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ABSTRACT

Horizental flow models are widely used as a means for determining
hydraulic head distribution and agquifer parameters in phreatic aquifers.
They do not account for several physical factors including 1) the flow
zone thinning, 2) vertical flow and anisotropy of permeability, and
3) flow in the unsaturated zome.

This study is an attempt to determine the significance of these
physical factors and consequently to establish the wvalidity and
limitations of the horizontal flow models using existing solutions.

The physical problems under Eonsideration are axisymmetric flow to
a well, flow to parallel drainage ditches bounded by an impervious
horizontal bottom, and artificial groundwater recharge.

Correlation of the horizomtai flow model and the vertical flow
model for the problems named above, indicates that the vertical flow
effects and anisotropy of permeability are insignificant provided
that the transformed aspect ratio (horizontal dimension relative to
aquifer thickness‘times the square root of the anisotropy ratio) is
equal to or greater than 4.0. Correlation of the vertical flow model
and the variably saturated flow model indicates that the flow in the
unsaturated zone is practically insignificant if the ratio of the
critical height or thickness of the unsaturated zone to the équifer
thickness is equal to or less than 0.07. The flow zone thinning can
be neglected provided that the ratio of the drawdown to the initial

saturated thickness is equal to or less than 0.2 in axisymmetric flow
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to a well, the ratio of the drainable depth to the aquifer thickness
is equal to or less.than 0.2 in linear flow to parallel ditches, and
the recharge ratio (recharge relative to horizontal hydraulic conductiv-
ity times the ratio of the square of half the recharge basin length to
the initial saturated thickness j is equal to 0.01 in artificial
groundwater recharge. Practically speaking it is also concluded that
the nonlihear horizontal flow model is valid provided that the trans-
formed aspect_ratio is equal to or greater than A.O.and the ratio of
the critical height of the unsaturatéd zone to the initial saturated
thickness is equal to or less than 0.07. A correction which accounts
for the combined effects of flow zone thinning and vertical flow was
dgveloped for the horizoﬁtal flow model.in the case of the well flow
problem. A new field equation suitable for numerical simulations,

combining the above effects, has been obtained.
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CHAPTER 1

INTRODUCTION

Horizontal flow models are approximate theoretical models applicable

1

mainly té "hydraulic flows, the tﬁeory in which the flow is averaged
over the depth (Muskat, 1946). This theory was originally proposed by
Dupuit in 1863 and‘was later'generaliéed by Fofchheimer in 1886. It is
based on a number of assumptions resulting from the obsefvation that in
most groundwater flows the slope of the free surface is very Small, and
hence the sfreamlines can be taken as parallel to the impervious bed.
Consequently the piezometric head along any vertical line is a constant
equal tO'the elevation of the free surface at that line. The hydraulic
gradient is equal to the slope of the free surféce and is independent
of the depth z. This leads to the conclusion that flow is essentially
horizontal and that vertical flow velocities can be neglected. The
important advantages gained by emploving these aséumptions (Dupuit
assumptions) are that the vertical coordinate z is eliminated, and tﬁe
nonlinear bounaary condition at the free surface can be dispensed with.

The horizontal flow model (Dupuit approximation) is among the most
powerful tools for treating unconfinea flows. It‘is the oniy simple
tool available to most engineers and hydrologists for solving such
problems (Bear, 1972). |

The primary objective of this study is to determine the relative
importance of some of the physicallfagtors and effects of certain

~assumptions in the physical analysis of a phreatic aquifer, using the
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horizontal flow model. Theée factors can be categoriéed as 1) thinning
of the flow zone, 2) vertical flow and anisotropy of permeability,
3) compressibility of the aquifer, 4) seepage face, andVS) the
unsaturated zone. The ultimate obﬁective is to‘determine»quantitatively
the validity‘and limitations of these models from a practical standpoint.
To achieve these objectives, specific quantitative criteria describing
the limitations of the horizontal flow models’will be developed. To
improve these models‘relaxotion.of the severe limitations will also be
developed whenever possible.

A systematic analysis wili be made of thé existing literature
dealing with well flow anaiysio, agricultural drainage, and artificial
groundwater recharge problems. Invwell flow.analysis a reliable
estimate of the aquifer parameters is necessary for the overall planning
and management of water resources. . Accurate prediction of the rise and
fall of.the water table due to added water from deep oercolation is a
prerequisite for optimum design of a drainage system or groundwater
recharge facility. Consequently it is very important to estaolish
‘quantitatively thé limitations of the horizontal flow model as a tool
with which to analyze these probiems.

The main factors considered in the choice of these study problems
Qere 1) the availability of literature necessary for an adequate
aﬁalysis of the physical factors omitted in the horizontal fiow models,
and 2) the significance of the problom from a practical point of view.

All of the problems considered here have to deal with anisotropic
homogeneous unconfined aquifets bounded by imporvious horizontal

bottoms. Though the well_fiow problem is restricted to fully penetrating



— Y
'pumpiﬁg and observation wellé, it is a very basic and practical
pfoblem in hydrology.x-The artificialrrecharge problem involvés a
typical water-recharge system for unconfined aquifer receiving
’uniform vertical percolation. The rate of percolation is maintained
byva spreading area'in the form of a long étrip located above the
unéonfined aquifer. - After the percolafion rate has been applied for
some>time, a groundwéter'ridge will develop. FA probiem was required
for which‘adequate'literature existed. This lead to the choice of
a very idealized drainage problem as .a subject of study. it is
liﬁited to shallow horizontal aquifers; the drainage systems considered

are restricted to fully penetrating parallel open ditches.
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CHAPTER 2

Basic Equations, Literature Survey and Objectives

of the Present Investigation

2.1 Introductofy Remarks

This chapter is a compilation of the significant‘developﬁents
pertaining to groundwater flow in an‘unconfined aquifer. The basic
' mathematicél equations‘are‘présented along with derivations of some of
the governing partial differential equations and boundary conditions,
and the assumptions underlying. these equations. The objectives of the
related mathematiéal models are considered, (based on alliterature
survey).and specific approaches to the solution are explained for the

various models,

2.2 - Basic Equations

A, Equation of Continuity

A mathematical expression for the COnservation of mass principle
can be developed (Bear, 1972) for any arbitrarily shaped fixed volume
(see Figure 1). The mass outflow pér unit time through the surface of

the volume is

I o(d-m) dA
A

where dA = differential element of the surface A enclosing the volume
- e .
q = specific discharge
-5 .
n = outward pointing unit-normal vector
and p = density of the fluid.
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FlGURE 1. Control Volume
.This must equal the rate of decrease of mass within the fixed volume,

- 3 :
_fv_gz(pnsw? dv

where n = porosity of porous medium

degree of saturation = 1iquid volume (water)
void volume

[52]
il

Thus the principle of conservation of mass becomes

I, g—t(pnsw)r dv + [, p(q-n) dA = 0

' Using the divergence theorem for the second term and rearranging gives -

fv {§€(pn8w} + V- (p} dv = 0
or
S(ons ) + ¥ (0T) = 0 (2.1)

This equation applies to any arbitrary volume. However, to develop-
‘an equation useful in describing flow in porous media we must consider

a volume element sufficiently large that the irregularities of the
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flow in individual pores are effectively averaged, facilitating the use

of an average velocity to describe flow across the surface; it must

also be small enough that its propérties vary little within it.

‘B. Dynamic Equation

Water in a porous medium moves in response to potential differences
and in the direction of decreasing potential. The steady flow of a
viscous, incompressible, and chemically inactive fluid through a
saturated, homogeneous, porous medium, at low.Reynolds number and
~ constant temperature,Aobeys Dafcy's law stated in terms of Cartesian

tensor notation as follows:

- o
qi = "‘*Kij ’a% i (2.2)
‘where Kij = the hydraulic conductivity tensor; i,j = 1,2,3
x0T cartesian coordinates, i = 1,2;3.

qi = componenté of the specific discharge vector, i = 1,2,3.
b = p/og + z
where P = pressure
PE = Y, specific weight of the fludd

z = elevation above a datum.

C. Variably .Saturated Model (Exact)

From equation (2.1) we obtain
~(09"§ + §-vp) = P08y (2.3)

Assuming that the spatial variation of fluid density with pressure change
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is small enough that V. (p{)~pV-q, and that the wetting fluid (watef of
this study) is incompressible, equation (2.3)can be written as

p 99 = —pV.q ‘ (2.4)
5t . |

.where 6 = nd, is the volumetric moisture content. Substitution of
equation (2.2) into this equation gives the Richards equation (Richards, -
1931),

3 5 3¢ : - )
2=9_ (K.. 2.5
at  Ix, ( ij axj) ' : , (‘ )

ifies flow in saturated and unsaturated porous medium, when the flowing

fluid and medium are both incompressible,

D. Potential Theory (Laplace Equation)

If contribution to flow ffom.the unsaturated zone of the pérous
medium is neglected and only flow below the water table‘(where_all'the
pores are regarded as filled with water) is considered, equation (231)

This equation with the necessary initial-and boundary conditions, spec-—
may be written as

Veod = 20 | B (2.6)

Lf the matrix,as well as the water, is compressible, the density of
the water will be a variable (dp = BlpO dp); also the porosity‘of the

medium and the vertical dimension of the elemental volume are variables

Using the above assumptions and equations (2.6) and (2.2) Cooper, 1966,

(assuming that the changes of the lateral dimensions are negligible).
has shown that
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3 ,, 9 5 = s, 9 (2.7)
0x4 ij ot
where SS = pg(nBl + o) is specific storage; Po is a reference water
density (constant); Bl and ¢ are the compressibility of water and
matrix respectively.
If we consider two-dimensional flow of a constant density fluid in a
hoﬁogeneous, inconpressible medium, the equation can be written as
82

, , |
5 0 -

Ky 22+ K, 220 (2.7a)
ox oz

where KX and KZ are hydraulic conductivities in x and z directions,

which are principal axes of the conductivity tensor.

FREE SURFACE BOUNDARY CONDITION

If we neglect capillary fringe, a free surface may be dgfined’as
the uppermost line of saturation. Hydrodynamically it represents a line
of atmospheric pressure. The shape ofnthe'free éurface'is generally
unknéwn in the problem as formulated according to the potential theory.
It can be determined in conjunctioﬁ with the governing paftial
differeﬁtial equation'derivéd abovef‘ An unsteady free surface with
accretion is a sdrface‘on which the-pressure‘is‘ﬁaintained constant
(p = 0). A formulation of this free surface for the two-dimensional case
is presented below.

The. piezometric head has been defined as

b= plpg + z



Rearranging results in
p=0g(¢ -2 - o (2.8)

Since the pressure is uniform over the free surface, we have

where the total or substantial derivative Ip/Dt is expressed as

(Bear, 1972, p. 72)
W 4 JeVp =0 (2.10)
ot

Physically, the velocity of propagation of the moving free surface v

may be related to the vectoriai sum of seepage velocity Z/n and recharge

velocity ﬁ/n (Bear, 1972, p. 258)

> > o
n*v = n- (q~R)/n ' (2.11)
’ 5 -~ N
Considering vertical accretion with R = —-kR where k is a unit vector
in the vertical direction, and substituting equations (2.8) and (2.11),
into (2.10), the two-dimensional form of the phreatic surface condition

becomes

(K. + R) #+R] = 0 (2.12)

s, 90 Sk, (3e/0x)2 + K, (89/32)% - i

AT

=

Qo
N

1

where n S the specific yield.

Cy?
If R = 0 this leads to

5 g%‘—.[KX(B¢/BX)2 + K, (30/32)” - K, %y - g (2.13)

Dp/Dt = 0 . (2.9
y 3z
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These are. the required two-dimensional, non-linear, dynamic boundary
conditions which must be satisfied at the free surface; equations

(2.12) and (2.13) apply beneath and outside the recharge basin,

respectively.

E. Approximate Theory (Horizontal Flow Model)

Determination of the location of free surface is one of the

.objectives of the solution of gravity flow problemé. The nonlinearity

of this boundary condition, togeﬁher_with the fact that the location
of. the bounaary is uﬁknown! makes an exact analytical solution of the
flow problem practically impossible. This is the reason for the
:development of approximate methods in which the flow is averaged

over the depth of the aquifer. The theory was originally proposed by
Dupuit (1863), and it stems from two assumptions. |

i) ‘Fof small inclinations of the free surface of a gravity flow
system, the streamlines can be taken as parallel to the imperﬁious bed.
Consequently the piezometric head along any vertical 1iﬁe is a
constant equél to the elevation of ﬁhe free surface at that location.
ii) The hydraulic gradieﬁt is equal to the slope of the free surface
and is dinvaviant with depth; this establishes that éhe flow is
essentially horizontal, or that we have a hydrostatic pressure
distribution. Thé advantages of these assumptions are (1) the non;
linear boundary condition at the free sufface can be dispensed’wifh,
and (2). the potential ¢(x,y,z,t) at an arbitrary point P(x,v,z) of

. the flow domain may be replaced by thé correspoﬁding elevation h(x,y,t)

of the free surface, leaving only one unknown h and eliminating the
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- vertical coordinate z.

With these assumptions, the nonlinear equation describing
unsteady two-dimensional flow in a saturated unconfined aquifer
bounded by an imperviocus horizontal bottom can be derived from the
continuity equatioﬁ and Darcy's law; this has beeq done by several
authors, including Boussinesq(1904), Baumann (1965), and Bear,
Zaslavsky and Irmay (1968).

Using equation (2.2) in equation (2.7),

- Qhﬁhqi =5, 2% (2.14)
9%y at
Integrating each term in equation (2.14) over the depth of flow h
(Hantush, 1964)‘gives in the (x,y,z) cartesian coordinates,
h h

~U Qx4 2y 4+ B4y =5 s B0 4z (2.19)
0 0ox dy 9z 0 ot

or

h ' . |
-1 - LA oh )

h .
oI5t fo‘¢dz~¢lz=h 5t | (2.16)

The kinematic boundary conditions at the free surface (z=h(x,y,t)) can

be writtén as (Lamb, 1945)

o Oh 4 3h On - |
§ o4 °n 4 en - -R=20 (2.17)
Y ot Ix 9% Iy oy 9 |

and qz,z=0 = 0 (impervious horizontal boundary condition)
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Substituting (2.17) into (2.16) gives

h h | ho

P ] " Bh © .3 oh
R qde+ Xl qdz+s PPogl=s S gas - oh.
[5; [ ade ; aydz + 5 2 - k] o fo ¢dz - ¢ __, =
(2,.18)
Integration of Darcy's equation results in
- h h ‘h
[ oz = K T3 dz= o (0 T gdz - o] 2B (2.19)
0 0 9x 3x .0 z=h dx ‘
. h
where ¢ =17 b(x,y,2,t)dz ' (2.20)
h ‘

Combining equations.(2.18), (2.19), (2.20), and (2.21) leads to

2

2
T a2 O a7 2 P B R h
KX axz(h¢_ h=/2) + Ky‘ayz(h¢ h“/2) + R ss 8t(cbh h“/2) + 5. 22

Yat

(2.22)

Now neglecting the variation of piezometric head over the depth of

flow h by assuming ¢ ® h or BEVBX = dh/9% results in

d oh 3 9h
h + K h =) + R =5S_h
(h =) ( ‘ay) sh oy

FIRR
X ox ox Y oy

S5, == 2.23
¥ ot ( )
The only assumption used in the above derivation is that 3¢/0x = 8h/ox,
i.e., the pressure)is hydrostatic in the flow domain.

