzed for these last elements and found to contain less than the detectable limit. Those particular samples had been prepared prior to the development of the final quartz separation technique and were known to be contaminated. I think that it is reasonable to assume that cadmium, cobalt, nickel, lead, rubidium, vanadium and zirconium are absent from the samples.

Appendix B contains a summary of the analytical results obtained for all samples.

QUALITATIVE INTERPRETATION OF DATA

<u>Major elements (Al, Ca, Fe, K, Mg, Mn, Na, & Ti).</u> Table 7 provides a qualitative summary of the major element impurity content of quartz from various environments. The data are taken from Dennen (1964) and this report. The table provides a comparison of the percentages of samples in which the major elements have been found as a function of gross rock type or association.

With the exception of manganese, all porphyry copper associated quartz samples are qualitatively similar to quartz from granitic rocks in their major element content.

FROM VARIOUS ROCK TYPES									
ROCK TYPE	, :	PER CE	NT OF	SAMF	LES 1	N WHI	CH FC	UND	
	Al	Ca	Fe	K	Mg	<u>Mn</u>	Na	<u> </u>	
Data from Dennen (19	ata from Dennen (1964):								
Granitic rocks	100	94	94		98	8		96	
Rhyolites	100	100	56		89	0		78	
Pegmatites	94	48	48		64	3		39	
High-grade meta- morphic rocks	100	54	57	-	100	0		16	
Crystal quartz	92	15	46		85	0		8	
Veins	10	55	35		70	5		- 30	
Data from this report:							-		
All porphyry copper related quartz	100	86	9 3	100	99	100	99	86	
All porphyry copper related veins	100	89	94	100	98	100	98	87	
All porphyry copper related sulfide bear ing veins	- 100	86	96	100	100	100	98	84	
All porphyry copper related molybdenite bearing veins	100	94	94	100	100	100	100	100	
Porphyry copper related phenocrysts	100	88	88	100	100	100	100	75	
Non-porphyry related intrusives	d 100	93	73	100	100	100	100	93	
Non-porphyry relate metamorphics	d 100	100	100	100	100	100	80	80	
All miscellaneous base and precious metal related veins	100	83	83	100	100	100	71	33	

TABLE 7									
PRESENCE	OF	MAJOR	ELEMENT	rs in	QUARTZ				
	DOM	VADIO	IS DOCK	יינסעייי	3				

The two data sets are not strictly comparable because the detection limits of the two analytical methods used to generate the data are not the same. Detection limits for the method employed in this study are lower than Dennen obtained.

The mean value for manganese for non-porphyry related granitic rock quartz in this study is 6.7 ppm. This value is lower than the 10 ppm detection limit claimed by Dennen. Only 27% of the granitic rock samples from this study had manganese values greater than 10 ppm. Of all porphyry copper related samples, 26% had values greater than 10 ppm.

Dennen (1964) does not report potassium and sodium data because of the poor analytical precision that he obtained for these elements. A qualitative evaluation of potassium and sodium data from this study does not reveal any significant differences between the porphyry copper related and granitic rock samples.

Comparison of the major element data from vein quartz provides some striking contrasts. Dennen reports that only 10% of the vein quartz that he analyzed contained detectable aluminum. 100% of the vein quartz from porphyry copper deposits in this study were found to contain aluminum, and these with a mean concentration of 350 ppm.

86% of porphyry copper related quartz samples were found to contain detectable amounts of titanium as opposed 30% of the vein quartz analyzed by Dennen. Differences in

detection limit for titanium between the two analytical methods do not account for this disparity. The titanium values in the porphyry copper related samples are generally at least an order of magnitude greater than the 5 ppm detection limit claimed by Dennen.

A higher percentage of vein samples from porphyry copper environments were found to contain calcium, iron, and magnesium than non-porphyry related vein samples.

The disparity in manganese data previously mentioned also applies to comparison of the vein data. The difference of 100% of the porphyry samples containing manganese and none of the unrelated veins containing manganese is probably a function of differences in detection limits.

Table 8 provides a summary of the percentages of the samples that were found to contain detectable quantities of boron, barium, beryllium, copper, lithium, molybdenum, strontium and zinc. Comparable data by other are not available. Comparison of these data for porphyry copper related samples and samples from barren intrusives reveals no significant qualitative differences for boron, barium, copper, lithium and strontium. Almost half of the porphyry copper related samples show detectable beryllium. The intrusive and metamorphic samples show no detectable beryllium. 11% of the sulfide bearing quartz veins from porphyry copper deposits contain detectable molybdenum while

TABLE 8

PRESENCE OF MINOR ELEMENTS IN QUARTZ

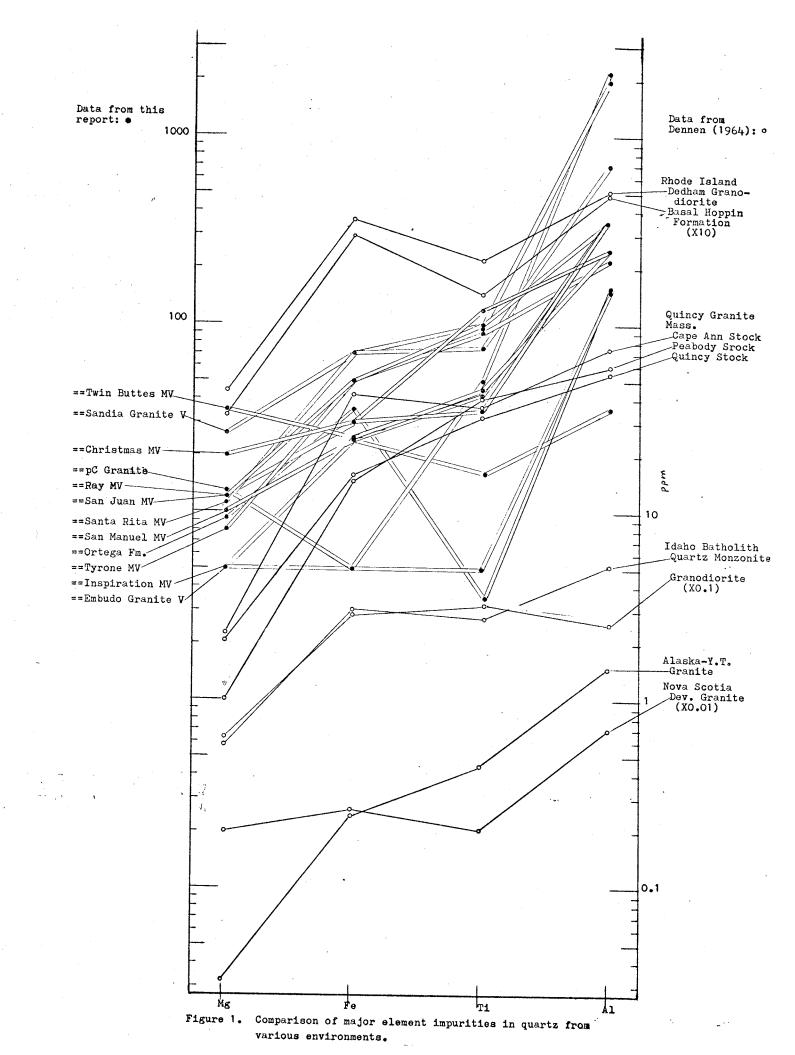
FROM VARIOUS ROCK TIPES								
ROCK TYPE	PER	CENT	OF SA	MPLES	IN WHI	CH FO	UND	
	B	Ba	Be	Cu	Li	Mo	Sr	Zn
All porphyry copper related quartz	62	95	42	99	99	7	99	56
All porphyry copper related veins	62	96	40	98	98	9	98	56
All porphyry copper related sulfide-bearing veins	61	96	41	100	98	11	98	59
All porphyry copper related molybdenite- bearing veins	39	94	44	100	94	11	100	44
All porphyry copper related barren veins	45	100	55	91	100	Q	100	55
All porphyry copper related phenocrysts	33	83	33	100	100	0	100	50
Non-porphyry related intrusives	73	93	0	100	93	0	86	20
Non-porphyry related metamorphics	20	100	0	100	20	0	100	80
All miscellaneous base and precious metal related veins	29	83	33	100	100	0	100	50

FROM VARIOUS ROCK TYPES

non-porphyry related samples show none. Zinc is present in a greater number of porphyry copper related samples than in unrelated granitic rock quartz.

- 1

↓...


QUANTITATIVE INTERPRETATION OF DATA

Statistical evaluation of the great quantity of data presented in this report is difficult without the aid of a computer. Unfortunately, one was not available this study. The statistical calculations that were made were performed with the aid of a Hewlett Packard Model 65 programmable hand calculator and by graphical means such as those suggested by Lepeltier (1969). Appendix D presents a statistical summary of mean values and standard deviations for all elements found to be present in samples included in this study.

<u>Major elements (Al, Fe, Mg, Ti).</u> Figure 1 presents the major element "fingerprint" for quartz from various granitic rocks presented by Dennen (1964) as well as the fingerprints for all of the sulfide bearing veins and intrusives analyzed in this study. No significant discriminating characteristics for porphyry copper related samples are obvious from the figure. Modal values for the porphyry copper related samples do follow the general concentration relationship Al > Ti > Fe. Only half of the granitic rock quartz samples studied by Dennen and non-porphyry related samples studied in this report follow this relationship.