Equation (2.23) is a nonlinear second order partial differential

0
and ¢ = h(x,y,t) at z=h. ‘ ' (2.21)
equation (cailed the Boussinesq equatibn); with the proper boundary and
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initial condition; it will be referred to as the horizontal flow model.

2.3 Literature Survey
This section covers the past research and méjor developments in

well hydraulics, agricultural‘drainage, and artificial recharge.
A.  Well Flow Hydraulics

HORIZONTAL FLOW MODEL

‘Thiem (1906) was probably first to present an analytical solution
to the Dupuit equation for steady state flow in confined and uncoﬁfined
aquifers; his solution . is known as the equilibrium formula. Im 1935
Theis Solved'thevproblem‘of unsteady state flow in a confined aquifer
by‘analogy to heat conductiopjin solids. Jacob (1940) verified this
solution directly from hydraulic concepts; Ee also used Theis' (1935)
mathematical model to analyze unconfined aquifers énd developed an
ap?roximation (the Jacob'correction) (Jacob, 1963) for thinning of the
flow zone.

Bqulton (1963) introduced the éoncept of delayed yield for uncon-
fined aquiférs; he assumed that the total:storage is the sum of an
insfantanéous storage coefficient S'¥ SsD (aquifer'gompressibility)

and gravitational drainage coefficient, S, (responding with an

y

exponential time delay). Tn his solution, drawdown is governed by the

instantaneous storage coefficient at short times and by the gravitational

drainage coefficient (specific yield) at long times. This concept has
been criticized (Neuman, 1972) on the grounds that the delay index

lacks a firm physical basis.



.

Using npmericairmethods Kriz et al. (1966) solved the nonlinear
horizontal flow equation, for a well fully penetrating an unconfined
aduifer. Dagan (1966) obtained an analytical solution for the same
boundary and initial value ﬁroblém using a‘perturbation expansion in
series of a Sméll parameter, effectively linearizing the nonlinear

horizontal flow equation.

POTENTIAL FLOW MODEL (VERTICAL FLOW)

Boqlton (1951, 1954) assumed that when pumpiﬁg starts, the flow in
the neighborhoqd of the well is vertical. This givés rise to his’
linearized vertical flow model (1954) which he solves analytically.
Type curves were-developed by Boultéﬁ and Stallman (1961) for drawdowﬁ
at therfree surface. Dagan (1967a) extended Boulton's model to account
for paftial penetration.

| Neuman (1972, 1974) generalized Dagan's (1967a) solution by
incorporating the compressibility of the unconfined aquifer into the
flow equatién. His results are similar to thosg'of Boulton (1963),
i.e, the compressibility of the aquifer initially dominates drawdown
and specific yield becomes important at large time, but his solution

has no artificial coefficients and depends only on the compressibility

‘and specific yield of the aquifer:

VARTIABLY SATURATED FLOW MODEL (EXACT THEORY)
.The above models account only for flow in the saturated portion
of the aquifer, though an unsaturated region draining to the water table

also exists. Taylor and Luthin (1969) solved the variably saturated
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model numerically; Brutsaert, et al. (1971) and Cooley (1971) used
fully implicit finite difference methods to solve the problem. -
Neuman (1972) developed numerical solutions using the finite element

method.
B. Agricultural Drainage and Artificial Groundwater Recharge

HORIZONTAL FLOW MODEL

Boussinesq (1904) was the firét to find an exact solution for.
the nonlinear horizontal flow modél;‘he used the separation of
variables. method, and the similarity transformation method for certain
boundary conditions. Irmay (1966), using appropriate transformatiomns,
extended the above technique and found a solution to the nonhomogeneous
equation by introducing additiopal assumptions. Polubarinova-Kochina
(1952) used the Boltzman transformatioﬁ'to solve the problem of seepage
by variable water level in reservoirs. .

Karadi, et al. (1968), Yeh (1970), Hornberger (1970) and Verma
(1969) solved the nonlinear horizontal flow equation by numerical
techniques, for oner gnd two-dimensional flow situations. Glover
(1965), Bower (1965), Van Schilfgaarde (1965), and De Wiest (1965)
showed thé limitations and validity of the Dupuit-Forchheimer equations
by comparing their results to ekperimental and field resﬁlté. Problems
of ground water recharge were analyticélly solved by Polubarinové-
Kochina (1962), Glover (1961), Bittinger and Trelease (1966) and
Baumann (1965); using the linearized horizontal flow equaﬁion in h.

An example of the second linearization (linear in hz) is given by

"Hantush (1967) and Marino (1967); their solutions extend the validity -
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of the correqundiﬁg solutiens td the linear equation in h for one-

.and two-dimensional cases of growth and decay of groundwater mounds in
aquifers of infinite extent. Terzidis (1968) used both explicit and
implicit finife difference techniques to solve the one~dimensional
nonlinear equafion numerically. ‘Bibbj and Sunada (1971) used an
implicit finite difference scheme to solve the transient two-dimensional

nonlinear equation (as related to a leaky aquifer).

POTENTTIAL FLOW MODEL (VERTICAL FLOW)

Davidson  (1936) was probably the first to present an analyticall
solution of Laplace equation with‘alnonlinear free surface boundary
condition. He used the complex potentials to solve the problem of
steady two-dimensional flow throuéh a dam of rectangular cross section.
Bazanov (1938) fsee Bear, et.ai., 1968) used the hodograph technique to
solve‘the steady state problem of dfainage cf an infinite aquifer
toward a curved drainage ditch; Muskat (1946) employed the hodograph
technique for steady state seepage of water through a dam with vertical
faces; he computed the quantity of seepage as well as. the preésure
disﬁribution un&erlthe basé of the dam. Polubarinova-Kochina (1962)
applied the.technique ﬁsed bbeavidson to an unsteady free surface,
using Zhukovsky's mapping function for the nonlinear free surface
boundary condition. The resulting expfession was linearized and an
estimafe of accuracy of the solution was obtained by successive
approximations.

Daéan (1964, 1966, and 1967) presented solutions té several

free surface ground water flow problems. He used a perturbation
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techniqge‘which foeétively lineariées the free.surface boundary
condition. Kirkham (1950, 1964, and 1966) has presented solutions,
for both flow toward a ditch énd axisymmetric flow toward a well, in
which separation of variables and Fourier series methéds are applied.

De Wiest. (1969) éolved the problem of damping of the unsteady
free surface flow through a dam by the method of power series expansion
of unsteady potential (a timé dependent.perturbétion of the final steady

state flow). There was good agreement between his results and those

from experiments on a Hele-Shaw model.

Hunt (1970) extended Dagan's linearization above to the two-
dimensional case for aquifers of finite and infinite depth.

Murray (1970) corrected the flaw in Kirkham's analysis (1964) and
exténded'it to include the seepage face.

Gelhar (1974) used the stochastic approach to solve the Laplacian

aquifer for a partially penetrating stream. Kirkham and Gaskel (1951)

used the relaxation téchnique to solﬁe the problem of water table
recession in tile drained land, but the method required considerable
compﬁtatidn. Later Isherwood (1959) refined the technique and obtained
a relatively rapid convergence. Jeppson (1968).solved the problem of
seepage from ditches usingka finite difference scheme in the complex
potential plane, where the position of the freg surface is known. Verma
and Brutsaert (1971) used the successive over relaxation technique to
solve for the’fail of unsteady free surface groundwater seepage.

Amar (1973) solved the nonlinear boundary value problem of

artificial groundwater recharge using the accelerated Liebman relaxation

method. Also, Singh (1972) solved the nonlinear problem for recharge
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from a long strip and for a circular pond.

VARTABLY SATURATED MODEL (EXACT THEORY)

In 1931 Riéhards derived an equation of flow in unsaturated
porous;media by combining Darcy's léw and the continuity equation;
a detailed account of tﬁe physics of the capillary flowbphenomena has
béen‘giveﬁ by Kluté (1952), Miller and Miller (1956) and by Swartzendruber
(1966). Rubin (1968), Téylor and Luthin (1969), and Verma and
bBrutseart (1970) solved the Riéhardg equétion numérically for the.

problem of flow in stream connected aquifer.

2.4 Objectivesvof the Present.Investigation——sbecific Approach

As indicated by the literature survey, a considerable amoﬁnt of
'wofk has beéen done on thé subject of groundwater flow in phreatic
aquifers; a large amount of literature onlthis subject is continually
appearing. However, practicing hydrologists still prefer to use
simple models which are easy to use and éheap to operate; due to the
Aumer ous assumptions used to reach an analytical solution, these models
are not an exact description of the‘physicél systems in consideration.

It‘is therefore of”theoréticai and practical interest to attempt
an analysis of the problems in question, to substantially increase. the
accuracy and generality of the conclusions réaéhed and to brovide a
: Eetter understanding of the dynamics of flow in phreatic aqgifers.‘
Accordingly, it is an objective of the present résearéh to direct
attention.toward an evaluation and correlation of the various existing
solutions of the different models in order to establish quantitatively

the validity and limitations of  the horizontal‘flow model.
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Three general categories of models will be considered. One is
based on the Dupuit assumption of_hydrostatic‘pressure distribution, and
ig known as the horizontal flow model; ahother is based on potential
fiow and'emphasizes vertical flow, and the third is thé exact theory or
the so-called Qariably saturated model. A systematic analysis of the
existing solutions will be ‘undertaken, to separate and investigate
the significance of the physical factors omitted in the horizontal model.
More specifically, in the well flow problem, a correlation of the
nonlinear and the linearized horizontal flow models will be used to
separate thereffects of the flow zone thinningf A comparison between
the linearized’ﬁerticél flow model and the linearized horizontal
flow model will be used to analyze the vertical flow effects and the
anisotropy of permeabilitf. A correlation of the linearized vertiéél
:flow model and the variably satufated model for small drawdown wili be
used to analyze contributions of the unsaturated zone. The same
procgdure will be followed in examining the other physical facfors
omitted in the hofizbntal flow model. It will also be followed in the
examination éf artificial recharge and drainage problems. -An over-all
coﬁparison of the variably saturated model and the horizontal flow model
will be made to establish the latter'é &alidity. Existing solutions
both analytical and numerical, will be utilized in this investigation;
new numerical results will be obtained using the computer programs of
the numerical solutions.

Specific quantitative criteria will be obtained to establish the

limitations of the horizontal flow model. Relaxation of the limitations
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to improve the horizontal flow model will be found by deriving simple

corrections whenever possible.
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CHAPTER 3.
Theoretical Models for Unconfined Flow to a Well

3.1 Introduction

The investigatioﬁ and analysis of‘the theoretical models will be
based upon an idealized flow situation which approximates abtual.field
situations. A simplified physical model of an unconfined aquifer
with a crOss4séction as shown in figure 2 was selected for the well
flow problem. An evaluation of the'different»théoreticél models for.
radial flow tola fully penetrating pumping Qell in a phreatie aquifer
will be developed.to provide a better understanding of the hydro-
dynamics of flow in these aquifers.

Three general categories of mathematical models ére considered
(see table 1)
(i) Horizontal flow model based on the Dﬁpuit assumption of nearly
horizontal flow.
(ii)‘ Potential flow model which emphasizes vertical flow,
(iii). Exact theoretical model based on a vafiably saturated medium.

The solutions developed here and by previous iﬁvestigators,
corresponding to the yarious theqretical formulations, will bé compared
and anaiyzéd to establish or recémmend an over-all model which will

satisfy the objectives sought in well flow problems.
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Figure 2. Schematic diagram of an unconfined aquifer
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Table 1 ‘Models and their limitationsvconsidered in the well flow

problem; h = h(r,t) is the height of the phreatic surface

above a datum and D is the initial saturated thickness.

Theoretical Model Assumptions Author
Vertical Flow zone |Unsaturated|Elastic
“flow thinning Zone Storage
(h#constant) ‘
linear . no Theis (1935)
o in b no ~mo no yes | Boulton(1963)
53 linear ves (hzD in , . l
o = . . )
S in h o storage term). no no Jacob(1963)
4 o
o , ‘ .
T .nonlinear 7no yes no no Kriz,et al.
: (1966)
, e no Boulton(1954)
o linearized  yes no no n (19674)
g9 free surface - agan a
EE ves Neuman (1972)
a
RN >
2 § nonlinear yves yes no yes no solution
Fy free surface available
linearized Kroszynski &
model -yes no ves no Dagan(1974)
' |
o o : ‘
—~ @ g
ChE: 14
Cpine nonLineart no Kroszynski &
H 72 B model yes yes ves
Bod e Dagan{(1974)
e
o yes Neuman &
Feddes (1974)
linear
o in h yes no no yes Streltsova
E 39 (1972)
> 29
o o=
B lineag
i 5o inh yes yes no ves Present
L ' (h~D in stor~ : Research
age term)
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3.2 -‘Horizontal Flow M&dels
A. Tinearized Model in h
Equation (2.23) (Boussinesq equation) is the basic partial
- differential equation in the development of the mathematical models

for horizontal flow., With no accretion, this equation can be written

in axisymmetric cylindrical coordinates as

13 5h dh
- (3.1)

Ke 757 (b T)“Sh‘S_J’SyT

If we assume Sy>>SSh, (3.1) becomes

9 (rh Iy =g O | S (3.2)

This is monlinear in h, 'and no general analytical solution is
available. However, the linearized version of this equation can be .
obtained by replacing h with D~s where s is the drawdown and assuming

§<<D, This gives

Bs

19
r or (r Br) 9t

KrD

Theis (1935) solved the above equation subject to the following

boundary and initial conditions:
s(r,t=0) =

lim s(r,t) = 0
T &

(3.3)
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The solution to equations (3.3) and (3.4) is given by

e = Qo Udu_ Q. |
s .fu e S T W(u) _ - (3.5)

where T = K Dis the transmissivity,

u»= rZSy/4TF
® —u

and ‘ W) = f &— du
u

(W) is usually called the well function for confined aquifers, or the
Theis well function after C. V. Theis who developed equation {3.5) in

1935.) FEquation (3.5) is shown in figure 3.