<u>Alkali metals (Li, Na, K).</u> Figure 2 gives the alkali metal distributions in the form of mean values for the individual porphyry copper deposits, non-porphyry related

- 31

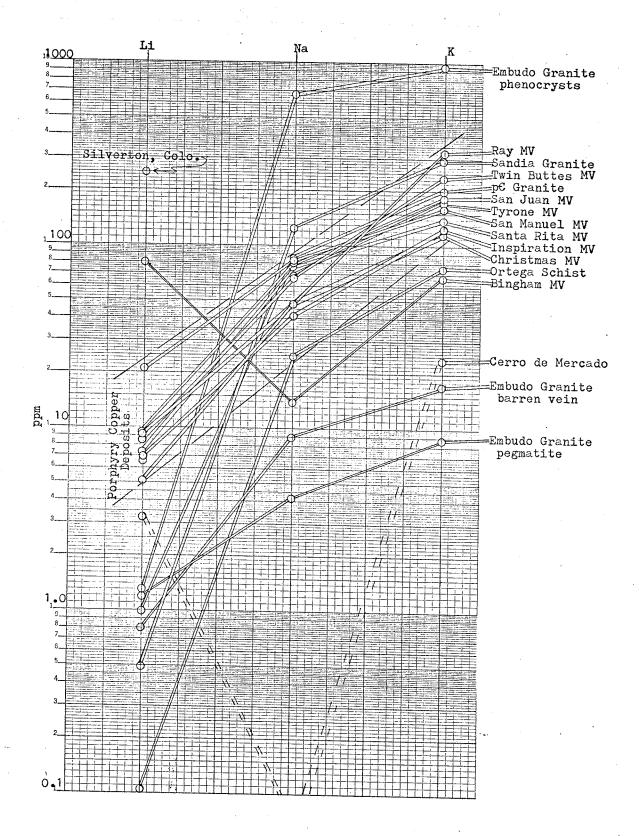


Figure 2. Distribution of alkali metals in quartz from various environments.

intrusives, veins, pegmatites, metamorphic rocks, and base metal veins. With some remarkable exceptions, the alkali metal profiles follow the general felsic rock abundance distribution of K > Na >> Li.

The alkali metal profiles for all porphyry copper related mineralized vein samples all fall within discreet value limits. The limits may be seen to be Li,5 to 25 ppm, Na, 35 to 90 ppm, and K, 110-to 350 ppm. With the exception of lithium, non-porphyry related samples may fall above, below, or within these limits. The lithium range contains no non-porphyry copper related samples.

An interesting anomaly in alkali metal distribution occurs in the base metal vein samples. The alkali distribution for these samples is Li > K > Na, which is unlike any general abundance relationship.

The sodium and potassium content of quartz does not appear to provide a discriminating factor in identifying porphyry copper mineralization. The lithium content, on the other hand, may be of some use. There is, in fact, some hint from the data that the lithium content of quartz may be useful as a general indicator of mineralization.

<u>Alkaline earth metals (Be, Mg, Ca, Sr, Ba)</u>. Figure 3 shows the various distributions of mean values for the alkaline earth metals. The distributions are generally of the same form, Ca > Mg > Sr > Ba > Be, as general elemental

34

. • . . •

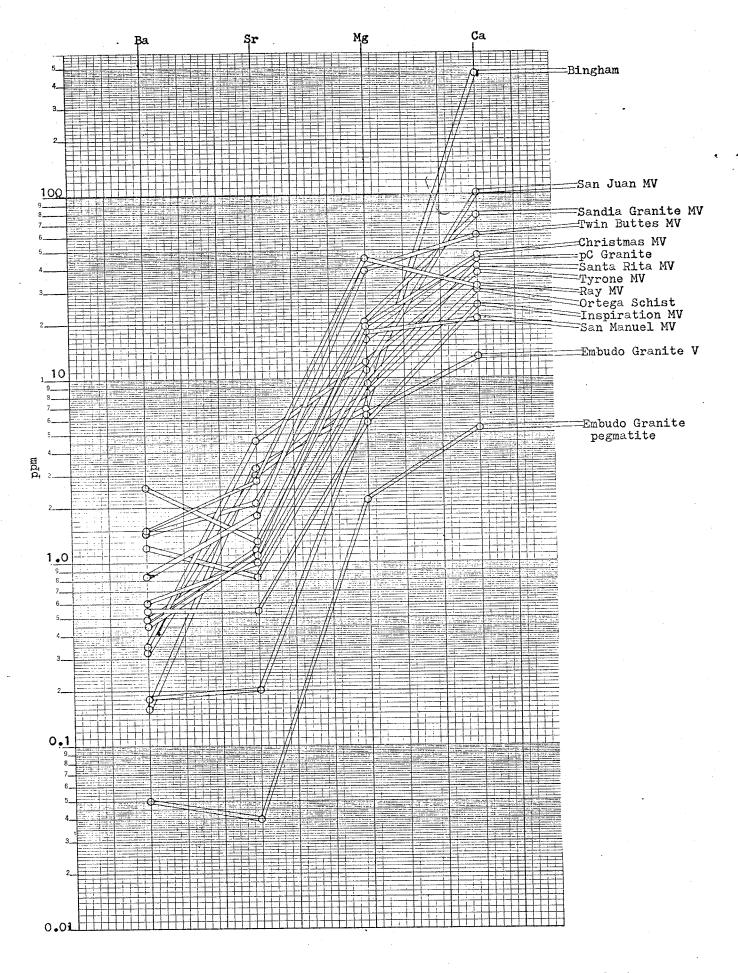


Figure 3. Distribution of alkaline earth metals in quartz from various environments.

abundances. Beryllium mean values were not plotted because only about half of the samples contained measurable beryllium. The presence of this element, as previously mentioned, does correlate with mineralization.

The alkaline earth distributions shown in figure 3 do not appear to provide any unique features that would allow a distinction to be made between porphyry copper and unmineralized intrusives.

Other elements found in quartz (B, Cu, Fe, Mn, Zn). Figure 4 gives the distributions of these elements in the quartz samples from the various environments. Iron and manganese do not appear to be particularly diagnostic.

The conclusion of Price and Ragland (1966) that the iron content of quartz vein material reflects the total metallic mineralization in a vein is apparently refuted by the present data. Their contention that the copper and zinc content of quartz correlates with the presence of gold and silver cannot be adequately evaluated because of the limited number of samples from precious metal deposits. Copper and Zinc do tend to be higher in samples from porphyry copper deposits than in samples from barren intrusives. Boron tends to be relatively low in porphyry copper related samples.

Unique features of quartz from porphyry copper deposits (B, Be, Cu, Li, Zn). Figure 5 shows the distributions of

Ĵ.

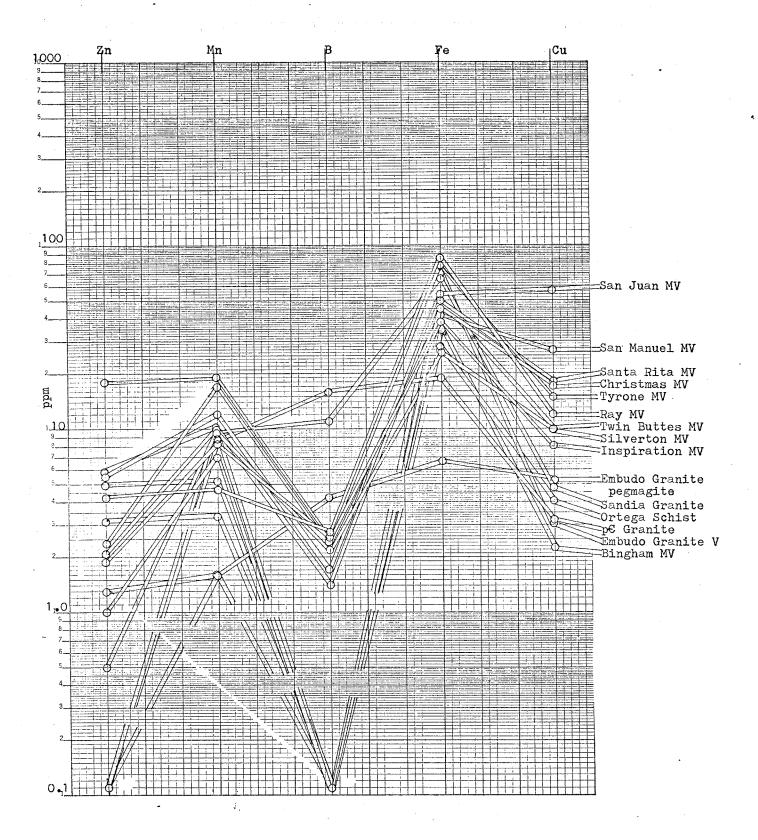
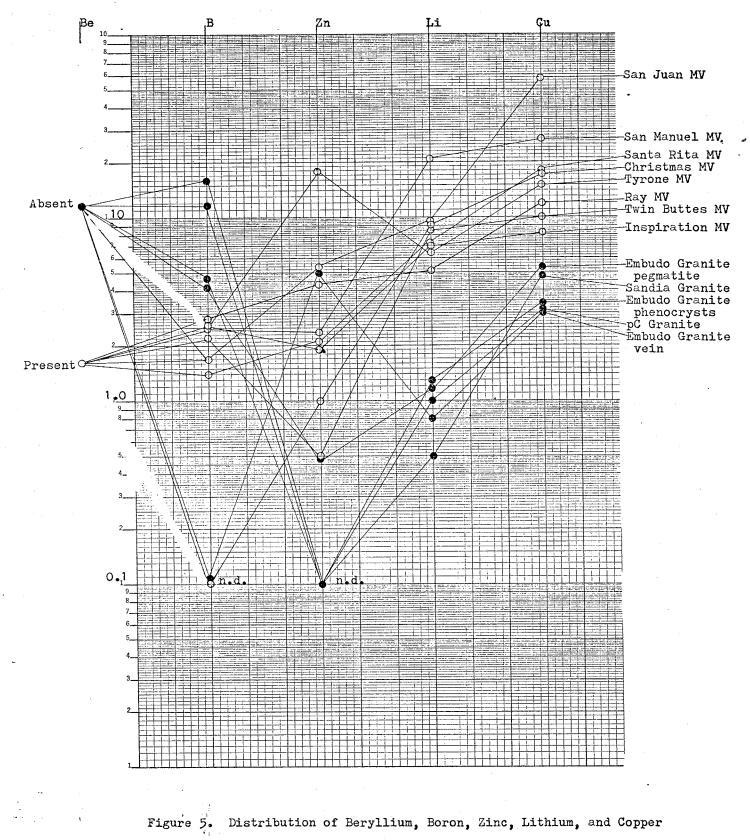
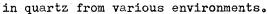




Figure 4. Distribution of Zinc, Manganese, Boron, Iron, and Copper in quartz from various environments.

these five elements in quartz from the various areas studied. Samples from porphyry copper deposits are characterized by high beryllium, copper, lithium and zinc and low boron relative to quartz from unmineralized areas.

CONCLUSIONS

A surprisingly large number of elements were found to be present in the quartz samples that were studied. Of the elements found, strontium has not been previously reported as a contaminant in quartz. In addition, the concentration of barium has only been previously reported as "trace."