B. Linearized Model in h

-

If h is replaced by D-s in equatiom (3.2) we get

| 2
13 3 (s - s°/2D)
- ar[rD (s—s/ZD)] “‘*‘:gﬁ*g—
(3.6)

Denoting the corrected drawdown s' as

s' = 5 - 82/2D o | (3.7
equation (3.6) can be written

19 as' Sy os' 3.8

;;“a—(r—') C KD(I = s/D) IF (3.8)

This can be linearized by taking (1 — s/B) = 1 or assuming that s<<D

(only in the storage term) to get

2
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13 (r3'y =5 3s" (3.9)
T 3r or T ot

Equation (3.9) is subject te the following boﬁndary and initial

conditions:
s'(r,t=0) =0

lim s'(r,t) =0 ' .
T _ ‘ ' (3.10)

1]
lim « g%— = -Q/2mT

0

This is analogous to the problem mentioned earlier solvedby Theis

(equation 3.5); thus the solution is

s' = s - s2/2D = (Q/4T) W(u) (3.11)
: | 41> o 1/2 ‘
or 4TTs/Q = —MEHH [ - (1 = W(uwe) 1 (3.12)

where ¢ = Q/ZWKD2

With the aid of equation (3.12) and tabulated valges'of the Theis
solution fof W(u), wé/can easily develop the corresponding type curves
for the linear horizontal model in h2 for different values of the
parameter_c; |

Figuré_4 shows a graphical representation and comparison of this
model (equation (3.12)) with the linear horizontal model in h‘(Theis.

solution).
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C. Nonlinear quél
Kriz, et al. (1966) solved the nonlinear Boussinesq equation

(equation (3.2)) numerically in the form

cd%w 1 1 dw | '
d‘g'z"*' (E+/(I) ) T 0 - | (3']«,3_)

where w = (h/D)2, £ = (r25) / (4Tt).

They used a generalization of Runge Kutta formulas; the results

of the solution are shown in figure 5.

3.3 Correlation of Horizontal Flow Models

The horizontal flow modeis have been derived using the Dupuit
assumption.of hydrostatic pressure distribution along any vertical
in the flow domain. They ére used in practice to find aquifer
parameters, the coefficients of storage and transmigsivity. These
factors, along with a long rahge forecast of drawdown, are the ones to
be considered when we évalqate the mﬁdels.

vFigure 6 shows a comparison between the nonlinear model and
linegr horizontal flowlmodelé in h and hz. Qualitatively, fhe linear
model in h differs significantly from the other two models for large
time, whereas at small time they all merge to one type curve. However,
for all‘pfactical purposes there is hardly any difference between the
nonlinear model and the linear model in hZ2.

Quantitatively, figure 7 shows that for all practical values of

the parameter c = Q/?.’ITKD2 in the range of 1/u < 2 x 102, the difference

between dimensionless drawdown predicted by the linear horizontal

model in h and thé nonlinear model is < 10%Z. But for‘1/u i 2 x 10°
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the difference depends on the value of the parameter c. For instance,
in an aquifer with ¢ = 0.08 (D = 50 feet, K = 1000 gallons per day

per foot2

. and Q = 870 gallons pef ninute) we fiﬁd that at 1/u = 107
theré is about a 32% difference in dimensionless drawdown between the
nonlinear modei and the linear model in h (Théis solution). The
higher the value of ¢, the larger’the difference.

Figuré 8 shows another way of analyzing the difference between
the type curves, using the ratio of drawdown to total saturated
thicknéss determined by the nonlinear horizontal model. TFor s/D = 0.2,
there is a 10% difference which increases linearly to about 40% for
s/D = 0.8; thus the error introduced in the Theis solution by the
" linearization of the hérizontal model is mainly a function of the
ratio of drawdown to tﬁe initial saturated thickness s/D regardlesé of
what the value of the parameter c¢ is.

Analysis of the well functions in figure 7 shows a good‘agreement
between the linear model in h2 and the noﬁlinear model for all values
of 1/u. Tt is expected from theory that this will be the case, since
the discharge boundary conditions are essentially the same. THe
flux terms of both equations (5.2) and (3.9) are also the same. The:
difference existing between thé two models is in the storage term,
where fhe qOefficient‘for the linear model in h® is DSy/(D—s); this
was linearized assuming D ¥ D-s, to permit finding an analytical
solution for equation (3.8). This diffefence between the solutioﬁs
of‘the médéls is wvery small for all practical purposes. For instance;
~for ¢ = 0.08 and l/u = 105, there is only a 1.0% difference (the

linear model in h? shows higher drawdown than the nonlinear model).
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To conclude the discussion of the horizontal flow models, we
pote that the dimensionless draﬁdown'predicted by the linear horizontal
model in h2 (Jacob correction) is practically identical to that of
the nonlineax model;ieven for large time and large drawdowns. This
proves that it is a good approximation for the nonlinear horizontal
modei, which is an exact interpretation of the Dupuiﬁ assumptions.
However, this still does not‘represent precisely the physical problem

under consideration.

3.4 PoteﬁtiallFlow Model (Vertical Flow)

We have Shown_(see section 2.2B) thétSaccoraing to the horizontal
flow model, a hydrostatic‘pressure distribution is assuméd along any
vertical of the flow region. This is not justified near the puméing
well. Boulton (1951) showed experimentally that in the neighborhood of
a pumping well, the vertlcal component of the specific discharge‘a is
-of considefable magﬁitude.

THe potential flow model (see section 2.2D) takes into account
this vertical component of the specific discharge vector. Rewriting
equation (2;7) in cylindrical. coordinates, and asshming a Homogeneous

. medigm, gives

x4 20 g 92 | (3.14)

Equation (3.14) and tbe following boundary énd initial conditioné,
¢(r,z,t=d)A= D o (3.152)

2 (rz=0,e) =0 | (3.15b)
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LT |
lim S r 21 dz = Q/27TKr (3.15¢)

0 ar

1im ¢(r,z,t) =
ety

(3.15e)

)

39, 2 3 3¢ _ |
(gg) - Kz 5 Sy e at z = h (3.155)

3992 o
Kr (S%) +‘Kz
describe the potential flow model.

Equation (3.15f)makes the solution very difficult to obtain.
However, if the quadratic terms.are dropped, the condition is taken

at z = D instead of z = h, i.e.,[(D-h)/D]<< 1, this linearizes the

boundary. condition to

§E‘é¢ a¢

= 0 at z = D ' (3.15g)
Syfaz Bt _

where Kv K, and KH
The solution to this problem, néglecting the seepage face and
the compressibility term in equation (3.14), was given by Boulton

(1954) for the drawdown at the free surfaces as

I (A |
s = E%EE fo 0( p) {1 - exp(-TA tanh A)} dA (3.16)

where s = D~h = drawdown

il

p r/D

T Kvt/SyD

and A is a variable of integration and J, is a Bessel function.
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Usually equation (3.16) is expressed as
s =2 v(1,p) ,‘ ' ' (3.17)
20T ' . , .
where V(Tgp) is tabulated as a function of T for different values of p
(see Hantush, 1964).

Dagan (1967a) solved the problem in a more general way. He used
the perturbation expansion method, considering a partially penetrating
well, and found the first order approximatioﬁ in. the following series:

s/D = ZWcsl/D B (2Wc)zsz/D-+ - © (3.18)
5

where ¢ = Q/ZWKHD

For a fully penetrating pumping well, hisg soclution reduces to that of

Boulton (1954). A comparison between the drawdown, at the free surface

predicted by the two solutiohs, is shqwn in figure 9 for 3 type curves.

The curves are identical except for a small deviation as dimensionless

time becomes Very small.

Neuman (1972, 1974) solved the linéarized proﬁlgm by taking into
-account the compressivility of the aquifer. Hoffman, G.L. (personal
communication, 1975) compared the solutions by ﬁeumanv(l972) and
Dagan (1967a) and showed that as time increases, the two curves merge.

To demonstrate the significance of the unconfined aquifer
compreééibility, different ratios of S/Sy are shown in figure 10.

" The period of time occupied by the early segment of the time drawdown

curve becomes less as S/Sy

decreases; when it approaches zero this

segment disappears completely, and hydraulic heads everywhere below



or -7 11 lllll
i Boulton
i Dagan -~
%
0 %

-3 . L1
[ @] =
1O

KVT/byD ,
Figure 9. Comparison of Boulton (1954) and Dagan (1967a) type curves
for dimensionless drawdown at the free surface

) Lo 1 L1
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the water table drop instantaneously when pumping starts. The generalb
lack of data on the'compressibility of an uncounfined aquifer makes it
difficult, however, to ‘answer the question of the significance of

elastic storage S of an unconfined aquifer in relation to Sy'

3.5 Correlation of the Vertical and Hbrizontal Flow Models

the horizontal and vertical flow models, we can correlate the two.
Figure 11 shows a comparison between the linearized horizontal
model in h by Theis and the linéarized potential flow model. Close

Now that we have discussed some of the distinguishing features of ‘
examination reveals that the vertical flow effects are very significant

. ‘ : 2
at early time, depending on the value of the parameter (r/B)2 = EFMEZ .

_ D2 Ky
The smaller the value of r/B, the higher the drawdown predicted

by the wvertical flow model, and vice versa.. For(r/B)22}6.the vertical

flow effects are insignificant, and we can say that the two models . :
practically coincide. At‘intermediate.times, depending on the value
of (r/B)z,'the two models gradually merge into one type curve. For
instance; when (r/B)2 m'O.Ol,r the two models merge to one type curve

at the dimensionless time 1/u = 6 x 101, and for (r/B)2 = 1.0 they
merge-at 1/u = 6 x 10°.
At large timesthe vertical model and the linearized horizontal
model in h‘tdgether form one type curve which differs significantly
from that 6f the nonlinear horizontal model (figure 12). This
difference increases with increase of‘the parameter c, or s/D, as we

have shown in section 3.3. This is expected from theory, since the

vertical model and the Theis equation were both linearized by assuming
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that s<<D.
So far we have analyzed two significant factors, (1) the linear-~

ization effécts or theAthinning of the saturated thiéknéss, and

(2) the vertical fiow effects. Fortunatelyrthe linearized horizontal

model‘in hz.handles the first factor with regsonable accuracy'and very

little difficultyﬁ To neglect the Qertical flow effecté, either the

parameter r/B has to be greater than‘ﬁ, or the dimensionless time

4Tt/r28y must be greater than 5 x 10t.

3.6 Variably Saturated Model (exact theory)

A. Introduction

The theoretical models presepted iﬁ sections 3.2 and 3.4 are
based on severél approximations, (1) linearization of the free surfaée
boundary condition, which includes neglect of the quadratiﬁ terms,
(2) the assuﬁption of a constant saturated thickness (assumed in all of
the previous models except the nonlinear horizontal model), (3) replace-
meﬁt of the well screen, a boundary of constant head beneath the wéter
level in the well at any timé, by a sink linelof uniformly distributed
strength, (4) the transfer of the upper lateral boundary of the flow
domain to‘infinity and, most iqurtant, (5) the neglect of the unsaturated
zone.

To check the accufacy of these models, thé exact mathematical
model, representing preciéely the phyéical problem, had to bersolved
numericaliy. ~ The equation describing the variably saturated flow
model for the aquifer in figure 2 is equation (2.5). It is nonlinear

-43- :
because of the dependence of hydraulic conductivity K(8) on the moisture



bl

content 6. ‘Relationships are needed between.e and ¢, and between K(9)
and @ before one can attempt to. solve this equation.

Brutsaert (1967) suggestéd the following relationship, which can

" be written as

K(O) = K SN, 8 = 8- 5 (3.19)

eO - E)r
or as

S, = A/t V) L b=z

where KO is a saturation hydraulic conductivity (constant), S, is a
gormalized ﬁoisture content, generally called éffective saturation;

the constant N depends mainly on thevporé size distribution of the soil;
A and A are parameters of thé s0il and depend upon its capillary

fringe and pore size distfibution respectively.

The adﬁantage of equation (3.19) is that it gives a smooth
transition: from the.capillary fringe to the drying curve. Verma (1969)
used equatiOn.(3.19) for the problem éf variably saturated flow in a
stream-conﬁected aquifer. He found that.the parameter Al/A/D can be
used as a criterion to‘determine the importance of the unsaturated zone.

Assuming hydrostatic pressure, Myers and Van Bavel‘(1962) came - up
with a_somgwhat different and physically more satisfying approximation.
They defined an effective‘thickness'he of a saturated layer with the

same transmissivity as the entire region above the water table as

ho= St KE g | . (3.20)

where ZO is the elevation of the water table and zl is that of the soil



5=
surface.
Bouwer (1964) was- -the first to define critical pressure analogous
to he;éé
o = s KRl o (3.21)
KO .
whe're\pW ié the negative soil water pressure at thg soil surface. He
infegrated equatioﬁ (3.21) using a planimeter and calculated p. for 28
différent soils ranging from saﬁds.to‘dlays.
We will use equation (3.21) to define the critical thickness

hep = pc/Y as

hey = /g K@) gy | (3.22)
Ko

where Y is the specific weight of water.

Substitutibn of this into equation (3.22) gives

o = fgj a/ca + 01 ay

cYr

which, when integrated‘simplifies to

: 1/ ‘ ‘ .
et A : (™)
" o X p-1 ‘ :
where ['(n) = IO e dx - for n<0 and uw>0, is the gamma function. .

The parameter hCr is physically satisfying and easy to visualize, and
gives us common grounds to compare the variably saturated flow models

that apply different hydraulic conductivity and moisture content

- relationships, just by determining their corresponding h,,. values.
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Experimental data reported by various investigators for different
,types.of_soilé were analyzed to obtain the parameters A, A, and N;
these were used to determine hey/D for various depths of D of the
aquifér. Dgtails of the soils and tﬁeir values of A, A énd hcr/D are
given in table 2. Typical values of hcr-for sand, for instance, range

between 0.1lm and 0.5m.

B. Linearized Variably Saturated Model

Kroszynski .and Dagan (1974) solved equation (2.5), with the

appropriate boundary and initial conditions for a well flow problem, by

means;of perturbation expansion, in series of a small parameter. (This
effe;tively linearizes the equation of unséturated flow and the free
éurface boundary condition.) They assumed that the flow departs
.slightly from equilibrium, which.is equivalent to the assumption in
sections 3.2 and 3.4 that the drawdown s 1is small comparéd to the
initial satruated fhickness D. They also approximatéd the variable

coefficient of the unsaturated flow‘equation by applying the following

relationships:
- : _
I((e)/KO B ea (d‘} wc)
and _ :
0 -0 1 _ ) . )
s 2 W ) (3.24)
0, - 0

s . r

where Y. = the saturated capillary rise, defining the free surface

capillary head = z - ¢

il

v

: Gr and Bs are the residual and saturation moisture contents

respectively
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cubstituting equation (3.24) into equation (3.22) and integrating gives
by =‘l/a' + Ye

Figure 13 represents the results of the linearized variably

saturated model (as a Function of t/B) for h../D = 0.044.

48—
and a' = a parameter characferizing the unsaturated zone.

C.  Nonlinear Variably Saturated Flow Model

The . numerical scheme used here is based on the finite element
method by Neuman»(l972) as modified by Kroszynski and Dagan (1974).
He solved equation (2.5) and the appropriate initial and b&undary
conditions. .For é detailed description of the scheme and relatéd
computef.program, see Kroszynski and Dagan (1974). We used this
program to investigate the effects of the well storage and the
seepage face,iand the nonlinear effect of thé unsaturated zone. The
computer program for the nonlinear vériably saturated model was run
twice, once with well storage and seepage face considered, and once
without. (For grid system and the time‘and.space increments, see
appendix A,)

.The time-drawdown curves obtained for various observation wells

are plotted in figure 14. As seen from the figure, the Qéll storage

- and seepage face have some influence for a short time after the

beginning of pumping. For a well diameter of 0.3m., Q = 800 m3/day,

the well storage and seepage face, the drawdown after 1.44 minutes of

T = 400 m?/day, 5, = 0.2, and ©/B = 0.27, 0.59 and 1.24, if we consider
‘pumping is 6 cm., 2 cm. and 0.4 cm. respectively; neglecting these,



: Topouw poleanles ATqETIBA )
ﬁmwwmmmﬁﬂﬂm@u.&ouwwwmﬂmuﬂomﬁﬁummeEOMmmmewmﬂmum>.c30w3muwmmmHGOHmcmEﬂQ.mamwnMﬂm

. SSEVAY
cOl 20l Ol Sgl/ILY o0l el cO
LR ¥ ! _u.___,_ i i _.A«J_ [ ! 1 _~_____ R [ ____m_ i N©_

] H : . BAY
m”w- | -4 /N asi-g/1 R
) w
o . L Biie) //
G'0=0/2 Pr00= 0/ o

(%261 ‘ubog  (0,961U0bOQ) 13pOpy MOI joyusiog o
| PUD  MSUAZSOLM ) 13pOy PalbiniDg A|qDIIDA paziipsur]  —S/—

III

N P Y 9 - 10=8// @u

U T T N | 1] m_.,h_b. | __h_b.. 1 | ﬂ.m__._ 1 1 ~___‘._




(7/6T ‘ue3eq pue TSufzsoiy) Tapou @mpﬁmiwmm ATqetaea
341 JO WOTINTOS [EOTISWNU 2yl WOIJ PIUTBIQO SIAIND UMOPMBIP SSIPTUOLSUSBWUIQ T 2In814g

K
: S 4/14b ‘ ‘
Ol o o0! < Ol | 2.0l
T T T 7 T T T ] T+ T 7+ T T 1 T _ Trr¢ 1. r 1T N%M
_ . W g0 = dowDnig {19M
- ‘ 816 0= Q/Z iD . 5
N P3.3pISuU0) - |
E 8004 3bod9ag g @6D10IS lop ON —O— -
rﬁOJ_ - Umpmu_mcou 90D4 9bodass g abolols oM -~/ -~ \ | _ —_ Tow
n
{9
|.l_
w
- ~
O
—_ oo_
1 1 |




_51_
we find that the drawdown is 10 cm, 3.4 c¢m, and .0.7 cm respectively.
The difference in drawdown seems significant, but does not last long.
I1f we analyze the same drawdown curves for time t = 14.4 minutes we
find that they praétically coincide. This is similar to the
conclusions reached by Kipp (1973), and justifies the analytiéal

approximation to the boundary condition of the well.

D.  Comparison of the Variably Saturated Models.
Figure 15 compares the linearized variably saturated model and
the nonlinear model for c = Q/(ZWKHDZ) = 0.032 and z/D = 0.5. The

results (obtained using a computer program from Kroszynski and Dagan,

1974) of the two models coincide, demonstrating that the linearized model

can be used with high confidence as long as the drawdown is small
compared to the initial saturated thickness. They also show that

the approximation of the soil characteristic curves by equation (3.24)
has ‘little if any dinfluence on the drawdown in fﬁe saturated zone,

as compared to that of the more accurate representation given by

equation (3.19) which was used in the numerical solution.

3.7 Comparison of the Variably Saturated Model and the Potential-

" Model (Vertical_Fiow)

The objective here is to.analyze the significance of the unsatur-

ated zone for different soils and different depths of the.aquifer. 1o
doing so we will attempt to obtain a critical value of the parameter
hcr/D’ below which the effects of the unsaturated zone can be
‘neglected. Dimensionless‘drawdown curves predicted by the linearized

variably saturated model (h.,/D = 0.044) and potential flow model for
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a fully penetrating pumping well and for the:same values of r/B and z/D

are shown in figures 13, 16a and 16b. - The figures indicate that flow
in the unsaturated zone causes faster drawdown than that pfedicted
b? the potential flow modei. The discrepéncy between their predicted
diﬁensionless drawdown 1is very small.and practically insignificant for
deep obéervation wells (z/D < 0.5), but for shallow observation wells
(z/D = 0.95), the difference-becomes.apparent; especiélly at inter-
mediate times.

Tovemphasize the role of the unsaturated zone, a relatively
high value, hcr/D = 0.1, was selected for our analysis. Drawdown
curves predicted by the two models for the same values of z/D and r/B °
are shown in figures 17 and 18.  These figures show that the difference
in_dimensiénless drawdown for shallow observation wells (z/D = 0.95)
is very sighifiéant, especially at early time. For deep observation
wells (z/D < 0.5) the difference is less apparent. Table 3 shows
- quantitatively the difference between dimensionless drawdown predicted
by the lipearized variabiy saturated model (b../D = Ot044, 0.067 and
O;lj and the potential.flow model. For hcr/D = 0.1 a maximum error
of 15% is encountered.in deep observation wellé‘at dimensionless time
Kvt/SyD =1x lO—l, as compared with 407 error in éhallow observation

o -2
wells at Kvt/SyD =5 x 10" °.

I D = 10 m, K, = 10 m/day and 5 = 0.2,
the actual times t are 28.8 and 14.4 minutes. For an intermediate
value (hcr/D = 0.067), tablél3 shows a difference of less than 6% for
/B < 0.4 and z/D = 0.5. At r/B = l;vthere is about lO%'differencé,

but this still is not very significant because at early time and far

from the pumped well, the drawdown is very small for all practical
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‘purposes.

Figure 19a shows the difference in dimensionless average
drawdowns predicted by the ponlinear variably saturated and potential
flow models (hcr/D = (0,044). The discrepancy between average
drawdowns is sﬁall, as was found earlier for deep obsérﬁation wells.
This‘indicates that the effects of the uhséthrated zone are insignif—'
‘icant and the vertical flow model is valid.

Also interesting is the comparison of dimensionless drawdown curves
with fhe,same valies of z/D and hcr/Dbbut different values of r/B.
‘Table 3 sﬁowé that tﬁe influence of the unsaturated zone is more
sighificant for high values of r/B, but the fact that_at early time
the drawdoﬁﬁ is very sﬁall at distant observation wells makes this
observation less important from a practical point of view.

Thus we may say that for actual applications, where aquifers are
not excessively shallow, the unsaturated zone can be safely neglected
provided that h,./D < 0.067. This.is especially true for deep
‘observation wells (z/D < 0.5) or for wells penetrating the entire aquifer.

The fact that at early time the vériabl&,saturated model
predicts higher drawdown ﬁhan the saturated model can be explained
physically as a result of the unsaturated moisfure content profile
that trails by vertical translation affér the moving free surface.

The time required for the unsaturated zone to adjust itself to the
free surface drop depends mainly‘on the parameter hcr/D‘ JE dt is
small, the influence of the unsaturatéd zone upon the flow in the
. saturated zome is negligible. The time required for the unsaturated

zone to adjust itself to the free surface drop, along with the
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qimeﬁsionless time Kvt/SyD, may explain the observation that the
maximum specific yield is reached only after a drainage period of
considerable length, (Meinzer, 1923, Wenzel, 1942, and Prill,.et al.,
1965) ranging from a few hours for coarse-textured materials to months
for the fine-téxtured materials. Table-3 shows that-for‘hcr/D.= 0.1,

/B =1, Ky = 10 m/day, D = 10 m, and 5, = 0.2, it takes about 2 days

¥
for the unsaturated zone to completely adjust itself to the free surface

drop, whereas if Kv =1 m/déy it takes about 20 days.

3.8. Comparative Evaluation of Différent'Models

We have presented three types of mathematical models fo descfibe
the flow of water to wells in unconfined aquifers. The first is
called tﬁe hofizontal flow model, the‘éecond is phe potential model
(vertical flow) and the third is‘the variably saturated flow model. In
section 3.2 we mentioned that the horizohtal flow modéls were derived:
under the Dﬁpuit assumption of hydrostatic pressure distribution. In
section 3.4 we relaxed this asgumption by introducing thé vertical
, flow.model, but we still assumed small drawdown compared ta the total
saturated thickness and neglected the quadratic.ferms in the free .
surface boundary donditibﬁ. Since none of these is an exact description
of the physical system under conside?ation, we considered another
mathematical model to describe the physical system. This is the
variably saturated flow model presented in section 3.6. |

In section 3.7 we concluded that the linearized vertical flow N
‘model at early and intermediate time is valid pfovided that h.,./D < 0.067

and deep observation wells are being used. But in section 3.5 we
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showed that fhe_exiéting vertical flow model's solutions at large time
merge with Theis curve, forming one typé curve aund predicting less
drawdown than the nonlinear horizontal flow model solution. To .
,investigate this we computed average dimensiqnless drawdown at large
time using the numerical solution of thé variably saturated model
(Kroszynski.and Dagan, 1974) for hcr/D.= 0.044 and ¢ = Q/ZTTKHD2 = 0.032,
and comp;red it to the results of the nonlinear horizontal flow model
{figure l9b). Close inspection of the figure shows that the two
solutions practically coincide, predicting higher draWden than either
the lipearized horizontal model in h (Theis) or the vertical flew
model (Neuman, 1972). |

Iﬁ section 3.5 ﬁe concluded that the verticél flow effects afe
insignif‘ic’ant and can be neglected if r/B > 4.0. We can now also
conclude that for actual applicationé both the nonlinearvhorizontal
model and the 1inearized horizontal model in ne (Jacob corfectioﬂ)

1/2
are valid provided that r/B = (r/D)(Kv/KH) /

> 4.0 and hcr/D < 0.067.

It shéuld be emphasized that the ratio of anisbtropy of permeability
KV/KH is a very important factor in aetermining.the location‘of the
observation well. If the thickness of the.aquifér is 50 féét and
the aquifer is isoﬁropic (Kg = Ky), the observation well should be at
least 200 feet away from the pumping wéll for the horizontal flow model
to be valid, whereas if KV/KH = 0.1 the observation well must be at
least 632 feet aﬁay. However, the ratio of anmisotropy of permeability
ié usually unknown, énd locating the observation well far'away'from.
ﬁhe pumping well requires a very long expensive pumping test from

which the drawdown curve may be obtained. One alternative is to use a
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vertical flow model by Neuman (1972,A1974) or Dagan (19672) with
ayailable‘computer programs, for early‘time, and to use the linearized
horizontal model in h2.(Jacob correction) for large timg.

These recommendations are based oﬁ,»the liﬁiting cases (correla-
tion of the differenﬁ models at early time and large time), with no
fheofetical suppotrt, and do ndt'take into consideration the interaction
between the vertical flow effecté»and the flow zone thinning.‘
Consequenﬁly we will attempt next to provide a simple mathematical
model that will approximate both the vertical flow effects and the

thinning of the flow zone, as well as the interaction between the two.
3.9  Improved Horizontal Flow Model

A. Introduction‘

In section 3.8 we concluded that the horizbntél flow model is
valid provided that r/B_z 4.0 and hcr/D < 0.067, and that the
_lineariéed vertica1 flow models are valid only for small drawdown.
Howgvef‘we aiso showed that the condition r/B_z‘é.O severely limits
the use of the-horizontal flow model. Thus we need to formulate a
mathematipal modél that will relax ghe severe aSSumptions in the above
-mode;s, and will provide new information concerning the interaction

between the vertical flow effects and flow zone thinning.

B.  Mathematical Development
Consider the general case of groundwater flow in an unconfined
aquifer bounded by an.impervious horizontal bottom. The aquifer is

anisotropic with principal axes horizontal and vertical. The water is
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.released from storage by compaction of the aquifer material, expansion
of the water, and gravity drainége,at the free surface. .
Recalling the derivation of the horizontal flow model shown in

section 2.3; equation (2.22) without aécretion can be written as
0. 09 17 ohy o 8 (0 7F . oh
K Z (Z(h - + i - ) =
X BX(BX( 9 hgg) KY 3§(§§(h¢) h§§)

5. -mf) - ndhy 4 g Oh
3t 3t Tyt

or |
3 .9 .7 2
KX'§;C§;(h¢,— h</2)) + K

9 0 2 -
. §§(5§{h¢ - h°/2)) =

SS(%E(hEA—-hZ/Z)) + 8, %%- (3.25)

At this point in the derivation of the Boussinesq equation it is
usually assumed that the average head aEapproximately equals the height

h of the free surface above a datum. If, instead of this assumption,
$*2 = u§ - n’/2 (3.26)

is substituted into equation (3.25), the result is
92p* = 924 3¢ oh
Ky o+ Ky 5= = §g w + 5 (3.27)

APPROXTMATTION OF THE VERTICAL FLOW COMPONENT
A linearized form of the free surface boundary‘condition can be
obtained by neglecting the quadratic terms in equation (2.17) with no

accretion. This gives
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X | .
_%%‘= - gz,%g_ | (3.28)
y

which relates the change of the water table.elevation and the intensity
of the vertical flow. Streltsova (1972) assuﬁed that the specifié

rate of the vértical flow varies linearly with the difference between
average head E.énd the free sufface head h. Following this assumption,

equation (3.28) can be approximated by
90 = 5@ - h) | (3.29)
ot - : i

where o = Kv/Syb ana b is the thickness of the vertical flow zone.
For homogeneous aquifers, Streltsova (1972) found that b = h/3.
Equation (3.29) will be used here to approximate the vertical
flow. Assuming o is approximately a constant (the most severe
asSumptiop médé so far in this model), equation (3.26) may be vearranged

and the result substituted in equation (3.29) to give

2 \
9 = (26" - h?)/2n (3.30
ot o
or
ahz %2 2 |
S = o2 - b9 o (3.31)

The general solution of this equation (see Jeffreys and Swirles, 1951) is

e
h2 = 20 f . 07 &~ (t=T) 4o - (3.32)
T::

Integrating by parts and using the static initial condition
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h=F=0
or. o*2 = p2/2 at t = 0
leads to )
@*? ~ 12y = 2ff O D) @gg_ i (3.33)

Substitution of equations (3.33) and (3.31) into equation (3.27)

results in

2 ;!,-2 2 *2 *2 t _ _ 7“:2
RoEO g 9207 o g 397, S0 et mole-T) 39T g0 (3,54
X 2 v 2 5 =0
% dy at h - : T

Rewritten in cylindrical coordinates, with angular symmetry assumed,

this takes the form

9, %2 w2 % %2
0%b . L1397 5 3h L Sya D o male-T) 3 g (3.35)
h

S
8r2 r or T3 T

where T = KyD is transmissivity

and S S4D is the storage coefficient.
This equation is nonlinear; to solve amalytically, we still have to
linearize it by assuming h % D in the storage term (similar to the

assumption used by Jacob (1963); see section 3.2). This leads to the

following equation:

029*2 186t s 00" sga ree saqeem 32

. dt 3.36
ors 1 or T ot T T=0 | 3T (3.36)
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i EQUATION FOR FREE SURFACE

, w2 ’
Writing the combined head ¢* in terms of the free surface head h

(equation (3.31)) gives

2 - '
o*2 = (%%— + oh?) /20 (3.37)

Then, by substituting (3.37) into (3.27), simplifying, and writing the

results in cylindrical coordinates,

2 a2 2
r dr dr ro 9tor ar
' 2.2 ‘ . 2
S5 09°h S ¢oh Sv D oh :
2 + 200 2y 200 3.38) .
Ta 9t2 T ot T h ot _ ( )

.This is a nonlinear partial differéntial equation for the free surface
‘head in unsteady radial flow iﬁ a phreatic.aquifer; it acgounts for
the compressibi}ity of the aquifer. TFor an analytical solution, it
‘must be linearized by assuming that h ® D iﬁ the last term of the

storage. This leads to the following equation:

15, a2 1 92 o2 s 9%m? . s oh® | s, onZ . .
—— — L m— D — B = e 5 e e #——— .
T or (x or * ro 9tor (r or Ta ot2 + T 3t + T 3t (3.39)

To express equations (3.36) and (3.39) in terms of drawdown,

equation (3.26) is first rewritten as

=
i

(D - s°)(D - s) - (D- s°)%/2
or

p2/2 - D(s - ss°/D = °2/2D) = D2/2 - DE  (3.40)

—e-r
t

where f = (s = sg°/D + s°2/2D)
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Thén, 9 9 , ‘ 2 -
h? = (D - s°)° = D% - 2D(s° - s°2/2D) = D° - 2Ds°"

(3.41)

lwhere g% = 5° - s°2/2D, s =D - ¢ is the average drawdown, and
s® is drawdown at the free surface.