Quartz from porphyry copper deposits does appear to have a unique impurity element distribution. It is characterized by high lithium, copper, zinc and beryllium, and low boron, relative to quartz from unmineralized areas.

Based upon the conclusions of other authors and the data obtained during this study, the lithium content of quartz appears to be a general indicator of mineralization.

APPENDIX A

SAMPLE DESCRIPTIONS

-APPENDIX A-

SAMPLE DESCRIPTIONS

RAY MINE KENNECOTT COPPER CORP. HAYDEN, ARIZONA

RAY	1MV	15-20 mm chalchocite, quartz vein in silicified p€ Pinal Schist. (1660 level in zone of secondary enrichment)
RAY	2MV	30-35 mm quartz, pyrite, molybdenite vein in diabase. (1700 level)
RAY	3MV	15-20 mm quartz, pyrite, molybdenite vein in diabase. (1700 level)
RAY	4MV	8-10 mm quartz, pyrite, molybdenite vein in Granite Mountain Porphyry. (1740 level)
RAY	5MV	10-15 mm quartz, pyrite, molybdenite vein in Granite Mountain Porphyry. (1740 level)
RAY	6MV	5-8 mm quartz, pyrite, chalcopyrite vein in Pinal Schist. (DDH 962)
RAY	7MV	10-12 mm quartz, pyrite, chalcopyrite vein in Pinal Schist. (DDH 962)
RAY	8MV	5-10 mm quartz, pyrite, chalcopyrite vein in Pinal Schist. (DDH 962)
RAY	9MV	2-5 mm quartz, pyrite, chalcopyrite vein in p€ Oracle granite. (DDH 963)
RAY	10V	15-20 mm barren quartz vein in diorite porphyry. (DDH 680)
RAY	11V	5-8 mm barren quartz vein in diorite porphyry. (probably later vein than RAY 10V) (DDH 680)
RAY	12V	6-10 mm barren quartz vein in diorite porphyry. (DDH 680)
RAY	13V	15-20 mm barren quartz vein in Granite Mountain Porphyry. (DDH 966)

RAY	14V	5-8 mm barren quartz vein in p€ Pioneer Formation (quartzite). Pyrite disseminated in host rock, but none in vein. (DDH 966)
RAY	15	2-5 mm quartz phenocrysts in Teapot Mountain Porphyry. Rock is silicified and sericitized and contains minor pyrite and chalcopyrite. (DDH 964)
RAY	16	3-6 mm quartz phenocrysts in sericitized Granite Mountain Porphyry. (1740 level - same sample site as RAY 4MV)

THORTON PIT INSPIRATION CONSOLIDATED COPPER CO. INSPIRATION, ARIZONA

ICC		mm quartz, Schist, chi					
ICC	2MV	mm quartz, Schist, chi					
ICC	3MV	mm quartz, Schist.	pyrite,	chal	copyrite	vein	in
ICC	4MV	mm quartz, Schist.	pyrite,	cha1	copyrite	vein	in
ICC	5MV	mm quartz, Schist.	pyrite,	cha1	copyrite	vein	in
ICC	6MV	mm quartz, Schist.	pyrite,	chal	copyrite	vein	in
ICC	7 MV	mm quartz, Schist.	pyrite,	cha1	copyrite	yein	in
ICC	8MV	mm quartz, Schist.	pyrite,	chal	copyrite	vein	in

ICC	9MV	10-15 mm quartz, pyrite, molybdenite vein in Granite Porphyry.
ICC	10MV	3-4 mm quartz, molybdenite vein in Granite Porphyry.
ICC	11MV	15-20 mm quartz, molybdenite vein in Granite Porphyry.
ICC	12MV	40-50 mm highly fractured quartz vein in Pinal Schist with chrysocolla on fracture planes and as cavity fillings.
ICC	13MV	35-40 mm highly fractured quartz vein in Pinal Schist with chrysocolla on fracture planes and as cavity fillings.
ICC	14	1-5 mm euhedral quartz phenocrysts in "quartz porphyry sill."
ICC	15	1-5 mm euhedral quartz phenocrysts in "quartz porphyry sill."
ICC	16	1-5 mm quartz phenocrysts in Granite Porphyry.
ICC	17	1-5 quartz phenocrysts in Granite Porphyry.

CHRISTMAS MINE INSPIRATION CONSOLIDATED COPPER CO. CHRISTMAS, ARIZONA

ICR	1MV	10-15 mm quartz, pyrite, chalcopyrite vein with chrysocolla on fracture surfaces in diorite
ICR	2MV	porphyry. 10-20 mm quartz, pyrite, chalcopyrite vein with chrysocolla on fracture surfaces in diorite porphyry.
ICR	3MV	10-15 mm quartz, pyrite, molybdenite vein with heavy iron oxide staining in diorite porphyry.

ICR	4 MV	12-20 mm quartz, molybdenite vein with minor iron oxide staining in diorite porphyry.
ICR	5MV	10-15 mm quartz, molybdenite vein with minor iron oxide staining in diorite porphyry.
ICR	6MV	10-18 mm quartz, pyrite, molybdenite vein in fine grained diorite.
ICR	7 MV	20-25 mm quartz, pyrite, calcite vein in diorite porphyry.
ICR	8 V	15-20 mm barren quartz vein in diorite porphyry.

TWIN BUTTES MINE THE ANACONDA COMPANY SAHUARITA, ARIZONA

TB	1MV	20-25 mm quartz pyrite vein in skarn, chryso- colla on fracture surfaces.
ТВ	2MV	8-10 mm quartz, calcite, molybdenite, pyrite vein in quartz monzonite porphyry.
ΤB	3MV	8-10 mm quartz, calcite, molybdenite, pyrite vein in quartz monzonite porphyry.
ТВ	4MV	10-12 mm quartz, calcite, molybdenite, pyrite, chalcopyrite vein quartzite.
TB	5MV	25-30 mm quartz, pyrite vein in skarn.
ТВ	6V	15-20 mm barren quartz vein in breccia pipe.
TB	7V	10-15 mm barren quartz vein in breccia pipe.
TB	8V	5-8 mm barren quartz vein in quartz monzonite porphyry.

SAN MANUEL MINE MAGMA COPPER CO. SAN MANUEL, ARIZONA

SM	1MV	X-9 mm quartz, pyrite, chalcopyrite vein in K-T monzonite porphyry.
SM	2MV	20-25 mm quartz, molybdenite, pyrite vein in K-T monzonite porphyry.
SM	3MV	15-20 mm quartz, molybdenite, pyrite vein in K-T monzonite porphyry.
SM	4MV	10-15 mm quartz, pyrite vein in p€ quartz monzonite.
SM	5 V	2-3 mm barren quartz vein in p€ oracle granite.

SAFFORD PROPERTY KENNECOTT COPPER CORP. SAFFORD, ARIZONA

SF	1MV	8-10 mm quartz vein with abundant iron oxide staining, in dacite dike (gossan).
SF	2MV	10-12 mm quartz vein with abundant iron oxide staining, in dacite dike (gossan).
SF	3MV	9-11 mm quartz vein with abundant iron oxide staining, in mineralized rhyolite tuff (gossan).
SF	4 MV	10-15 mm quartz vein with abundant iron oxide staining and pyrite molds (gossan). Quartz is milky white, almost opaque in small grains. Sample is probably contaminated.
SF	5V	25-30 mm quartz vein, in dacite dike. Very clear quartz.

SF 6 1-3 mm quartz phenocrysts in mineralized rhyolite tuff.

SF 7 2-5 mm quartz phenocrysts in mineralized rhyolite tuff.

SAN JUAN STOCK (MINE) PEACOCK MINERALS CORP. SAFFORD, ARIZONA

SJ 1MV	8-10 mm quartz, pyrite vein, in quartz monzonite porphyry.
SJ 2MV	10-20 mm quartz, pyrite, chalcopyrite vein, in quartz monzonite porphyry.
SJ 3MV	Composite sample of 5 quartz, pyrite, chalcopyrite veins, 1-2 mm wide in brec ciated shear zone, in quartz monzonite porphyry.

TYRONE MINE PHELPS DODGE CORP. SILVER CITY, NEW MEXICO

T 1MV 6-9 mm quartz, pyrite vein, in silicified intrusive breccia. Dike adjacent to fault.
T 2MV 10-15 mm quartz, pyrite vein in area of secondary enrichment in p€ granite.
T 3MV 10-20 mm quartz, pyrite vein in area of secondary enrichment in p€ granite.
T 4V 4-5 mm quartz, pyrite vein, in quartz monzonite porphyry.

SANTA RITA MINE KENNECOTT COPPER CORP. HURLEY, NEW MEXICO

SR	1MV	10-15 mm quartz, native copper, molybdenite vein in monzonite.
SR	2MV	20-25 mm quartz, native copper, molybdenite vein in monzonite.
SR	3	3mm X 6mm to 1mm X 2mm euhedral quartz crystals in pods associated with euhedral pyrite pyrito- hedrons and serecite in K Beartooth Quartzite.
SR	3A .	Single 3mm X 6mm euhedral quartz crystal from SR 3.
SR	4MV	5-8mm quartz, pyrite vein in monzonite.

-BARREN GRANITIC ROCKS-

SANDIA GRANITE SANDIA MOUNTAINS BERNALILLO COUNTY, NEW MEXICO

SG	1	3-4 mm quartz phenocrysts grained biotite granite.	in	intermediate
SG	2	4-5 mm quartz phenocrysts biotite granite.	in	coarse grained
SG	3	3-4 mm quartz phenocrysts grained biotite granite.	in	intermediate
SG	4	3-4 mm quartz phenocrysts ground biotite granite.	in	intermediate

PRECAMBRIAN GRANITE BIG BURRO MOUNTAINS GRANT COUNTY, NEW MEXICO

OG 1	1-2 mm quartz phenocrysts in intermediate grained quartz monzonite.
OG 2	0.5-2 mm quartz phenocrysts in intermediate grained quartz monzonite.
OG 3	1-4 mm quartz phenocrysts in intermediate grained quartz monzonite.
OG 4	1-4 mm quartz phenocrysts in intermediate grained quartz monzonite.

EMBUDO GRANITE (p-C) SANTA FE RANGE RIO ARRIBA COUNTY, NEW MEXICO

		411 A
EG	1V	15-20 mm quartz vein in intermediate grained granite.
EG	2V	50-60 mm quartz vein in intermediate grained granite.
EG	3V	30-40 mm quartz vein in intermediate grained granite.
EG	4 P	0.3 meter wide quartz, biotite, microcline pegmatite in intermediate grained granite.
EG	5 P	Same pegmatite as sample EG 4P, sample site 5 meters vertically above EG 4P.
EG	6 P	Same pegmatite as sample EG 4P, EG 5P, sample site 40 meters north of EG 4P, EG 5P.
EG	7	2-6 mm euhedral quartz phenocrysts in inter- mediate grained granite.

Y

-BARREN METAMORPHIC ROCKS-

ORTEGA FORMATION (p€) PICURIS RANGE TAOS COUNTY, NEW MEXICO

TA	1	Coarse	grained	quartz	muscovite	schist.
TA	2	Coarse	grained	quartz	muscovite	schist.
TA	3	Coarse	grained	quartz	muscovite	schist.
TA	4	Coarse	grained	quartz	muscovite	schist.

ALBA QUARTZITE (-C-O) ALBION RANGE, IDAHO

AQ 1 Clean suggary textured quartzite.

-MISCELLANEOUS SAMPLES-

BLANCHARD CLAIM GROUP (Fault, fissure vein Pb-Cu deposit) BINGHAM, NEW MEXICO

BNM	1	3mm X 3mm euhedral quartz crystals lining cavity with intergrown galena and barite.
BNM		10mm X 50mm euhedral quartz crystals lining cavity with intergrown galena and pyrite.
BNM	3	3mm X 5mm euhedral quartz crystals lining cavity with brochantite overgrown on quartz.

SILVERTON, COLORADO (Fault fissure vein Zn-Pb-Ag deposit)

SC 1 10mm X 70mm euhedral quartz crystals with intergrown sphalerite and pyrite from 1/2 meter wide vein.

GOLDFIELD, NEVADA (Fault, fissure vein Au deposit)

- GFN 1 10mm X 20mm to 3mm X 5mm euhedral quartz crystals lining cavity on Columbia Mountain Fault in Tertiary Volcanics.
- GFN 2 5mm X 10mm euhedral quartz crystals lining cavity, from dump in vicinity of Kendall Shaft in Tertiary Volcanics.

-MISCELLANEOUS SAMPLES-

ELIZABETH MINE (Metamorphosed volcanogenic massive sulfide) ORANGE COUNTY, VERMONT

EM 1 1-2mm quartz grains in massive pyrrhotite chalchopyrite.(Incomplete analysis--sample lost)

CERRO de MERCADO (Massive iron deposit) DURANGO, MEXICO

· CdM 1

Milky quartz in 25 cm cavity with associated euhedral apatite crystals.

APPENDIX B ANALYSIS SUMMARY

				PORPHYRY		COPPER DEPOSITS	POSITS								:
B	Ba		Be	Ca	Cu	Не	X	L1	Mg	Mn	Mo	Na	Sr	Ti.	Zn
												L		1	ار ډ
8.3	2.	2	0.26	n.d	28.	175.	1190.	10.	.06	5°0	n.a	• C A	4.CT	.0/	n.1
n.d	0.2	H	0.12	4,6.	7.1	18.5	20.	0.4	39.	0.8	n.d	8.8	0.18	36.	n.d
n.d	0.3	6	n. d	130.	20.	39.	115.	4.3	59.	0.0	4.6	32.	0.6	5.1	100
n.d	0.2	6	0.24	8.3	1.9	21.	77.	1.4	15.	0.9	n.d	21.	0.18	30.	0.7
n.d	-	0	0.26	33.	27.	88.	280.	5.5	46.	4.7	n.d	50.	1.1	39.	6.4
2 2	0		n.d	23.	0.8	77.	190.	5.2	17.	8.6	0.09	.89	0.45	45.	2.0
. v)	n.d	19.	4.0	137.	148	0.76	21.	8.0	n.d	67 .	2,1	50.	4.3
- - -	4.0		n.d	25.	12.	43	56.	7.8	18.	4.1	1.1	47.	5.9	52	15,
	3.0		0.24	n.d	4.4	190	903.	10.3	. 16	2.8	n.d	56	1.2	45.	n.d
2.5	0.0	6	0.15	6.0	2.6	n.d	42.	0.63	2.5	5.3	n.d	7.2	0.16	24	n.d
0.4	0.0	2	0.12	12.	1.9	20.	33.	0.57	5.2	0.6	n.d	31.	0.22	37.	1.3
4.1	0.0	6	0.16	7.7	n.d	n.d	40.	0.56	2.6	3.7	n.d	8.2	0.17	30.	n.d
1 4	0.3	8	0.18	23.	18.	54.	29.	4.2	12.	0.6	n.d	38.	0.18	51.	3.1
7.1	0	26	n.d	22.	1.6	28.	130.	4.4	16.	8.2	n.d	11。	0.18	. 06	n.d
	30	•	n.d	n.d	4.1	n.d	1400	5.0	13.0	6.2	n.d	320	3.2	165	9.6
5.6	57		0.21	44.	6.2	300.	1500	10.2	430.	7.3	n.d	490	5.2	115	5.5

APPENDIX B ANALYSIS SUMMARY

(ALL VALVES IN PPM)

<u>Zn</u>		1.1	0.8	1.0	1.9	1.9	n.d	n.d	n.d	n.d	7.2	n.d	2.3	8.7	n.d	n.d	4.5	n.d			
Ti		11.	8.1	12.	n.d	27.	n d	45.	40.	38.	100.	8.8	n.d	n.d	110.	150	n.d	n.d			
Sr		0.2	0.14	0.38	0.21	.56	.15	n.d	0.12	0.24	3.7	0.10	0.54	0.84	1.8	2.2	0.26	0.62			
Na		68.	31.	61.	11.	82.	12.	10.	22.	15.	.68	4.0	26.	100.	16.	7.3	68.	75.			
Mo		n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d									
Mn		7.5	2.2	2.3	6.3	18.5	5.9	2.1	2.5	1.4	16.	3.0	9.2	28.	6.7	8.5	14.7	10.			
Mg		4.0	4.8	5.0	7.8	6.2	16.	1.5	3.1	1.7	7.4	4.8	8.5	4.5	29.	44.	17.3	17.6			
Li		4.6	2.6	8.1	5.8	11.0	7.2	7.2	6.0	7.1	15.	6.0	4.7	5.1	3.2	6.8	7.4	3.7			
K		110.	20.	250.	47.	590	140	19.	25.	16.	210.	16.	38.	160.	315.	510	95.	410			
ъ С		140.	15.	17.	14.	10.6	6.7	n.d	8.1	3.5	108.	n.d	36.	140.	34.	32.	52	14.			
Cu		30.	1.4	3.2	•	•	2.1	1.0	1.0	1.1	50.	1.1	2.5	4.2	5.8	4.6	1.3	7.1			
Ca	•	30.	12.	20.	10.	27.	7.2	n.d	n.d	n.d	90.	4.1	100.	26	11.	95.	62.	28.			
Be		0.16	0.18	0.28	0.32	0.34	0.35	0.17	0.19	0.34	0.45	0.03	n.d	n.d	n.d	n.d	0.23	n.d			
Ba	·	0.34	0.23	1.0	0.09	1.5	0.21	n.d	0.04	0.5	2.8	0.03	0.13	0.23	0.89	n.d	0.21	3.4	·		
m		2.0	n.d	3.9	1.8	4.6	2.7	n.d	1.1	0.7	4.3	4.0	2.5	5.8	n.d	n.d	6.1	n.d			
, IA		70.	65.	1100.	130.	200.	310	100	130	140	230	06	120	140	600	006	210	1080			
SAMPLE NUMBER	JNSPIRATION, ARIZONA	ICC 1 MV	ICC 2 MV	ICC 3 MV	ICC 4 MV	ICC 5 MV	ICC 6 MV	ICC 7 MV	ø	ი	ICC 10 MV	11	ICC 12 MV	ICC 13 MV	ICC 14	ICC 15	ICC 16	ICC 17	•		

•

·

	•			Zn		3.2	n.d	n.d	n.d	n.d	n.d	n.d	4.5					
				Ti		121.	137	115	170	0.0	109.	100.	125					
				Sr		1.3	0.5	1.3	0.9	1.7	1.0	1.3	0.75					
				Na		53.	55.	.67	19.	23.	9.4	105	45.					
	- ' •		• • • •	Mo		n.d	n.d											
				Mn		5.6	12.	8.7	5.5	8.6	3.7	9.2	3.0					
				Mg		15.	14.	13.5	15.6	24.	29.	20.	25 .					
•				Γi		3.8	10.4	10.1	12.	13.5	n.đ	9.6	13.					
				NI K		62.	87.	250.	31.	82.	57.	280.	110.			·		
				Нe		62.	110	50.	4.0	25.	24.	35.	54.					
				Cu		13.	20.	19.	17.6	13.9	8.7	25.	21.	: •				
	•			Ca		62.	45.	26.	67.	59.	21.	50.	44.					
				Be		n.d	n.d											
				Ba		0.56	0.16	0.77	n.d	0.41	0.32	0.89	0.49					
		. •		۳ ۱		n.d	n.d											
				A1	. •	210	248	327	230	200	232	244	1200					
				SAMPLE NUMBER	CHRISTMAS MINE, ARIZONA	ICR 1 MV	ICR 2 MV	ICR 3 MV	ICR 4 MV	ICR 5 MV	ICR 6 MV	ICR 7 MV	8 MV				•	