A substitution of equations (3.40) and (3.41) into equations (3.36)

and (3.39) respectively produces

i T=t
0% [ LBE SO Syq [ ule-T) E g
ar * r 9r T 9t * T¥ TéO'e T (3.42)

and

‘ o1 o2 . o1 C a2 0 o1
-%-§~(r ds ) 1 9 ( os y = S 9°s (S+Sy) ds

ra dtar <t dr 0 Ta acZ T ) Be

(3.43)

To solve for the average drawdown and the free surface drawdown

as a combined problem, equation (3.33) written in terms of drawdown as

o =t . V
g®'' = f - f e_a(t-T),gg dt (3.44)
=0 aT

and equation (3.42) have to be solved with the following initial and

boundary cdnditions:

f(r,t=0) =0 0<r < e |
(3.45a)
f(r,t) = 0 r > wand t >0
' %2 : : , - ‘
and Q= ZWrKH o¢ ='—2ﬂrKHD of as r > 0 (3.45b)
, or or '
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The free surface drawdown may be solved as a éeparate problem‘usingb
equation (3.43) and another set of initial and boundary conditions at

the free surface, written as

I
o
f
| A
n
| A

8

s®' (r,t=0)
o _ 5!
and Q° = —ZWrKHD as r +

The last boundary condition can be written in terms'of'Q (equétidn
3.45b). To do this, equations (3.40) and (3.41) may be substituted
into equatioﬁ'(B.Bl), resulting in the following expression in terms

of drawdown:

f - SOI + _]_-_ aso' . (3-47)
o ot

Then substituting equation (3.47) into (3.45b) gives

(e ] [*38 4
Q = —2mrKyD @s2 13 33 )

dr o t or

or, from equation (3.46),

T (3.48)

This equation is linear; its solution, when Q is constant, is

ot

\
|
s°' (r ,t) = 0 » t—i‘O v : (3.46) .
0 =g (- e | (3.49)
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SOLUTION FOR FREE SURFACE DRAWDOWN AND AVERAGE DRAWDOWN
1. Double integral solution
‘Boulton (1963) obtained an equation of the same form as equation

(3.42), assuming delayed yield from storage approximated it by i

an exponential function of time. By analogy, the solution ©f equation .

(3.42) and the initial and boundary conditions (3.45a,b) can be

written as

_ Q. |
= W(E) S (3.50)

wherefA W(E,u) = gOZJO(E,X)[l - C;g%zﬁexp(—atxz/x2+l)'— G] dx/x

2

‘ x : 2
G, = - - +
'*g—I exp| aNt(x 1)]

\aas
]

/SKV/KH % ¢/D = V3 * ¢/B

N = (s + sy)/s = 1 + sy/s =1+ 1/g

and. JO denotes the Bessel function of the first kind of zero order.

The function G vanishes for t > 0, but is finite as t approaches zero
and Ot approaches a finite value.
To obtain a solution for the average drawdown s, it is necessary

to first solve equation (3.44) to get

s = 5° - g°2/op = Boyeqs W (3.51)
_A4TT _

t
where W (E,u) = W(E,u) - [ e ot
o o :
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Now, this quadratic equation may be solved for the free surface

drawdown, giving

/=1 - (- W Ewet/? N7

where ¢ = Q/ZTFKHD2

The solution written in practical form is

Grr/) 5o = YK 1l (1 s w0 Gusy)
e ‘

Now knowing s° and f, we can solve for average drawdown s using

equation (3.40) written in dimensionless form as

ZUKHD2 °2 _ 4TTs s?

LUTE _ 4TTs , .
. or .
AnTs _ , 4nTE _ 1 s°2 ®

Equations (3.50) and (3.51) were integrated numericélly using
Simpson's rule; equations (3.53) and (3ﬂ54b) were then evaluated
numerically to obtain the dimensionless free surface drawdown and
average drawdown; The results as a funetion of ¢, &, and Ty are

.tabplated in appendix b, and shown graphically in figures 20 and 2la.

2. Single Integral Solution
If we assume S = 0 in equatidh (3.43) and consider the initial

and boﬁndary conditions given by equations (3.46) and (3,49), we
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end up with a mathematical model similar in form to the one solved
by Barenblatt, et al. (1960) for the motion of a liquid in fissured

rocks. Its solution can be written as.

o ‘ : | 2 '
°v= o fT27006® g - LE ] ax (3.55
s gT 2 - [1 - exp ( i1 )1 dx (3.55)

Now using equation (3.47) we can solve for f as

f = .-..._9_._...
‘ 4TT

® Jqg(&,x) 1 B —citx?
S22 - —— exp(r )] dx (3.56)
0 % x“+1 CRSHL

- This is identical to equation (3;50) with G = 0 or S = 0, obtained by
the first method of solution. The procedure used in the first
solution can be followed to obtain an equation anaiogous to (3.53),
for free surface drawdown, and then equation (3.54) can be used to

solve for average drawdown.

REDUCTION TO THE SOLUTION OF\LINEARIZED HORTZONTAL MODEL IN h2

At sufficiently large time, which is determined by Boulton (1954)
for the time facter T = Kvt/SyD > 5, the value of integrals in equation
,(3.55).and (3.56) will be largely determined in the range of small x.

Then equation (3.55) and (3.56) approximate to

f=g°" = Z%T-étbz JQ—ELE) [1 - exp(—atxz)] dx (3.57)
X

Rewritten in terms of y = x£ and T, = Tt/rzSy,’this becomes

= o1 :-.9._.' * ‘— -_ 2
£ =5 T é 275 ()1 - exp( iyy )1 dyly
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from Neuman (1972, p. 1035), it can be written

f = ot E__Q_. * — éX:—Q— . ‘
=et = ey = o G

which is the Theis solution for s,

Now, from equation (3.41), we have

s°/D= (1= (1 - W (3.59)

which is the solution to the linearized horizontal model in h2
(equation (3.12)).

At sufficiently large time,_T = 103 (see figure 21b), the free

surface drawdown and average drawdown practically coincide. Then
equation (3.54a) can be written in terms of average drawdown as

4TTE _ 4TTs. 47T o2
Q = Q Q 2D

or by equation (3.58), as

‘ ) |
Gis L ATERDT - wwer (3.60)

Q Q

which is also the solution for the linearized horizontal model in

‘hz, the Jacob correction.

C. - Corrélation and discussion
In section 3.8 we concluded that the linearized vertical flow
models are valid only at early time for most practical purposes, .

whereas the nonlinear horizontal model and the linearized horizontal
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model in h2 are vaiid onlyvat large time.. Consequently we attempted
in section 3.9 to provide a model combining the effects of vertical

flow and thinning of the*fl@w zone; see tagle 1l for a comparison of
‘the models.

Now we will analyze the results of the proposed model to see how
it handles‘ﬁhé two limiting cases, i.e., the effects of vertical flow
at early time and the flow zone thinning at large time.

To check how the impréved'horizontal model approximates the
vertical‘flow.component, we comparéd.its fesults for small drawdown
with those of the vertical model by Neuman (1972). Figure 22 shows
that for éll practiéal pufposes the approximation to vertical flow is

tadequate. For clarity the results are tabulated in table 4.

Figure 23 Shéws a comparison of -the improved horizontal model and
vertical flow model by Boulton (1954) for free surface drawdown. The
verfiéal‘fléw effects‘are approximated fairly well for large values of
&, but for small & the difference between the two models‘is very
significant.

Streltsova (1972) and Streltsova, et al. (1973) approximated the
vertical flow effects by assuming thét the specific rate of the
vertical flow varies linearly with the difference between the average
head'$ and free surface head h. We used essentially the same assumption
to incorporaﬁe the vertical flow component into the improved horizontal
flow ﬁodel. The main difference is thaf Streltscva assumed a constant

saturated thickness, or small drawdown, whereas we make this assumption

only in the storage term. (This is not very significant for the problem
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where Sy = 4WTS/Q is the dimensionless drawdown by Neuman.
W(E,u) = 41Ts/Q is the dimensionless drawdown predicted by the

improved horizontal flow model and‘Ty = 4Tt/r28y

-8~
Table 4. Comparison between dimensionless average drawdown (4TTs/Q)
- obtained by the improved horizontal flow model and the vertical
flow model by Neuman (1972) for small drawdown.
élT-Ig(-Impx_'oved horizontal model) - ézzz~S—(1\Ieum.':m,.‘I.972)
%2 difference = Q l4WT Q x 100
3
'*af“TNeuman, 1972)
£=12.0 £ = 1.0
Ty W(&,u) SD 7 difference Ty W(&,u) SD - %
‘ difference
2%x1073  0.184  0.188 -2.2 2x107%  0.841  0.794 5.9
6x107% 0.239  0.355  -2.1  4x0”t 0,910 0.852 5.7
_l . ) ]
2x10°~  0.283  0.385  -0.4 4x10°  1.356  1.335 1.6
O B
| 4x10 1.11  1.107 0.3 4x10%  3.140  3.144 0.0
; |
; &= 0.8 & =10.6
| . : : .
g 2x1073  0.466  0.405  15.0 ax10™ 0.504  0.4439  13.5
l S -2 '
z 2x107%  1.121  1.0312 8.7 2x10 1.493  1.3418 11.3
f | -1
| 2x107Y 113 1.069  5.7° 2x10 1.555  1.4374 8.2
? 2x10°  1.31 1.2748 2.8 2x10°  1.69  1.583 6.8
§ 2x10° 2.5 2.516  -0.6 2x10%  3.508  2.5827 2.9
i
: 1 '
g 4x10° . 3.1523 3.169  -0.5
| _ .
| £=0.1
| 0
| 4x10 4.87 4,492 8.4
| 4x10t  4.96 4.665 6.3
g 4x10°  5.67  5.635 0.6
|
E
]
g
|
%
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at hand; see section 3.3.) Hence the results of the two models

should coincide for very small drawdown, as .is the case in figures 22

and 23.

From this we can conclude that the difference between Streltsova's

“model and the improved horizontal model (as c approaches zero) on one

hand, and the vertical model by Neuman or Boulton on the other, lies

~in the fact that the first two models represent only an approximation

of the vertical flow rather than the exact vertical flow component.

The assumption that o = BKV/Syh(r,t) % a constant should not make any

 difference in the‘comparison to Boulton or Neuman's solution because

both models have assumed that h(r,t) % D (very small drawdown is

taking place).

Streltsova, et al. (1973) claim that the difference between
their results and Boulton's (1954) for free surface drawdown is due to
the latter's assumption of a constant discharge, described by equation

(5) of Streltsova. It can be written as

Q = 2ﬂrKHD §£.= cons - as r =1 =0
or - w

They‘descfibe a flux, due to the fall of the free surface, as

Q° = 2mrkD %% , (equation (11) of
‘ ' Streltsova)
which,since
$=2123bh 4y



. However Poulton did net describe the flux by equation (5) of Streltsova:

—84~

reduces to

Q° = Q( - efut) (equation (13) of Streltsova)

>

he used the following equation:

I

= (equation 8 of Boulton) .

Q = 27rkD

where ¢ = ¢(r,z,t) is the actual head, not the average head.
Obviously the equations used by Streltsova and Boulton to describe the
flux are not comparable, except that both equations have been linear-

ized and are valid only for smdll drawdown. For finite drawdown we

have found that the flux should be of the form of equation (3.49),

ot

Q° = (1 - e %%

where Q = 2nrK ggr(h$'— h2/2)

To check how the improved horizontal model handles flow zone
thinning, we compared it with the nonlinear horizontal model by Kriz,

et al.(1966). Figure 24 shows that for all values of ¢ the two

solutions practically ceoincide. This is expected, since in section

3.QB_we theoretically reduced the solution for the proposed model to
the. solution of the linearizéd horizontal model in hz, and in section
3.3 we showed that the nonlinear horizontal model and the linearized
horizontalvmodel‘in_h2 practically coincide.

So far we have concluded that the imprbved horizon£a1 model
approximates vertical flow and the flow zone thinniﬁg fairly well for

all practical purposes. This model provides us with a new case or
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zone, called the transition zomne, where the effects of vertical

flow and flow zone thinning interact. As illustrated in figure 25, the

significance of this zone is a function of the parametefs c and E.
The figure shows that the period_of time occupied by the horizontal
segment of‘the-time—drawdown‘curQe becomes less as ¢ increases. As

¢ approaches zero this horizontal segment occupies a longer period of
time, as is also the case with the results of Boulton (1954), Dagan
(1967a) and Neuman kl972). Thus theéé solutions should be considered
as paftidular examples of a more general solution that takes into

account the flow zone thinning as well as the vertical flow effects.

D. Equation for Numerical Simulations

Ideal boundary conditions'andrwater—bearing characteristics are
rarely if ever found in nature? thus, analytical approaches, when
applied to groundwater systems often become oversimplified.. Most
aquifers are heterogeneous and énisotropic with irregular boundaries.
An adequate simulatioﬁ of theée.complex systems, however, can be
accomblished using digital computer solutions of a mathemafical model.
This provideg a means for predicting tﬁe effects of future groundwapér
Hdevelopment. |

Moét of the mathematical models eiisting in literéture (Priékett,
et dl.(1971), Piﬁder, et al. (1968) and Brutsaert, et al. (1972)) are
subject to the Dupuit-Forchheimer assumptions and should be used
with these limitations in miﬂd; "Cooley (1974) used the linearized
vertical flow model, which is valid only for a small drop of the water

" table.



, ‘ : o {qyG-¢ uorzenbe) f[epouw
MOTI TeBIuO0zZTIOy paaciduy 103 SWT] SSI[UOTSUSWIP SNSIDA UMOPMEBIP 93BI9AB SSITUOTSUIWIQ 6T aang1yg

A a/ilp=Ff2

_b__.__ 1 1

O/slilp

- Szd/11p =)




—88-
The analysis in section 3.98 leading to equatiom (3.27) can be

generalized for a nonhomogeneous medium and a source term as follows

30%5 _ o Oh o, o 2¢*2
Ky go—) = @+ 5, e s, S (3.61)

3
oy

2
kS
0 (X 9

9 +
9x ¥ 9x )

i

where Q = net rate of withdrawal per unit area

*2 = h¢ - n?/2

This equation contains two unknowns. To solve it numerically a second

equation, from equation (3.30)

dh _ 3Kz ¢*2 1 : . .
7w O (.62

can be used. Substituting this into equation (3.61) gives

) %2 %2 ' i %2 | %2

9 (k0T 4+ 3 (x, 29%5) = g+ 3k, (@ - L) + 530" (3.63)
Ix ¥ 9x oy 7 3y n2 2 ot

which can be solved iterativély with equation (3.62). Initial

values of h can be used in equation (3.63) to find ¢* and then

equation (3.62)'can be used to calculate new Values of h. Then the

average head (¢) can be determined from

3= ("% + n2/2)/n

. r 2 )
Equation (3.62) can be written in terms of ¢k as

S 2 ‘ | |
=Y o4 b (3.64)
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Substituting équation (3.64) into equation (3.61) for ¢*2 we_get

3 §_y Ke oh on? 9 - Sy Kx 3%n2 3 on?
x 3K, oo ) T G xR, Mawe) tar K t
o SyXyoamon? o Sy Ky a0 a o oan?
oy (3, oy o )T ay (3 K, " ayat ay 5y 3y

s 2 2 2 2 _

3t Qo 8nt . SsSy Bh 3hT . 3%h
- ¥ x o
b oot BRI 3K Geae T at2) (.3'65)

Even though equation (3.65) seems to be.complicated because of

the third order derivative, it has the advantage of solving directly

for the free surface height (h). Then the average head ¢ can be

determined from

=== +h
¢ ot

Q|

Equation (3.63) or equation (3.65) are valid fdr ﬁeterogeneous,
anisotropic media, and they approximate the vertical flow effécts"
fairly well; Their most important limitations are 1) the aquifer is
bounded by a horizontal bottom andv2) fully penetrating constant head
(river, lake) boundary conditions (the latter is in ali of‘the
widely used models). Either one of these”equations may be used as a
field equation suitable for numerical simulation if vertical flow

effects are of significance.

E. Application to Well Flow Analysis
To show how the proposed model can be used to determine the

hydraulic properties of an anisotropic unconfined aquifer from pumping
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test data, two methods are presented. Pumping and observation wells

that are perforated throughout the saturated thickness are used in

this analysis.

TYPE CURVE METHOb:

In secﬁion 3.9B equation (3.54b) was solved for dimensiqnless
average drawdown as a function of Ty = 4Tt/r28y, £, and c. The
results are tabulated in appéndix B and plotted against values of Ty
on 1ogarithmic paper in figure 2la. Two families of type curves
were constructed analogoué to those of Boulton (1963) and Prikeft
(1965); they will be referred to as type A and type B curves.

The curves which lie to the left of the values of & are the type A
curves and the ones to the right are the type B curves.

To‘describe how the tyﬁe curves are used to determine the aquifer

parameters, we shall follow a method similar to that used by Prickett

(1965) in connection with Boulton's theory. Observed values of

~drawdown s~ at a given observation well are plotted on logarithmic

) . . * .
paper against the values of time t . Then a matching procedure

consisting of the following three steps is utilized:

(1) First superimpose the time drawdown field data on the type A

curves, kéeping the horizontal and vertical a#es of both graphs
parallel éo each other. Match as much of the early-time drawdown
field data to a partic@lar type curve as possible. The value of g
corresponding to this type curve is noted. A match point at thé'
interseétion of.the major axes is selected and marked on the time

drawdown field data curve. The coordinates of this match point are
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s* and W(E,T,,c) along the vertical axis and t* and T, = 4Tt /28

along the horizontal axis. Then the transmissivity T and the elastic

.storage S can be calculated as

T = ¢; W Tane) | (3.66)
*

and § = ¢, —t (3.67)
' rzTa

where cq and ¢, are constants which depend on the units used. If cgs

2
units are used ¢y = 1/4m = 0.0796, and ¢y = 4. If a gallon-day-foot

system of units is used, cy ='114.6 and c, = 0.5348;

(2)' Superimpose the time drawdown field data onﬂthe type B curves
keeping the vertical and horizontal axeé of both graphs paréllel'to
’eéch othef.— Match as mﬁch as possible of the latest time drawdown
data to the type B curve. This curve should have the same value of &
as that of thé.type A curve used earlier. The value of ¢ shouldla1$o
. be noted. A new métch point is selected at the intersection of the

. . . . * * .
major axes, and its coordinates s , W(E,Ty,c), t and T, are noted.

y
Then the transmlssivity T is calculated from equation (3.61). The

relationship
T=cqll | (3.68)
D . .

where C3 = l/2ﬂ‘¥ 0.1592 in cgs units, may also be used, but since at
intermediate time the type B curves show only a slight separation
for different values of the parameter c, it is recommended that the

value of transmissivity be obtained by equation (3.66).




The specific yield

Sy = ¢y

where ¢y is the same as

parameters:

v

SEMILOGARITHMIC METHOD

Ky = T/D

'S, = 5/b

e

éan be calculated from

EEi T
r2 7
in (3.67)

(3) Now that we have determined the transmissivity, elastic

the horizontal permeability,

the vertical permeability,

g, = £2 ¥ »?

3 v

and finally the specific storage,

as ¢ approaches zero; the intermediate data tend to fall on a

nearly a straight line. Equation (3.60), rewritten as

(3.69)

storage

and specific yield of the aquifer, we can calculate the rest of the

(3.70)

(3.71)

(3.72)

Figure 26 shows a plot of W(E,Ty,c) versus Ty on semilogarithmic
paper. Three ségments of this curve can be identified. The late

drawdown data'tend to fall on a curve that approaches a straight line

horizontal line, whereas the third segment or the early data show
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g = __.Q__. g. (1 -(W(uw) x C)l/z) (3-73)
2nT ¢ : '

'describes the late drawdown data. Jacéb'(l950)‘showed that, after

sufficiently large time has elapsed for a given distance,

W(w) = 2.303 log,, 2.25 Tt/rzsy . ‘ (3.74)

Substituting this value of W(u) in equation (3.73), we get

5 = *9-g»(l‘~(l - 2.303 x ¢ loglOZ.ZS Tt/rzsy)l/z)

4nT ¢
(3.75)

This shows-that the late drawdown data do not fall on a straight line,

but on a curve which is a sensitive function of c. Thus, semilogarithmic

method cannot be used unless the observed. drawdown has been corrected

for the flow zone thinning (Jacob correction).

" ANALYSTS OF-PUMPING TEST DATA -

‘Neuman (1975, pp. 338-341) describedla pumping test performed
in the Valiee de la Garonne; Gironde, France. The aquifer was pumped‘
for 48 hours and 50 minutes‘at an avérage rate of 53 m3/h; its initial
saturated thicknéss was 8.24m. He.célculated the aquifer parameters
cat r = 10 mand 30 m using‘béth the type curve and the semilogarithmic
methods.v ﬁis results will be compared with the results we obtained
for the saﬁe pumping teSt;

In figure 27, circles show the variation.of.timewdrawdowﬁ
field data at r = 10 m. The solid‘linés are traces of the type curve

that fits with the field data, and the squares are the match
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points; The coOrdinates of the matéh point for the‘observation well‘
10 m away and the type A curve for & = 0;2 are w(g,Ta,c) ; 1,
T, = 100, s* = 0.065 m, ana t* = 2308 = 0.064'h; Hence according to
equationé (3.66) and (3.67),

p = £0.0796) (53 () = 4.9 nw2/n
(0.065) \ '

and

g = (8)(64.9)(0.064) - 1 65 5 1073
(100) (100)

‘The coordinates of the match point that corresponds to the same

obéervation well and the type B curve for &= 0.2 are W(E,Ty,c) = 1,

T, =10, 5" = 0.06 m, t* = 570s = 0.1583 h and ¢ = 0.015. Now

" equations (3.66) and (3.67) give

7 = £0.0796) (53) (1) _ 44 3 n2/h
0.06

and

_ (4)(70.3)(0.1583) )

y (100) (10)

S = 4.5 x 10

Now that we know T, we can also calculate c = 53/2(70.3)(8.24)
= 0.0146; a value of 0.015 was obtained by curve matching. - Using the
type A curve Neuman calculated T = 65.9 mz/h and § = 1.45 x 10"3;
using the type B curve, T = 70.3‘m2/h and Sy = 3.9 x 1072,

We used equations (3.70-3.72) to obtain the rest of the aquifer

parameters.,

Ky = 70.3/8.24 = 8.5 m/h
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_(0.2)2 (8.53) (8.24)2
v (3) (100)

- 7.8 x 10 2u/h

and finally,

= 1.65 x 10“3/8.24 = 2.0 x 1074 ot

(92 ]
]

.

Since the late data give a better fit with the type curves than the

early data, we chose the value of T = 70.3 n?/h to calculate horizontal
permeabilit§. |

The results obtained using the improved horizontal flow model.ahd
those obtained by'ﬁeumaﬁ (1975) are practically identical withoutrthe
corrected'drawdown.. However, this is the case onlf beéause the drawdown
is small compared to the initial’gaturated thiékness (S/D = 0.06).

When the drawdpwﬁ is a large fraction of the initial saturated
thickness it must be corrected before applying the linearized wvertical
flow moael method‘by Neuman (l975).l‘This can‘be demonstrated by
using the results of Jacob (1963) for T and,Sy*for an aquifer near .
Wichité, Kansas (Wenzel, 1942). Their test lasted for 18 days of
continuous pumping at l,OOO.gpm. The‘averagé ipitial thickness of
saturated material was 28.8 feet, and after the 18 day period of
pumping it was 22.3 feet. Jacob found that T =‘129,000‘gpd per féz
and Sy = 0.47 using the observed drawdown, whereas the éorrected
drawdown in the same observation wells gives T = 154,000 gpd per f£r2
and Sy = 0.35. To simulate drawddwn;_we use the vélue T = 154,000 gpd
per ft2 to calculate the’parameter c = Q/2WKD2‘= 0.056 and then we

calculate the drawdown from the theoretical results of the improved

" horizontal flow model for c = 0.056 and & = 1.0 and 0.1. The
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calculated drawdowns‘were then corrected for the flow zome thinning -
using the Jacob correction_(Jatob,'l963). Using the abo&e values of
f, Sy and g we also caléulated_the drawdown from the linearized
vertical flow model (Neuman, 1972). Figures 28a and 28b show the
calculated drawdown and the cérregted drawdown for £ = 1 and 0.1
respectiveiy. Obviously the caiculated drawdown from Neuman, 1972
and the corrected drawdown (obtained from the improved‘horizontal
flow model) are practically identical. They produce a straight line

at large times and a horizontal line at intermediate times; the cal-

culated drawdown from the imprbved horizontal flow model shows a curve

at large time aﬁd a horizontal line at iﬁtermediate time.

The straight line portion oflthe drawdown. in figures 28a and 28b
was used to calculate T and Sy; we found that T = 154,000 gpd per Ft2
and Sy = 0. 35. Correcﬁing the drawdowns at intermediate time doeés
not seem‘to be impoftant for £ = 1.0 (figure 28a), whereas fqr £E=10.1
(figure 28b)‘the‘correction is very significant. It was not possible
to. determine the reét of the aquifgr parémeters'Kv and.Kv/KH, using
Neumaﬁ’s semilogarithmic method (Neuman, 1975) because of the limited
values for'Tyé and 1/8 given by Neuman.

We éonclude from this discussion that the-semilogafithmic method
recommended by Neuman, 1975, is a very.practical method and.should be
used to determine the équifer parameters provided that we correct the
observed drawdowns for the flow zone thinning (Jécob, 1963) at large
time as well as aﬁ intermédiate time. The correction is especially

important at intermediate time for observation wells close to the

" pumping well. This method eliminates the subjective. curve matching
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.invblved in the type curve method,

3.10 Summary and Conclusion
The problem of axisymmetric flow to a fully penetrating pumping

well has been‘analyzed using thé nonlinéarrand the linearized horizontal
fiow modéls, the potentiél flow model and the linearized and the
noﬁlinear variably saturated models. The .following conclusions have
been reached:

iy The parameter s/D can serve as a cfiterion for determining thg
effects of the flow zone thinning. -The larger the value of this
parameter, the larger the effects. vThe'critical value is s/D = 0.2
 with an error of less than 10%. The linearized horizontal model in h2
(Jacob correction) approximates the flow zone thinning fairly well

for all values of s/D.

2) The parameterlr/B = /ﬁ;fﬁﬁ (r/D) can serve as a criterion in
'determining the importance of vertical flow effecfs. The smaller the
value of this parameter, the larger will be the effects of the vertical
flow. The critical value is r/B = 4.0.

3) The unsaturated zone can be.neglected provided that hcr/D < 0.07
and deep obServation‘wells (z/D<0.5 or‘fully penetrating observation
wells are being used. For shallow observation wells there is about a
30% error at dimensionless time Kvt/SYD‘i 1x 10_1, but later this
error decreases rapidly.’ |

4) The nonlinear horizoﬁtal flow model and linearized horizontél
- model iﬁ h2 are valid provided that h., < 0.07 and r/B = /?;7?5'(f/D)

> 4.0,
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- 5) The horizontal flow model has been improved by a correction
developed to account for the combined effects of vertical flow and
flow zone thinning. A new field equation suitable for numerical

.simulations, combiﬁing the effects éf'flow zone thinning.and vertical
flow, has also‘been obtained. |
6) The'semilogarithmic metﬁod (Neumén, 1975) is a very préctical
method and should be used to determine the aquifer parameters
provided thét the observed drawdown is ;orrected forvthe flow‘zone

thinning (Jacob correction).
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CHAPTER 4

Theoretigal Models for flow to Parallel Drains

4.1 Introduction -

When natural drainage is inadequate, irrigated agricultural
_laﬁds in arid or semiarid climateé,'and substantial groundwater
discharge areas in humid climates often uﬁdergp water table rises,
creating water~logged lands. To improve drainage, parallel drains‘
such as drainage ditches or tile drains may be utilized. This research
is limited to shallow horizontal aﬁuifers underlain at uniform depth
by an impermeable boundary. Only fully penetrating parallel open
ditchés (figure 29) will be considered.

-“Various models (Table 5) will be aqalyZed sysfematically in
investigating the significance‘éf the aséumptions and approximations
involved in thevhorizontal model in order to establish its validity

and limitations.