					••												4 - 1	
			<u>uz</u>		n.d	n.d	n.d	n.d	2.7	1.8	4.3	n.d						
			Ti		n.d	3.0	43.	46.	75.	28.	45.	86.						
			Sr		0.6	0.9	4.5	1.0	1.9	0.4	1.1	2.7						
	~		Na		n.d	32.	170	28.	105	21.	95.	55.						
			Mo		n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d				•		
	•		Mn		6.1	6.0	7.0	11.5	18.	3.9	1.7	10.			•			
			Mg		35.	46.	32.	11.	70.	4.0	21.	n.d						
• •	-1	• •	Li		6.4	10.4	13.2	8.1	5.5	7.6	8.1	5.4						
			X		25.	. 67	570	7.0	465.	77.	107.	320.						
: - -		•	Fe		25.	7.3	11.0	28.	57.	23.	63.	45.						
			Cu		26.5	7.4	7.0	4.6	6.4	5.3	4.1	5.1						
			Ca	·	47.	27.	.86	54.	75.	18.	21.	46.						
			Be	•	n.d	n.d	0.29	n.d	n.d	n.d	0.12	n.d						
			Ba		0.24	0.24	1.8	0.17	1.7	0.3	6:0	2.2				·		
	• •		m		1.3	n.d	2.6	n.d	7.0	n.d	n.d	n.d						
			Al		131	375	1000	290	210	143	210	330						
			SAMPLE NUMBER	TWIN BUTTES, ARIZONA	TB - 1 MV	TB - 2 MV	1	۰ 4	ر ب	I	TB - 7 V	TB - 8 V						

	Zn		2.0	3.1	1.0	3.5	6.1				
	Ti		43.	50.	35.	130.	94.				
	Sr		1.8	0.78	2.0	0.5	3.2				
· .	Na		52.	82。	40.	160.	113.				
•	Mo		n.d	n.ď	n.d	n.d	n.d				
	Mn		37.	5.6	22.	3.6.	10.				
	Mg		35.	7.8	25.	10.	29.				
	Li		29.	18.	20.	15.	15.				
	X		335.	47.	136.	130.	275.				
	Fe		58.	63.	27.	25.	110.				
	Cu		29.	6.7	45.	27.	30.				
	Ca		32.	8.9	31.	13.	94.	۰.			
	Be		n.d	0.096	n.d	n.d	n.d		•		
х -	Ba		3.1	0.25	1.8	5.1	1.9				
	<u>ه</u> ا		2.1	2.4	5.5	n.d	n.d				
	<u>A1</u>		540	376	420	320	400				
•	SAMPLE NUMBER	SAN MANUEL MINE, ARIZONA	- 1 MV	- 2 MV	- 3 MV	- 4 MV	- 5 V		•	•	•
	SAN	SAN	SM	SM	SM	SM	SM				

•

uz	5.1	n.d	5.4	n.d	2.6	8.7	n.d	
-11: 	67	n.d	n.d	n.d	19.	105.	21.	
Sr	0.66	1.6	2.6	4.4	1.5	4.4	3.8	
Na	110.	77.	°06	138	28.	120.	320.	
Wo	n.d	n.d	n.d	n.d	n.d	n.d	n.d	
Mn	3.6	35 .	27.	52.	10.	58.	42.	
Mg	2.2	3.2	12.7	5.6	23.	. 76	13.	
·	11.7	8.7	18.	230.	15.5	9.4	8.6	
Я	85,	59.	480.	350.	60.	235.	128.	
Fe	33.	16.	84.	16.0	89.	27.	140	
Cu	36.	4.1	6.0	8.0	4.8	8.0	5.9	
Ca	n.d	100.	20.	37.	36.	66.	55.	
Be	n.đ	n.d	0.45	n.d	0.19	n.d	n.d	
Ba	0.15	0.71	0.89	0.55	1.54	4.2	6.9	
8 1	4.3	3.6	1.6	6.8	1.2	11.4	27.	
A1	490	1200	1290	3660	321	1100	1700	
SAMPLE NUMBER A	ARIZONA SF - 1 MV	SF - 2 MV		SF - 4 MV*	SF - 5 V	SF = 6 *	SF - 7 *	

*Samples probably contaminated

•

Zn	• *	. 7.2	0. 3.8	5.6
11.			110.	
Sr		1.2	0.87	0.96
Na		73.	80.	100
Mo	•	n.d	n.d	n.d
W		12.	8.7	14.
Mg		14.3	12.0	5.5
		6.4	10.0	12.3
M		230.	150.	180
е Ц		87.	50.	23
Cu		100.	30.	48.
Ca		109	06	112
Be		n.d	n.d	n.d
Ba	• •	0.54	0.75	0.46
۳ ا		0.7	3.0	1.4
<u>A1</u>	1	433	320	570
SAMPLE NUMBER	SAN JUAN STOCK, SAFFORD, ARIZONA	SJ - 1 MV	SJ - 2 MV	SJ - 3 MV

•

	Zn	- - - -	7.4	22.	26.	n.d	
	Ti		87.	89.	120	95.	
	ST.		5.4	1.7	6.6	2.1	
	Na		55.	43.	110.	74.	·
	0 M		n.d	n.d	n.d	n.d	
	Wn		10.7	14.8	32.	9.5	
	Mg		7.9	8.3	17.1	15.0	
			8.9	1.5	9.8	11.3	
	K		74.	280.	175.	95.	
· · · ·	Ð		134.	.92	36.	100.	
	Cu		14.1	12.6	19.6	10.5	
	Ca		24.	n.d	.06	35.	•
	Be		0.44	n.d	n.d	0.25	
	Ba	•	0.28	0.21	0.57	0.33	•
	۳ ا		3.4	2.3	1.7	n.d	
	A1		220	231	310	250	
)	SAMPLE NUMBER	TYRONE MINE, NEW MEXICO	T - 1 MV	T - 2 MV	T - 3 MV	T - 4 V	

<mark>7n</mark>		3.5	2.9	n.d	n.d	n.d	
<u>1</u> i		85.	70.	24.	140。	54.	
Sr	. •	1.2	0.89	0.80	0,60	0.34	
Na		60,	75.	25.	23.	110.	•
Mo		9.8	n.d	n.d	n.d	1.2	
Mn		14,	8°6	3.0	7.1	3.9	
Mg		11,3	12.4	8,3	13.7	5.1	
Li		2.3	2.2	13.9	14.	16.8	
K		180	130	36.	16.	94.	
ц. Э		50.	82.	42.	25.	19.	
Cu		12,	31.	8.9	6.3	11.5	
Ca		16,	54.	n.đ	n.d	51.	
Be		n,d	n.d	.98	n.d	0.83	
Ba		0.29	1.4	0.4	n.d	1.9	
6 1		n.d	2.0	2.2	1.0	2.1	
<u>A1</u>	0	375	660	1000	780	770	
SAMPLE NUMBER	SANTA RITA MINE, NEW MEXIC	SR - 1 MV	SR - 2 MV	SR - 3 MV	SR - 4 MV	SR - 5 MV	

.