4.2 Horizontal Flow Model

Equation (2.23) is the basic partial differéntial equation iﬁ
horizontal‘flow,modelsr(for an aquifer bounded by an impervious
horizontal boﬁtom). Neglectingzﬁhe infiltration term and‘the
~elastic storage of the aquifer, we can rewrite this equation in one

dimension as

3 dhy = « oh
Ky & (h 22) =g 2R : (4.1)
Ol 5x ® 5 "5 5 -
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Table 5. Different theoretical models and their limitations,
considered in flow to parallel drains, h = h(r,t) is the
height of the phreatic surface above a datum and D is the

initial saturated thickness.

- Theoretical Model Assumptions’ Author
Vertical | Flow zomne Unsaturated
flow thinning zZone
(h#constant)
"Horizontal Flow
Model:
linear in h no no no Dumm{1954)
linear in h? no _ yes no Werner (1957)
' (h*D in stor+
age term)
‘nonlinear | 1 no ves no | Boussinesq
' (1904) .
Van Schilfgaarde
(1963)
Moody (1966)
Verma (1969)
Potential Flow
" Model:
‘nonlinear yes ves o ‘Verma (1969)
Variably Saturated
Flow Model:
nonlinear ves ves yes Verma (1969)
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This is nonlimnear im h, and no general analytical solution is
available. However, for gpecific Boundary conditions, Boussinesq
(1904) solved the problem exactly for the case when the drains
penetrate to the impervious layer of a shallow aquifer and the

saturated thickness at the drainsg, d = 0 (see figure 29). The

solution, subject to the conditions

h=H ©at x =.L and t = 0
h=20 at x =0 and t > 0 .(4.2)
and §§-= 0 Cat x = 1 and t > O‘
ox T
can be written at‘x/L‘=_l as
h/H = 1 | \ ,(4-3)

1.115 (Kype/s L) + 1

Thé_reéulté.arelshown graphically in figure. 30.

A1l of the solutions will be analyzed at x/L = 1, a point midway
between the drains. If this point.can be drained, every other point
© will also be drained.

When the saturated thiékness d below the drains is not zero,

equation (4.3) is invalid because the second boundéry condition of

equation (4.2) can no longer be satisfied. To avoid this difficulty it

is necessary to linearize equation (4.1), following the same procedure

as in section 3.2.

A. Linearized Model in h

Dumm (1954) and Maasland (1959) used the linearized form of
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equation (4.1), written as

= dh oh

h Ky oo = S (4.4)

where h = d + H/2. For an initially flat water table, the boundary

and dnitial conditions are

d+H=0D for 0 < x < L and t =0

h =

h=4d for x = 0 and t > 0 (4.5)
' ;ah =0 for x = L at £ > 0

ox ‘

Using Fourier series, the solution of equations (4.4) and (4.5) is

" 2,2
-n*T*at /4L
‘h/H = é-z (1/n) e . ‘ sin nmx/2L (4.6)
T n=1,3,5... '
‘When x = I this becomes
4' o .—nﬂzat/4L2
h/H = — 2 . E**_—E;——"“ sin nw/2 (4.7)
T n=1,3,5...
‘whi = d +
where o KH( H/2)/Sy
B. Linearized Model in h2

Werner (1957) linearized equation. (4.1) to the form

2.2 2
3“h Sy 3h '
K, S = 2 0 , (4.8)
B ox h ot . :
or - 9202 _ 1 on’ (4.9)
9% a9t
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The solution to equation (4.9) and (4.5) at x = L is

12 i 2‘2 » 2
-n“meot/ 4L 1/2 :
h/H = [% ¥ e sin nm/2] / (4.10)
n

The results of the linearized horizontal models in h and in h2 for

varioué depths are shown graphically in figure 31.

C. Nonlinear Model
Van Schilfgaarde (1963) attempted to solve the nonlinear

equation (4.1) subject to the following initial and boundary conditions:

h =D at x = L and t = 0

h o= d at x = 0 and t > 0 (4.11)
oh - 0 at x = L and t > 0

ox -

Equations (4.11) and (4.1) describe a problem similar to the one
solved by Boussinesq, except that the saturated thickness d below the
drains is not zero. A solution of equation (4.1) can be written as

1 1 d
1+ (4.5/6)A% t' 1+ (8/942 t') H

h/H = (4.12)

where t' = KHDF/SYL2

and A is'an incomplete beta function which can be approximated by
A% =1 - (d/p)?

This solution fails to satisfy the second boundary condition
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(equation 4.11), Van Schilfgaarde got around this problem by consid-
ering the drawdown process as a sequence of small steps. Then he
substituted the expression for A into equation (4.11) and solved for

t, getting
- 2 —
t = 88, L°(H - h)(d + H)/9KH(2d + H) (d + H)

This represents the time increment t required for the drawdown
s = H - h. The total drawdown is the summation of the successive
drawdown increments As; as these become small the summation reduces

to the integral

n '
t (BSYL /9KH) i NCES) _ (4.14)
or
‘ 2 o H(2d + h)
€= (48, L7/5Ky) 1n h(2d + H)

This can be written in terms of h at x/L = 1 as

d 2

B =N Ga/E + 1) o225t |y | (4-15)

The results of (4.15) are shown in figure 32.

Moody (1966) solved the éame problem (equations (4.1) and (4.11))
numerically-fgr a series of drain positions ranging from a location
near the water taEie to a location on the barrier. He produced 5
table listing the maximum phreatic surface height, the discharge to
the draiﬁs, and the volume of watef,rémoved. This is 'in dimensionless

form and covers the entire range of possible drain positions between
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the water table and the barrier. Some of his results are shown in
figure 32.
Verma (1969) solved the same problem numerically, assuming an

initially flat water table.

4.3 Correlation of the Horizontal Flow Models

'All of the models in section 4.2 are based on the Dupuit

assumptions (1) that all streamlines‘iﬁ a system of gravity flow are

horizontal, andICZ) that the velocity along these streamlines is
proportional to the slope of the free'surface but independent of
depth.

After these assumptions the resulting equation is still nonlinear

and not easy to solve analytically for most practical problems. Hence

‘several different methods of linearization have been used to arrive at

a simple analytical solution.  1In this section we will correlate the

different models representing different linearizations with the non-

linear model.

Figures 33a, 33b énd 33c show a comparison of the results of
the nonlinear model (Moody, 1966) and the linearized horizontal
modéls in h and h2, ag a function of the ratio of drainable dépth H
to total saturated thickmess D, - In figure 33a, the results of the
nonlinear and linearized horizontal model‘in h for H/D = 0.2
practically coincide;fbut for higher values of H/D (figures 33b and
33cjkthe discrepancy between the models is very significant. On the
other hand,_a comparison of the linearized horizontal model in h2 and

the nonlinear model shows a significant difference for all values of-
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The results of the 1inearized‘horizontal models in h and h? depend

very strongly on the choice of h.. If instead of the assumption that
E‘= d+ H/2 we assumefthatlﬁ = d (figure 34a), the nonlinear model
predicts é faster drop of the‘watef tablevthan either linearized model.
The discrepancy between the nonlinear model and the linearized model

in h is less pronounced thaﬁ that between the linearized model in h?
and fhe nonlinear model. If 3 = d + H = D the linearized models in h-
and h2 are no longer dependent on H/D (see equation 4.7). TFigure 34b
shows thét the disagréemént,between the linearized model in h2 and‘the
noﬁlineat,model (Moody, 1966) for H/D 3;0.5 is less than that between
the linearized model in ﬁ and the nonlinear model. The linearized
model in h2 overemphasizes the thinning of the flow zoné; while the
-linearized modél in h underemphasizés_it. The latter functions best
for H/D < 0.5 and h = d (figure 343).'

Figure 34c compéres the nqmerical sqlution by Verma (1969) (using

‘ his.reéults) for an initially flat watefvtable to the numerical solution
by Moody (1966) and exact solution bvaoussinésq(1904) for a parabqliﬁ |
water'table. At early time there is a small deviation between the
soiutions'due to their particular initial coﬁaitions; as time increases,
it diﬁinishes and the three solutioﬁs coincide.

Figure 32 compares results of the analytical soiutions by
Boussinesq (1904) for 4 = 0 and Séhilfgaafde (1963) for d # 0 to those
of the aumerical solution  (Moody, 19665 to thé‘nonlinear horizontai
model. The nuﬁérical and analytical solutions for d = 0 (/D = 1)

~117-
H/D. (The nonlinear model predicts a faster drop of the water table.) :

|
‘are identical; the solutions for d # 0 (H/D < 1) are slightly different



‘P =1y uow ZU Pue y uy Tapouw HmuSONHHOL

s

POZTIB2UT]. pUB wwmuaﬂaoﬁ a1 10 s3Tnsai 3yl usemiaq uostievdwo) CBHC mw:wwm

| S1hs /gty |
g 2 e s
1 ’ Q ] O
in | ' =a/H 20
s 4+0
b
& H /U
- .
- 490
(/% uoionbs) y Ui [aPOJ |DIUOZIION PIZUCAUIT - —— - ,y, , ‘
ek~ co:oawmvmc_ Ul [3PCIN iD4UCZIICH. DIZIIDBUIT]  —0 / j 120
X . ,m,, ’
(998! Soo ) 1epow pauriuoy 4 99 G/H Y //,
. O=as/H © W4
/.,/,m
AN
| ! 1 i M e




119~

D+ H = 4 103 U puB Y UT STIPOW [BIU0ZTIOY pozIiEoUTT
pue ummﬁaa:od 2yl JO s3[Nsai. 3y3] usemiaq uostaedmo)

I

m\mxxh“;

(996! >UOO£ ) 19DOA;

i

N : o

f=1/X

HoXtuiery mO_T_
(Ot D3} )4 ul 19PON [DJUOZIIOH P3ZIID3UN
E@ Umq U U |SpOn _oEoN JOH PRZIIDAUT ——— ——

1D

L(m(__ JUCN - 0—--

i

“qhg 2In3Tg

20

1740)

H /4

90

80

0



-120~-

{3pow mOIJ [BIU0ZTIOY 1EBUTTUOU BY3
10J UOTINTOS [BOTI2WNU PUB TBOTIIATEUER U3 Us9m3IDq uostaedwo)  -opg 2InT1g

o fssathie
oo - 0B 09 - Oov (o2 O 0
1 B ] L] ]
Olw,}/ﬂvr/
e - N~
¥ O
Y,
s - - -.WI.\.Q
MN H/U
A o
R S / 4 30
Ot=CG/H pun QOi="71/%x ib /
V-
, _ B ala) ._mb?_,,,.,
{ 696 oE._w,>,v UoNNIcS jDoisuny o 10iy Ajoipa
(9961 Apoojy ) wonog (pouswny v | eigoi ssiom 1180
(06! bsauissnog ) UoHNOS |DIAIDUY |w ‘

>

\
2110QDind

|
!
) Y

O



=121~

at early time, but coincide at large time.

The effects of nonlinearity are small only if the ratio of the
draipable depth H to the total saturated thickness D is less thgn or
equal tb 0.2.  Thus the linearized horizontal model in h is a good
approximation to the nonlinear horizoﬁtal flow model provided that
H/D < 0.2. The»soiﬁtiéﬁ obtained by Van Schilfgaarde seems to

approximate the nonlinearity effects or the flow zone thinning

fairly well, but it is only valid for this specific problem.

4.4 Potential Flbw Model

.In section 4.2 we assumed thatathe vertical flow effects are
insignificant and can be neglected; now we will investigate this
assumption.

Equations (2.7a ) and (2.13) with appropriate boundary and
initiallcénditions describe the potential flow model for the problem
illustrated in figure 29. ﬁquatioﬁ (2.13), the free.surfaCe boundaryl
condition, is nonlineaf and difficult to solve analytically. However,
several inveStigators have_linearized the problem to find an analytical -
soiution. Kirkham (1964) and Dagan (1964) solved the problem for
flow to tile drains; Gelhar (1974) used a stochastic approach in
Solvingbthe potential flow model.for a partially penetrating stream.

Verma (1969) used numerical techniques to solve the nonlinear
potentiél flow problem. The difficulty in arriving at a numerical
solution in this case arises from the faét that the uﬁper boundary of
fhé domain of flow is changing with time. Verma calculated the

position of the free surface at successive intervals of time by
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applying the forward finite differenceiapproximations of equation
(2i13). Then he solved the'Laplacé equation byvusing a successive
over-relaxation iterative écheme with the new free surface Being the
upper boundary of the flow domain at each interval of time. He
reported thaf the error in the results of the numerical solption
should not be larger tham 2.5 x 1073, |

Verma (1969) tabulated his resqlts for dimensionless head and
rate of outflow to the stream. In his aﬁalysis the emphasis is on
the rate of outflow. His results (drop of the ﬁhreatic surface) offer
us an opportunity to investigate the vértical flow effects by
comparing them to the results of the hotizontél flow model.
| Figures 35 and 36 show thevdrop of the free surface height at
the line of symmetry as a functién‘of‘time and the anisotropy parameter
n = L/D /§;7K£‘.‘ In both cases, H/D = 1 and H/D = 0.5, the potenfial
flo& model predicts a faster drop (Which becomes'increasingly rapid
for smaller vélues of n) of the phreatic surface than does the

horizontal model.

4.5 Correlation of the Horizontal aﬂd.Vertical Flow Models

‘The difference between the nonlinear horizontal model and the
nonlinear VErﬁical model lies mainly in the effects of the vertical
flow and seepage face. To investigate these effects, two solutions to
the vertical fiow model afe rneeded; one takes into account the seepage
face, and the other does not. TFor the pfoblem at hand the second
solution does not exist. Howe&er, the difference between the two‘

models at x/L = 0.0 and t > 0 is due mainly to the seepage face effects,
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 For all ﬁalues of t greatér than zero and x/L = 0.0, the dimensionless
‘height qf the free surface predicted by ﬁhe nonlinear horizontal model
| is the same as the hgight of waﬁer in the ditch. (It is zero for

ﬁ/D =1 aﬁd 0.5 for H/D = 0.5.) The dimensionleés-free surface heigHt

predicted by the vertical flow model is 0.218 for t' = KHDt/SyL2 = 0.5,

x/L = 0.0 and H/D = 1.0. It is zero for t' = 2.5, and 0.5 for t' = 0.5,

x/L = 0.0 and H/D

0;5 (the same as that prédicted Ey the horizontal
model). Thus.the seepage face effects afe significént for large.values
of H/D only at early time. |

Figures 35 and 36 contrast.the résults (at ®x/L = 1) of the non-
linear horizontal model and those of the nonlinear potential model; the
difference between these two is due mainly to vertical flow effects.

At n = L/D V?;7§B_2_4 the ertical flow effects are insignificant,
and the solutions for the two models practically coincide. For smail
values of 1, the potential fléw model predicts lower head or higher
dra&dowﬁ than the horizontal model. A quantitative evaluation of the
difference between the models fof Qarious values of n is given in-
Table 6. Thertable shows that the vertical flow effects are very
significant, especially for H/D = 1 and smalln, bﬁtrthéir significance
décregsesvfor smaller.values of H/D. |

‘The vertical flow effects are also a function of time. F§r H/D
= (0.5 they decreaselwith an increase in:time; for.H/D = 1, at early time
they iﬁcrease and at large time they decrease.