100. 50. 10.0 8.9 7.0 3.6		13. 4.4 5.4 12.6 1.8 0.4 0.4 0.3	1.4 64. 2.2 11. 1.2 n.d 6.7 n.d 2.5 66. 5.0 29 5.0 29 5.0 29 5.0 29 6.4 n.d 6.8 n.d 6.8 n.d	38. 2.2 11. 49. 1.2 n.d 56. 6.7 n.d 36. 2.5 66. 36. 2.5 66. 15. 5.0 29 16.0 3.1 20. 6.0 6.4 n.d 108. 3.4 51.	.29 n.d 38. 2.2 11. .36 n.d 38. 2.2 11. .62 n.d 38. 2.2 11. .63 n.d 56. 6.7 n.d .63 n.d 36. 2.5 66. .16 n.d 36. 2.5 66. .11 n.d 15. 5.0 29 .23 n.d 0.8 2.7 24. .11 n.d 0.8 2.7 24. .05 n.d 6.0 6.4 n.d .05 n.d 6.0 6.4 n.d .08 7.4 5.1 5.1 5.1
	13. 13. 5.4 12.6 12.6 0.4 0.3		1.4 64. 2.2 11. 6.7 n.d 6.7 n.d 2.5 66. 2.7 2.9 5.0 29 5.1 20. 6.8 n.d 6.8 n.d	38. 2.2 11. 170. 49. 1.2 n.d 137. 56. 6.7 n.d 182. 36. 2.5 66. 290. 36. 2.5 66. 290. 36. 2.5 66. 290. 36. 2.5 66. 290. 15. 5.0 29 15. 15. 5.0 29 15. 0.8 2.7 24. 18. 15. 5.0 29 15.8 0.8 2.7 24. 18. 10.0 3.1 20. 6.0 6.0 6.4 n.d 9.4 n.d 6.8 n.d 11.4	29 $n.d$ $38.$ 2.2 $11.$ $170.$ $.36$ $n.d$ $38.$ 2.2 $11.$ $170.$ $.62$ $n.d$ $56.$ 6.7 $n.d$ $182.$ $.63$ $n.d$ $36.$ 2.5 $66.$ $290.$ $.16$ $n.d$ $36.$ 2.5 $66.$ $290.$ $.16$ $n.d$ $24.$ 1.7 $170.$ $19.$ $.16$ $n.d$ $24.$ 1.7 $170.$ $19.$ $.16$ $n.d$ 0.8 2.7 29 15.8 $.11$ $n.d$ 0.8 2.7 29 15.8 $.11$ $n.d$ 0.8 2.7 29 15.8 $.05$ $n.d$ 0.8 2.7 29 15.8 $.11$ $n.d$ 0.8 2.7 29 15.8 $.11$ $n.d$ 0.8 2.7 29.4 11.4 $.05$ $n.d$ 6.0 6.4 $n.d$ 9.4
13. 13. 13. 12. 6 12. 6 13. 13. 13. 14. 12. 6 13. 13. 13. 14. 14. 14. 14. 15. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14		13.9 11.7 16.6 24. 24. 4.1 1.4 1.0	1.4 64. 2.2 11. 1.2 n.d 6.7 n.d 2.5 66. 2.7 29 5.0 29 5.1 20. 6.8 n.d 6.8 n.d	38. 2.2 11. 49. 1.2 1.4 56. 6.7 1.4 56. 2.5 66. 36. 2.5 66. 15. 5.0 29 0.8 2.7 24. 15. 5.0 29 0.8 2.7 24. 10.0 3.1 20. 6.0 6.4 n.d n.d 6.8 n.d	.29n.d38. 2.2 $11.$.36n.d $38.$ 2.2 $11.$.62n.d $56.$ 6.7 $n.d$.63n.d $36.$ 2.5 $66.$.16 $n.d$ $36.$ 2.5 $66.$.16 $n.d$ $24.$ 1.7 $170.$.16 $n.d$ $24.$ 1.7 $170.$.16 $n.d$ $24.$ 1.7 $170.$.11 $n.d$ 0.8 2.7 $29.$.11 $n.d$ 0.8 2.7 $29.$.05 $n.d$ 6.0 6.4 $n.d$.05 $n.d$ $n.d$ 6.8 $n.d$
3 13.9 13. 11.7 4.4 16.6 5.4 24. 12.6 6.5 5.7 2 3.3 1.4 0.4	3 13.9 111.7 111.7 116.6 24. 2 3.3 1 4.1 1 0	M 00 N	1.4 1.7 0.3 0.1 0 0 1.4 0.5 0 7 0 1.4 0 0 0 1.4 0 0 0 0 1.4	38. 2.2 49. 1.2 56. 6.7 36. 2.5 1.7 10.0 3.1 6.0 6.4 n.d 6.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.43 13.9 13. 1.1 11.7 4.4 1.7 16.6 5.4 0.6 24. 12.6 0.38 9.0 1.8 1.1 6.5 5.7 0.92 3.3 7.7 1.1 4.1 0.4 1.1 4.1 0.4	0.4 13.7 0.43 13.9 1.1 11.7 1.7 16.6 0.6 24. 0.38 9.0 1.1 6.5 1.1 6.5 1.3 1.4 1.3 1.0	0.43 1.1 0.38 1.1 1.1 1.1 1.3	0	36.0 10.0 10.0 10.0	.29 n.d 38. .36 n.d 38. .62 n.d 38. .63 n.d 56. .16 n.d 36. .16 n.d 24. .11 n.d 15. .05 n.d 0.8 .11 n.d 10.0 .05 n.d 6.0
400. 0.43 13.9 13. 170. 0.43 13.9 13. 137. 1.1 11.7 4.4 182. 1.7 16.6 5.4 290. 0.6 24. 12.6 19. 0.38 9.0 1.8 18. 0.92 3.3 7.7 9.4 1.3 1.4 0.4	400. 0.4 13.9 170. 0.43 13.9 137. 1.1 11.7 182. 1.7 16.6 290. 0.6 24. 290. 0.6 24. 19. 0.38 9.0 15.8 1.1 6.5 18. 0.92 3.3 19. 1.1 4.1 9.4 1.3 1.4 9.4 1.3 1.4 11.4 1.3 1.4 11.4 1.3 1.0	170. 0.43 137. 1.1 182. 1.7 290. 0.6 290. 0.6 15.8 1.1 18. 0.38 1.1 18. 0.92 6.0 1.1 9.4 1.3 11.4 1.3	95. 38. 56. 36. 10.0 10.0 10.0		.29 n.d .36 n.d .62 n.d .63 n.d .16 n.d .11 n.d .11 n.d .05 n.d .05 n.d .12 n.d
04. 400. 0.4 13.9 13. 11. 170. 0.43 13.9 13. n.d 137. 1.1 11.7 4.4 n.d 182. 1.7 16.6 5.4 66. 290. 0.6 24. 12.6 170. 19. 0.38 9.0 1.8 29 15.8 1.1 6.5 5.7 24. 18. 0.92 3.3 7.7 20. 6.0 1.1 4.1 0.4 1.1 4.1 0.4 1.3 1.4	64. 400. 0.4 13.9 11. 170. 0.43 13.9 n.d 137. 1.1 11.7 n.d 182. 1.7 16.6 66. 290. 0.6 24. 57. 19. 0.58 9.0 170. 19. 0.38 9.0 24. 13. 1.1 6.5 29 15.8 1.1 6.5 24. 18. 0.92 3.3 24. 18. 0.92 3.3 20. 6.0 1.1 4.1 n.d 9.4 1.3 1.0	11. 170. 0.43 n.d 137. 1.1 n.d 182. 1.7 66. 290. 0.6 170. 19. 0.38 170. 19. 0.38 29 15.8 1.1 29 15.8 1.1 29. 6.0 1.1 21. 18. 0.92 20. 6.0 1.1 n.d 9.4 1.3 n.d 9.4 1.3		ישישישים שישישים נובב בבבבים	. 29 . 36 . 52 . 62 . 62 . 11 . 11
.0 n.d 95. 1.4 04. 400. 0.4 15. 13. .29 n.d 38. 2.2 11. 170. 0.43 13.9 13. .36 n.d 56. 6.7 n.d 137. 1.1 11.7 4.4 .62 n.d 56. 6.7 n.d 182. 1.7 16.6 5.4 .63 n.d 36. 2.5 66. 290. 0.6 24. 12.6 .16 n.d 24. 1.7 170. 19. 0.38 9.0 1.8 .16 n.d 24. 1.7 170. 19. 0.38 9.0 1.8 .16 n.d 25.0 29 15.8 1.1 6.5 5.7 .16 n.d 15. 5.0 29 15.8 1.1 6.5 5.7 .11 n.d 0.8 2.7 24. 18. 0.92 5.7 .11 n.d 0.0 3.1 4.1 0.4 0.4 0.4 </td <td>.0n.d95.1.4$64.$$440.$$0.4$$15.7$.29n.d38.2.211.170.$0.43$13.9.36n.d49.1.2n.d137.1.1$11.7$.62n.d56.6.7n.d182.$1.7$$16.6$.63n.d36.2.5$66.$$290.$$0.6$$24.$.16n.d24.$1.7$$170.$$19.$$0.5$$24.$.16n.d15.$5.0$$29$$15.8$$1.1$$6.5$.16n.d$15.$$2.7$$24.$$18.$$0.92$$3.3$.11n.d$10.0$$3.1$$20.$$6.0$$1.1$$4.1$.05n.d$6.0$$6.4$$n.d$$9.4$$1.3$$1.4$</td> <td>.29n.d38.2.211.170.0.43.36n.d49.1.2n.d137.1.1.62n.d56.6.7n.d182.1.7.63n.d36.$2.5$$66.$$290.$$0.6$.16n.d24.$1.7$$170.$$19.$$0.38$.16n.d$15.$$5.0$$29$$15.8$$1.1$.11n.d$0.8$$2.77$$24.$$18.$$0.92$.11n.d$0.8$$2.77$$24.$$18.$$0.92$.11n.d$0.8$$2.77$$24.$$18.$$0.92$.11n.d$0.6$$6.0$$6.1$$1.1$.05n.d$6.0$$6.4$$n.d$$9.4$$1.3$.11n.d$6.8$$n.d$$11.4$$1.3$</td> <td>12.5 2.0 EW MEXICO 14.3 0.29 16.4 0.36 18.5 16.1 0.62 16.1 n.d 0.16 16 n.d 0.16 16 seg 0.16 16 n.d 0.16 16 n.d 0.16 16 n.d 0.16 11 seg 0.05 3.8 n.d 0.16 11 seg 0.05 3.8</td> <td>EW MEXIC 14.3 16.4 16.4 16.1 16.1 16.1 16.1 16.1 16.1</td> <td></td>	.0n.d95.1.4 $64.$ $440.$ 0.4 15.7 .29n.d38.2.211.170. 0.43 13.9.36n.d49.1.2n.d137.1.1 11.7 .62n.d56. 6.7 n.d182. 1.7 16.6 .63n.d36.2.5 $66.$ $290.$ 0.6 $24.$.16n.d24. 1.7 $170.$ $19.$ 0.5 $24.$.16n.d15. 5.0 29 15.8 1.1 6.5 .16n.d $15.$ 2.7 $24.$ $18.$ 0.92 3.3 .11n.d 10.0 3.1 $20.$ 6.0 1.1 4.1 .05n.d 6.0 6.4 $n.d$ 9.4 1.3 1.4	.29n.d38.2.211.170. 0.43 .36n.d49.1.2n.d137. 1.1 .62n.d56. 6.7 n.d182. 1.7 .63n.d36. 2.5 $66.$ $290.$ 0.6 .16n.d24. 1.7 $170.$ $19.$ 0.38 .16n.d $15.$ 5.0 29 15.8 1.1 .11n.d 0.8 2.77 $24.$ $18.$ 0.92 .11n.d 0.8 2.77 $24.$ $18.$ 0.92 .11n.d 0.8 2.77 $24.$ $18.$ 0.92 .11n.d 0.6 6.0 6.1 1.1 .05n.d 6.0 6.4 $n.d$ 9.4 1.3 .11n.d 6.8 $n.d$ 11.4 1.3	12.5 2.0 EW MEXICO 14.3 0.29 16.4 0.36 18.5 16.1 0.62 16.1 n.d 0.16 16 n.d 0.16 16 seg 0.16 16 n.d 0.16 16 n.d 0.16 16 n.d 0.16 11 seg 0.05 3.8 n.d 0.16 11 seg 0.05 3.8	EW MEXIC 14.3 16.4 16.4 16.1 16.1 16.1 16.1 16.1 16.1	
12.5 2.0 n.d 95. 1.4 04. 400. 0.4 15. 10.4 NBW MEXICO 14.3 0.29 n.d 38. 2.2 11. 170. 0.43 13.9 13. 16.4 0.36 n.d 49. 1.2 n.d 137. 1.1 11.7 4.4 16.4 0.62 n.d 56. 6.7 n.d 182. 1.7 16.6 5.4 16.1 0.63 n.d 36. 2.55 66. 290. 0.6 24. 12.6 n.d 0.16 n.d 24. 1.7 170. 19. 0.38 9.0 1.8 n.d 0.16 n.d 15. 5.0 29 15.8 1.1 6.5 5.7 n.d 0.15 n.d 0.8 2.7 24. 18. 0.9 1.8 7.7 n.d 0.11 n.d 0.25 15.0 29.4 1.8 0.4 0.4 0.4 25.7	NEW MEXICO 95. 1.4 04. $400.$ 0.43 13.9 NEW MEXICO 14.3 0.29 n.d 38. 2.2 11. 170. 0.43 13.9 1 14.3 0.26 n.d 38. 2.2 11. 170. 0.43 13.9 1 16.4 0.36 n.d 38. 2.2 11.1 11.7 1 16.1 0.62 n.d 49. 1.2 n.d 137. 1.1 11.7 1 18.5 0.62 n.d 36. 2.5 66. 290. 0.6 24. 1 1.6.1 0.63 n.d 24. 1.7 170. 19. 0.38 9.0 1 n.d 0.16 n.d 15. 5.0 29.0 0.65 3.3 1 n.d 0.16 n.d 15. 1.7 170. 19. 0.3 0.0 1 n.d 0.16 n.d 24. 18. 0.93 0.0 1 n.d 0.13	NEW MEXICO 14.3 0.29 n.d 38. 2.2 11. 170. 0.43 16.4 0.36 n.d 49. 1.2 n.d 137. 1.1 18.5 0.62 n.d 56. 6.7 n.d 182. 1.7 16.1 0.63 n.d 36. 2.5 66. 290. 0.6 n.d 0.16 1.d 36. 2.5 66. 290. 0.6 n.d 0.16 1.d 24. 1.7 170. 19. 0.38 n.d 0.16 n.d 24. 1.7 170. 19. 0.38 n.d 0.16 n.d 24. 1.7 170. 19. 0.38 n.d 0.15 n.d 0.8 2.77 24. 18. 0.92 n.d 0.11 n.d 0.8 2.77 24. 18. 0.92 n.d 0.11 n.d 0.8 2.77 24. 18. 0.92 n.d 0.05 n.d <t< td=""><td>12.5 NEW MEXIC 14.3 16.4 16.4 16.1 16.1 16.1 16.1 16.1 16.1</td><td></td><td></td></t<>	12.5 NEW MEXIC 14.3 16.4 16.4 16.1 16.1 16.1 16.1 16.1 16.1		

	Zu		1.2	1.9	0.9	1.1		n.d.
	Ti		4.8	21.	17.	n.d		62.
	Sr		6.8	0.72	0.67	4.0		3.0
	Na		37.	27.	10.	24。		n.d
	Mo		n.d	n.đ	n.d	n.d		n.d
	Mn		1.6	1.0	1.1	2.8		1.4
	Mg		8.0	10.0	5.6	10.0		10.3
	Li		n.d	n.d	0.1	n.d		n.d
	K		92.	58。	61.	95.		105.
	He		35 °	36.	22.	14.	· . ·	20.
	-D		1.9	4.1	4.5	6.2		2.7
	Ca		56.	35.	6.2	28.		24.
	Be		n.d	n.d	n.d	n.d	·	n.d
	Ba	·	0.30	0.43	0.29	0.32		1.4
	m]		n.d	n.d	n,d	n.d		1200 2.2
	AI	N,	540	150	165	270		1200
•	SAMPLE NUMBER	ORTEGA FORMATION, NEW MEXICO	TA - 1	TA - 2	TA - 3	TA - 4	ALBA QUARTZITE, IDAHO	AQ - 1

BARREN METAMORPHIC ROCKS

	•								• •						· · ·	
			۶									•				·
									·					· .		
•				MISC	MISCELLANEOUS	1	LES, MI	SAMPLES, MINERALIZED AREAS	ED AREA	S		•				:
SAMPLEINUMBER	<u>A1</u>	۳I	Ba	Be	Ca	Cu	Fe	ЖI	11.	Mg	Wn	Mo	Na	Sr	Ti	Zn
BINGHAM, NEW MEXICO																
BNM - 1	895	0.11	0.26	n.d	480	1.4	35.	28	68.	7.6	0.12	n.d	36.	0.48	31.	1.5
BNM - 2	010	n.d	n.d	n.d	880.	2.1	70.	28.	59.	9.5	5.6	n.d	n.d	7.6	n.d	n.d
BNM - 3	1400	n.d	0.21	n.d	30.	3.5	n.d	150.	114.	3.2	4.4	n.d	4.7	1.0	n.d	7.9
SILVERTON, COLORADO												· .			·	
SC - 1	2500	n.d	0.32	0.28	37.	10.	40.	120.	250.	16.	10.	n.d		2.2	n.d	5° 0
GOLDFIELD, NEVADA	·															
GFN - 1	190	1.2	0.03	n.d	n.d	0.8	6.7	44.	11.6	4.2	0.8	n.d	27.	0.2	10.5	n.d
GFN - 2	85	n.d	0.15	1.4	27.	2.5	51.	73.	1.5	25.	1.8	n.d	35	1.1	n.d	n.d
ELIZABETH, VERMONT			:	:												
EM - 1	2100	n.d	}		- Sample Lo	e Lost			-				100.			
CERRO DE MERCADO, MEXICO	- 1										•					
CDM - 1	46.	1 .8	0.07	n.d	n.d	2.1	48.	24.	3.3	115	n.d	n.d	n.d	n.d	20.	n.d

APPENDIX C

ANALYTICAL ACCURACY

						Al	VALY TICL	ANALYTICAL ACCURACY	ACY								
Sample	LA %	В ртш	Ba ppm	Be ppm	°G %	Cu DDM	Ч. С. С.	X%	L1 ppm	aw %	Mn mqq	oM	Na %	Sr ppm	T1 ppm	Zn ppm	Ref.
W-1 Average Value	7.86	15.	, 180	0 8	7.83	110.	7.76	. 0.53	12.	3.98	1317	0.5	9 I •	180.	6415	82.	~~
Value Found	7.9	77.	174	n.d.	7.36	115.	7.5	0.67	11.8	2.45	1 500	χ•3	• •	. 160.	otto	•011	
SEY-2		L F	UZ 1	16	0 9	مر ۷		64.5	n.r.	1.21	2300	0.99		270.	n•r•	200.	~
Provisional Value. Value Found	5.8 1	100.	515	30.	7.1	1.6	6.0	3.7	120.	1.91	3100	6•4	3.0	270.	846	320.	
SEY-3 Drovisional Value	60.9	45.	410	16.	5.8	18.	4•9	3.24	n•r•	1.57	2300	0.91	•	300.	••u	180.	2
Value Found	5.9	130.	430	33.	6.7	16.	5.7	5.03	110.	1.63	3200	8•6	3•0	290.	870	350.	
G=2		c	1050	1.0	C.1. 1	10.7	1.9	3.45	42.7	0.47	265	1.2	3.08	463.	3177	74.9	ŝ
Average Value Value Found	0.12 0.2	0 0 0	1890	2.7	1 79	12.0	2.5	3.51	36.8	0.48	266	2.1	2.9	423.	3480	106.	•
Standard Deviation	n.r	n•r•	283	0•4	n•r	1.7	n.r.	n•r•	6.5	n r	n•r•	0•0	n•r•	25.	n•r•	n•r•	4
AGV-1	•		-	0 7	U L	5 x J	10.1		12.1	06•0	728	3.7	3.21	657。	6475	112.	ñ
Average Value	0.0	1 . N	1 260		80 80	00.r	+	- 6 - 2	11.3	0.88	864	5.9	3.3	-007	6510	103.	
Value Found 0.0 Standard Deviation n.r.	0•0 ਸ•ਮ•	о ч ц	105	0.4	•	2.2	•r•n	n•r•	1.2	n•r•	n•r•	0•6	n•r•	18.	n•r•	n.r.	4
GSP-1	, c		() F •		ц 	х С У	к С	1, 55 1	36.2	0.57	326	1.6	2.14	247.	4140	143.	ξ
Average Value Malue Found	0.0 0.0	<0.7 12.5	1360	0.78	•	33.4	3.25	4•+	31.6	0.54	346	2•9	2.3	220.	4120	120.	
Standard Deviation n.r.	n r	n•r•	69	0.2	n.r.	4•0	n•r•	n•r•	4•4	n.r.	n.r.	0.3	n.r.	9.3	n•r•	n•r•	+
References: 1. Fle	1. Fleischer (1969)	(1969)	ي. 2	Faye (1969)	969)	3. Flai	Flanagan (1969)	1969)	4. Bla	Blackburn	et al.	(1671)					
n.r. = not reported																	

APPENDIX C ANALYTICAL ACCURACY

n.r. = not reported

APPENDIX D

STATISTICAL SUMMARY

j,

	Zn	16.5		45 WV	2.0 2.0	0.0	1.2	2.4	5. • • 5	18. 10.	2.1	0	0	0.5	85•0 8•7	1.3	4.5 4.2
	됩	55 45		1161	282	110 47	33	65 44	84 29	99 19	70 16	105 32	289 289	28	5500	11. 9.9	0110
	Sr	22		2.8 4.4	0•55 0•99	1.1 0.4	<u>و،</u> ه	1.3	0.1 0.2	50 54 54	0.81 0.44	2.1 0.8	1.1 0.5	0°0,04	0.2 0.06	мм 00	
	Na	41 41		264 269	41 34	32 32	69 69	84 54	84 14	36 36	82 26	123 55	82 26		6 -	11	14 20
	Mo			0.6 1.5	0		o	0	0	0	ы. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0	0	0	0	0	0
Ĺ	Mn	7.7 5.6		3t.0	000 000	2.0 0.1	5.0	.9	ล้ะ	19. 11.	5.6	5.0	8.4 •60	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 M	0.4 86	20 40
·	Mg	22 16		45 32	5 8 2 8	19.5 5.9	39 22	6 <u>1</u>	11 4•6	11.1 5.2	9•6 3•9	20 . 6.5	16.6 5.4	2.2	500	8•4 2•1	50 70 70
	Ħ	6.9 • • 3 •		ي ه. 1-8	7•0 3•2	9•1 4•7	3.1	21.	9•6 3•0	4•6 4	7.1 8.4	000					30 .
SUMMARY	К	131		331 419	126	120 93	240 250	160	186 40	176 103	135 43	300	200 66	2.9	17.6 1.6	77 20	69
STATISTICAL	Fe	31		88 658	559 685	45 25	26 20	245 200	32	825 764	320	68 15	6-2	6.7 12.	74 82	27	8 20 1010
STA	Cu	15.6		12.	8.1 15.0	17.3	.01 9.1	27 . 16.	36.	15.7	118.	40 010	50 N T N	20 40	3.1	∞u •+-	2.3
	Ca	450 MIN	•	32 40	25 33	47 17	50 52	21 12	104 12	38 47	40 21	79	45 726	л. И И	22	5	460
	Be	0.12 0.15	Veins	0•12 0•12	0.22	0	0.06	0.02	0	0.15 0.25	00	0	o	0	0	0	0
	Ba	0.70	Bearing	5	0•55 0.80	0.45 0.30	0.83 0.84	2.1	0.5 0.2	0.35	0.82 0.82	0.5 6.5	0.48 0.18	0•05 0•06	0.18 0.04	0.34	0.16 0.14
· · ·	В	1.1 1.8	Sulfide	9.8 7.8	2.6	0	20	50	1.2	00 20	-1-	10.7	sts 16.3 1.7	4•5 4•5	8:	0	0•04 0•06
*	AL	ring Veir 335 210	Related	540 350		361	1 350	414 93	1 125	253	600 200	crysts 2100 1 530	phenocr3 1880 1 690	atite 50 1 10	1 53 16	280 180	1088
	SAMPLE	All Molybdenite Bearing Veins Mean Standard deviation 210	Porphyry Copper	kay Mean Standard deviation	Inspiration Mean Standard deviation	Christmas Mean Standard devlation	Twin Buttes Mean Standard deviation	San Manuel Mean Standard deviation	San Juan Mean Standard devlation	Tyrone Mean Standard devlation	Santa Rita Mean Standard	Sandia Granite Phenocrysts Mean 2100 Standard deviation 530	Precambrian granite phenocrysts Mean Standard deviation 690 1	Embudo GraniiePegmatite Mean Standard deviation 10	Embudo GraniteVein Mean Standard Deviation	Ortega Schist Mean Standard deviation	Bingham, New Mexico Mean Standard deviation

APPENDIX D

. . ~

.

÷.,,

BIBLIOGRAPHY

BIBLIOGRAPHY

- Allman, M., and Lawrence, David F., 1972, Geological laboratory techniques: New York, Arco Pub. Co., 335 p.
- Allmendinger, Roger J., 1974, Source of ore forming fluids at the Hansonburg Mining District, Central, New Mexico: Econ. Geology, v. 69, p. 1176.
- Armour Hess Chemicals Ltd., 1972, Cationic mineral flotation: London, Armour Hess Chemicals Ltd., Special Pub., 31 p.
- Balitskiy, V. S., Samoylovich, M. I., Tsinober, L. I., and Zubkova, E. I., 1969, Some characteristics of the occurrence of germanium in quartz crystals: Geochemistry, n. 4, p. 322-328.
- Blackburn, W. H., and Dennen, W. H., 1971, Reply to discussion on "Aluminum in quartz as a geothermometer": Contr. Mineral. Petrol., v. 30, p. 359-360.
- Blackburn, W. H., Griswold, T. B., and Dennen, W. H., 1971, Spectrochemical determination of trace elements in the U.S.G.S. silicate rock standards: Chem. Geology, v. 7, p. 143-147.
- Borisenko, L. A., and Tauson, L. V., 1959, Geochemistry of gallium in the granitoids of the Susamyr Batholith (Central Tien Shan): Geochemistry, n. 2, p. 178-185.
- Clocchiatti, R., and Touray, P., 1971, Discussion of "Aluminum in quartz as a geothermometer": Contr. Mineral. Petrol., v. 30, p. 356-358.
- Cohen, A. J., and Sumner, G.G., 1958, Relationships among impurity contents, color centers and lattice constants in guartz: Amer. Mineralogist, v. 43, n. 58-68.
- Dean, R. S., and Davis, C. E., 1941, Magnetic separation: U.S. Bur. Mines, Bull. 425.
- Deer, W. A., Howie, R. A., and Zussman, J., 1963, Rock forming minerals, Vol. 4: Framework silicates: London, W. Clowes & Sons, Ltd., 435 p.
- Dennen, W. H., 1964, Impurities in quartz: Geol. Soc. America, Bull., v. 75, p. 241-246.

Geochim. Cosmochim. Acta, v. 30, p. 1235-1242.

, 1967, Trace elements in quartz as indicators of provenance: Geol. Soc. America, Bull., v. 75, p. 125-130.

, Blackburn, W. H., and Quesada, A., 1970, Aluminum in quartz as a geothermometer: Contr. Mineral. Petrol., v. 27, p 332-342.

, and Puckett, A. M., 1972, On the chemistry and color of amethist: Canadian Minerologist, v. 11, p. 448-456.

- Dunaev, V. A., 1959, Distribution of boron in some rocks of the Urals: Geochemistry, n. 3, p. 339-344.
- Faye, G. H., 1973, Standard reference ores and rocks available from Mines Branch as of October 1973: Ottawa, Canadian Dept. Energy, Mines & Resources, Mines Branch Circ. 309, 28 p.
- Flanagan, F. J., 1969, U. S. Geological Survey standards--II. First compilation of data for the new U.S.G.S. rocks: Geochim. Cosmochim. Acta, v. 33, p. 81-120.
- Fleischer, M., 1969, U. S. Geological Survey standards--I. Additional data on rocks G-1 and W-1, 1965-1967: Geochim. Cosmochim. Acta, v. 33, p. 65-79.
- Frondel, Clifford, 1962, The system of mineralogy, volume III. Silica minerals: New York, John Wiley & Sons, 334 p.
- Gaudin, A. M., 1939, Principles of mineral dressing: New York, McGraw Hill Pub., 554 p.

Guilbert, J. M., and Sumner, J. S., 1968, Distribution of porphyry copper deposits in light of recent tectonic advances, <u>in</u> Southern Arizona Guidebook III: Ariz. Geol. Soc. Guidebook, p. 97-112.

Hawkes, H. E., and Webb, J. S., 1962, Geochemistry in mineral exploration: New York, Harper & Row, 415 p.

Kamentsev, I. E., 1963, Effect of the temperature of crystallization on the amount of impurities in the structure of quartz and on the parameters of its unit cell: Geochemistry, n. 6, p. 601-604.

, 1965, Effect of temperature of crystallization on the entry of aluminum into the structure of natural quartz (abs.): Geochemistry, n. 3, p. 237.

Komov, I. L., and Novozhilov, A. I., 1968, Electron paramagnetic resonance in irradiated natural quartz single crystals (Circumpolar Urals): Geochemistry, p. 1152-1155.

Krauskopf, K. B., 1967, Introduction to geochemistry: New York, McGraw Hill Book Co., 721 p.

Kuroda, P. K., and Sandell, E. B., 1954, Geochemistry of molybdenum: Geochim. Cosmochim. Acta, v. 6, n. 1, p. 35-63. Lange, N. A., 1946, Handbook of Chemistry: Sandusky, Ohio, Handbook Pub., Inc., 1767+ p.

Leonova, L. L., and Pogiblova, L. S., 1961, Uranium in minerals of the intrusive rocks of the Kzyl-Ompul Mountains (northern Kirgiziya): Geochemistry, n. 10, p. 999-1004.

Lepeltier, Claude, 1969, A simplified statistical treatment of geochemical data by graphical presentation: Econ. Geology, v. 64, p. 538-550.

- Mason, B., 1966, Principles of Geochemistry, 3rd Edition: New York, John Wiley & Sons, 329 p.
- Nash, Thomas J., and Theodore, Ted G., 1971, Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada: Econ. Geology, v. 66, p. 385-399.
- Pinckney, D. M., and Haffty, J., 1970, Content of zinc and copper in some fluid inclusions from the Cave-in-rock District, southern Illinois: Econ. Geology, v. 65, n.4, p. 451-458.
- Price, V., and Ragland, P. C., 1966, Trace metals in quartz by atomic absorption spectrophotometry: Southeastern Geology, v. 7, n. 3, p. 93-99.
- Rabinovich, A. V., and Baskova, Z. A., 1959, The distribution of lead in some granitoids of Eastern Transbaikalia: Geochemistry, n. 6, p. 663-667.
- Rankama, K., and Sahama, T. G., 1950, Geochemistry: Chicago, Univ. Chicago Press, 912 p.
- Ritter, C. J., and Dennen, W. H., 1964, Color center zonation in quartz: Geol. Soc. America, Bull., v. 75, p. 915-916.
- Roedder, E., 1971, Fluid inclusion studies on the porphyrytype ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado: Econ. Geology, v. 66, p. 98-120.

, 1972, Data of geochemistry, sixth edition, Chapter JJ. Composition of fluid inclusions: U.S.G.S. Prof. Paper 440 JJ, 190 p.

, Heyl, A. V., Jr., and Creel, J. P., 1968, Environment of deposition at the Mex-Tex deposits, Hansonburg District, New Mexico, from studies of fluid inclusions: Econ. Geology, v. 63, p. 336-348.

Rosenbloom, S., 1958, Magnetic susceptibilities of minerals in the Franz Isodynamic Separator: Amer. Mineralogist, v. 43, p. 170-173. Sheppard, S. M. F., Nielsen, R. L., and Taylor, H. P., Jr., 1971, Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits: Econ. Geology, v. 66, p. 515-542.

- Shrivastava, J. N., and Proctor, P. D., 1962, Trace element distribution in the Searchlight, Nevada, quartz monzonite stock: Econ. Geology, v. 57, p. 1062-1070.
- Solodov, N. A., 1960, Distribution of alkali metals and beryllium in the minerals of a zoned pegmatite in the Mongolian Altai: Geochemistry, n. 8, p. 874-885.
- Stavrov, O. D., 1961, On the content of rare elements in quartz: Geochemistry, n. 6, p. 542-549.
 - , and Khitrov, V. G., 1960, Boron in rocks and pegmatites of eastern Sayan: Geochemistry, n. 5, p. 482-493.
- Stringham, Bronson, 1966, Igneous rock types and host rocks associated with porphyry copper deposits, in Geology of the porphyry copper deposits, southwestern North America: Tucson, Univ. Arizona Press, p. 35-40.
- Studennikova, E. V., Glinkina, M. I., and Pavlenko, L. J., 1957, On the distribution of molybdenum in intrusives: Geochemistry, n. 2, p. 136-143.
- Syers, J. K., Chapman, S. L., Jackson, M. L., Rex, R. W., and Clayton, R. N., 1968, Quartz isolation from rocks, sediments and soils for the determination of oxygen isotopes composition: Geochim. Cosmochim. Acta, v. 32, n. 9, p. 1022-1025.
- Taggart, Arthur F., 1945, Handbook of mineral dressing, ores and industrial minerals: New York, John Wiley & Sons, 1000+ p.
- Tatekawa, M., 1954, Spectrographic distribution of minor elements in the quartz and feldspars contained in granites and pegmatites of the Oku-Tango district, Kyoto Prefecture: Univ. Kyoto, Mem. Coll. Sci., v. 21, Ser. B, p. 183-192.