The ﬁarameter n, analogous to r/B = r/D /E;7iﬁ-in the,well‘flow
problem, characterizes the importance of vertical flqw effects. 1In

section 3.5 we showed that these effects can be neglected provided
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Table 6. Comparison of dimensionless height of the water table

determined by nonlinear horizomntal model and nonlinear

kd ' - hid .
% error = D (N.L. Horizontal Model) D (N.L. Potential Model) %
h+d

D (N.L. Potential Model)

H/D = 1

- ; 2 _
£ = KyDe/s,L n = 0.25 0.5 1.0
0.3 o 45,0 16.0 9.7
1.0 50.0 - 23,1 5.5
2.0 47.6 - 17.0 0.0
6.0 , . 56.2 | 13.6 0.0

H/D = 0.5

_ 2 o
t' = KHDt/SyL n = 0,25 0.5 1.0
0.3 25.2 11.2 1.2
0.5 21.7 5.7 0.0
1 10.7 - -2.4
2 5.2 1.9 ~0.0

+.sign indicates overestimate

potential flow model at x/L = 1, v : :
100
|
- sign indicates underestimate
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that r/B_z 4.0; this is also the value of 7 at which the vertical

flow effects can be neglected in the problem at hand.

4.6 Variably Saturated quelA(Exact Theory).

In?sections.4.2 and,4;4 it was assumed that effedts of the
unsaturated zone ére small and’ can bevneglected; now we will investi-
gate tﬁis assﬁmption.-

Equation (2.55 desgribes the unsaturated and saturated zones as
one continuous system. Ité solution.requires a unique relationsﬁip
 between fhe unsatﬁrated hydraulic conduétivity K and the moisture
conteﬁt 0. 1Inm solviﬁg the problem bf flow to a stream, Verma (1969)
: ﬁsed the equation and appropriate bpundafy conditions along with the
relationéhip between K and O suggested by Brutsaert (1967), equation
(3.19). He made use of theﬁcombined'explicit—implicit scheme., For
most_of'his study the diﬁensionless time increment At* (t* = tKH/SyD)
was initially of the order of 2.5 x 10_4 and increased gradually to
5 x 10”2. The dimensiénless space increments Ax/D and Az/D both had
. the value of 0.125. The number of nodes was 1//Az in the vertical
direction and(L//x)+ 1 in the x direction. iIn another.case, Verma
began with a A* of 2.5 x 107 which gradually increased to 5 x 107,
Ax/D and /z/D both had values of 0.054 He reported no noticeable
difference between‘thé results of the two cases. Using the values
from the latter case, hé found that the error encountered with the

finite difference numerical scheme should be less than 2.5 x 10 ",

Verma (1969) tabulated most of his results for rate of outflow and _

dimensionless head at the free surface. He was concerned mainly with
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the rate of outflow to a stream, ‘We will use his results for
dimensionless heéd at the free éurface to investigate the effeéts of
" the unsaturated zone.
.Figures 37 and 38 show. values for the height‘of.the phreatic
éurface as detérmined by the variably satﬁrated model for H/D = l‘
and H/D = 0.5. For larger values of‘hér/D the drép of the phreatic
~ surface is faster. (This is more pronounced for H/D =1 than fof
H/D = 0.5.) Phyéically this is expected, because‘smaller Values.of
hcf/D indicate small capillary forceé and drainage due mainly to
gravity'forceé (as is the case with'the potential flow model); a large
value Qf hc¥/D means étrong enqugh capillary forces tq hold a signif-
‘icant quantity ofrwater.Within the interstices of the porous mediﬁm,

Thus, drainage may actually take a very long time.

4.7 Correlation of Models

Dimensionless drop of the phreatic‘surface as a function of time,
as predicted by. the variabiy saturated médel, the potential flow model,
and the nonlinear horizéntal model for:the same values of n, H/D; and
hcr/D,_is‘shown in figures 37 and 38. Examination of these figures for.
the unsaturated zone effects réyeals that the variably saturated model
pfedicts a faster drop of the phrgatic surface than ihe potential
model. The discrepancy between the results of the two models at x/L = 1.0
and n = 1 ié presented quantitatively in table 7; the unsaturated zoné
éffects are fairly small and practicaliy insignificant for hcr/D = 0.07
and H/D = 0.5, but for H/D = 1.0 and the sameVValue of hcr/D‘the

difference between the two models increases, suggesting that contributions
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Table 7. Comparison of dimensionless height of the water table
determined by variably saturated model and potential flow

‘model forn =1 and x/L = 1.0

E%Q {potential flow model) - h%g-(variably saturated
% error =. ‘ flow model) < 100
' h-d
o (variably saturated flow model)
H/D = 1.0
t' = tKHD/SyLz % error in h/H obtained by potential flow model.
hep/D = - . 0.07 ' - 0.19
0.5 3.25 ‘ 27.174
2.5 : ‘ 5.0 70.6
4.5 | | 12.0 115.4
H/D = 0.5
5 A .
[ (7Y e
£ = tRyD/S L h../D 0.07 - 0.19
0.19 7.9 15.6
0.69 ' 3.6 23.0
1.69 -1.6 ‘ 9.0

- sign indicates underestimate

+ sign indicates overestimate
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from the unsaturated zome become significant.

The value of h_ /D= 0.07 describes Webster soil of 38% clay,
31% silt and 31% sand, with a depth'D‘to,the impervious layer of
‘about 3.55 meters. Té emphasize'the‘role of the uhSaturated_zone?

1/

a value of A™' /D = O.355,_equivaleﬁt to‘hcr/D = 0.19, was uéed by
Verma (1969). The difference betwéen the variably saturated model
and‘the potential flow model is given in table 7 and figures 37 ana
38. Fbr H/D = 1.0, the unsaturated zone effects are very significant
and an erfor of aboﬁt 115% is encountered. These effects decrease
-with a decrease in_H/D ratib?_for ﬁ/D = 0.5 and error of 237 or 1ess‘
is encgunteredx Thus the unsaturatéd zone effects can only be
neglected provided that hcr/D 5‘0;07 and‘H/D‘f‘O.S, where for H/D = 1,
and the sqme'valde of'hcr/D tﬁere is about 127% error.

For the well flow problem (section 3.8), we showed that the
unsaturated zone effects cénAbe neglected provided that hcr/D = 0.067
and deep observation &ells are being used. It‘is interesting to note
that the_critical values of hcr/D for both problems are fairly
close, even though we started with a completely saturated medium
in thg drainage.problem. In.general, a value of hcr/D 5‘0.07'can safely
be chosen as the coﬁdition under which the unsaturated zone can be
neglected; provided that H/D S-O.Sland deep ébéervation wells are
béing‘used.'

These correlations apply to the‘resulfs‘of the nonlinear horizon-
tal model shown in figures 37 and 38, except that in this modelywe
:neglected the unsaturated zone as well as thé vertical flowveffects.

In section 4.6 we showed that the vertical flow effects can be
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neglected providéd that n> 4.0, Consequently we can say that the
nonlinear horizonﬁal model is valid provided that n > 4 and
hcr7D-i 0.07. Fof actual application of this problem within the
above limitations Moody's (1966) solution to the nonlinear horizoﬁtal
model can be used (his results ére tabulated for”a.large range. of H/D .

values).



-134-

CHAPTER 5.

Theoretical Models for Artificial Groundwater Recharge

5.1 Introduction:

Artifiéial recharge of unconfined aquifers is usually accomplished
with the use of spreading ponds or long narrow pits, irrigation of open
lands, and spraying over forested regions. Rise of the groundwater
table occursunder and in the immediate vicinity of the recharge
-basiné. The practicing engineer must be able to predict changes of
the water table with reasomable accuracy.

| The pheﬂomena‘of rise and mbvemeﬁt of the water table resulting
fr6m the recharge of an unconfined aquifer is governed by Darcy's
equation and the equation of continuity. TIf the unsaturated zone is
neglected'and the medium is homogeneous, equation (2.7a) is the
governing equation, with appropriate boundary and initial conditionms.
.The conditions at the free surface are nonlinear and very intractable.
To overcome this difficulty, various techniques have been applied to
simplify the prqblem. The simplifications consist mainly of the Dubuit
assumptions leading to what we call the horizontal model (see section
2.2E). Because»of their simplicity these models are widely used.

‘The difficulty in.analyzing the limitatioﬁs‘of the horizontal
flow model is that the literature for the problem (figure 39) is not
completé; also all of the existing Soiutions assume complete

saturation (see Table 8). Hence our final conclusions about the
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validity and limitations of the horizontal model in artificial
groundwater recharge will be incomplete. We can however analyze the
significance of the vertical flow effects that are neglected in the

horizontal meodel.

5.2 Horizontal Flow Models

In sectién 2.2 we derived the basic p;rtial differential equation
according to the horizontal flow model theory. Equation (2.23)
‘describes,the'free.surface of a transient groundwater mound in a
. region subject to artificial fecharge. _it is'nonlinear and no general -

analytical solution is available.

A. Linearized Model in h
If the height of the groundwater mound is assumed small compared
to the initial saturated thickness, and if S<<Sy, a linearized version

of equation (2.23) in one dimension may be written as

sh _ Diy 3%h |, R(0) (5.1)
ot 5, axl Sy ‘ ‘
where
R(x) = R, |x|] <L
= 0, lx] L
Now if
sp =h-1D

and
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Table 8, Different theoretical models and their limitations,

considered in artificial groundwater recharge problem,

h = h(r,t) is the height of the phreatiec surface above a

datum and D is the initial saturated thickness.

Theoretical Model Assumptions Author
Vertical Flow Zomne Unsaturated -
Flow Thinning. Zone
(h#constant)
"Horizontal flow
model:
linear in h no no no - Polubarinova-
Kochina (1962)
~ linear in h2 no ves no Hantush (1967)
(h=D in stor- : '
age term)
nonlinear no ves no Amar (1973)
Potential flow
" model:
linearized _ .
phreatic surfacd yes no no Dagan (1967)
Hunt (1970)
| nonlinear '
. phreatic surface ves yes no Amar (1973)
Singh (1972)
.Variably saturated
flow model:
nonlinear l yes - yes - yes no solution

available
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equation (5.1) becomes

(5.2)

= 0
ot Ix2 S

This 'should be. solved subject to the following boundary and initial

conditions (see figure 39):

s;'+ 0. as . [x[-+ ©

(5.3)
and sr(x,t=0) =

Equations (5.2) and (5.3) have been solved by Polubarinova-

Kochina (1962); the solution in dimensionless form is

’ t 2 \J

s! = 1/2 {¢" erf( ) (- =) ‘/t Rl DA

T /Er S -
@~ x" -1+ x

- 5 [1 - erf ( 2‘/_T,)] + t' erf ( fgjg;f )

(1 4+ x") V! | -(1 + x')2/4f' (1 - x')2
+ . e | -
e : 2

(1 - erf(%’tér)]}

(5.4)

for lx'llf_l

- and
. - : v C ! PR ' 2 '
sp = 1/2 {t° erf(lzjzi-) + (1 +/;:)/t e (L) “/4¢
(1+x')2‘ ' 1+x! Vet
Y ol T B er (2/“*)

oy - '_‘ o2 ' ' 2 -1
B C DI U AN C A R S 3L D)

(5.5)
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for [x'| > 1
where s' = s_/DP, P = RL2/K pe, k' = x/L, t' = tK,.D/S. L2
T T H HY » 3 H v _
\ 2
. and  erf(w) = 2. f‘edL dx
v 0 :

FEquations (5.4)and (5.5) were evaluated numerically, aﬁd the results

are shown in figure 40.

o ‘ » )
B. Linearized Model in h

Hantuéh (1967), Polubarinova~Kochina (1962) and other investi-

gators applied another method of linearization, solving‘for h2 instead

of h. Following Hantush's derivation, let Z = he - p2 in equation

(2.23); it can then be written as

o>
N

: 2,
S 0°Z 2R
" A L] + ==
Kyh 5t_ 3%2 Ky

Replacing h with an average value h transforms this to

~

.

ot g2 g - (5.6)
. Y

where o = KHh/Sy
Equation (6.5) is subject to the following boundary and initial
conditions:

Z(x,t) = 0 at t = 0

- (5.7)
Z(x,t) =0 ,

at x = £B
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‘Hantush (1967)‘solved this for a‘fiﬁite and an dinfinite domain, i.e.

when |B| »e: The solution for the finite domain is

3284D 3287 f —a(2n-1)12¢ /482

(L~-e )
Y n=1 (Zn ~1)3

‘% sin ((Zn-1)7L/2B) cos({(2n~17x/2B)

or in dimensionless form,

1 32pB'% ¢ 1 - o~ (1) e’ /482
sé == [l 4 === O — sin((2n-1)7T/28")
P kil n=1 (2n~1) :
x cos{((2n~1)mx'/2B') ] T (5.8
where B' = B/L and P = RLZ/KyD?
The.solution for an infinite domain is
! *'l V1 + P "( t.e") 1/p (5.9)
Sr = p Sr° X ,t . - - .

where s'o is the solution to the linearized model in h (equatiomns (5.4)
and (5.5) for |x'| <.1 and [x']| > 1, respectlvely) The results
of equation (5.9) are shown in figure 41. In figure 42, to demonstrate -

‘the effects of the boundary, the infinite and finite domain (B'

-

B/L = 17) solutions are compared. They are identical up to x/L = 10,
where the finite domain solution starts to show a lower rise of the

‘water table; overall, however the difference is insignificant.
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C. Nonlinear Horizontal Model

Amar (19%3) numeriéally solved equation (2;23)'(with the
compressibility term omitted) and éppropriate boundary and initial
conditions. He used both the explicit and implicit finite difference _
formulations. We used his cbmputer program fof the explicit finite
difference approximétion to obfain tﬁe rise in the phfeatic éurface
height. A dimensionless time increment (At') eqﬁél to 1.25 x 10—3 and
space increment (Ax/L) equal to 5 x 10_2 were used. However, this
method of solution has the disadvantage that if Ax is chosen rather
small in the interest of accuracy, the permissible At' (note thatrthe
limit imposed on At' is proportional to (Ax)z) turns out to be so
small that about an hour of the com@uter (IRM 360/44) time is required
to complete a problem. The results obtained using Amar's computer |
progrém for the nonlinear horizonfai model are compared with those.of

the linearized models in h and h® in figures 43a and 43b.

5.3 Correlation of the Horizontal Flow Models

The solution curves shown so far have been for the linearized
.hprizonta1 models in h and h2 and the nonlinear horizontal model.
Figufe 44 shows a significant difference between the linearized
horizontal model in h and the linearized model in h2; this increases
with an increase in time and the nonlinearity parameter P = RLZ/KHDZ.
In figures 43a and 43b the threé hdrizontal modéls are compared fqr
valueslof P of 0.2 and 0.0759; the linearized horizontal mgdel in h

predicts a higher rise of the water table than the nonlinear model,

' ' ' | . L L2
which in turn predicts a higher rise than the linearized model in h™.
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Figure 45\show§.that, for P = 0.2 and_s;/D = 0.6, the différeﬁce
‘between dimensionless rise of the watér table at x/L ='0 predicted by
the nonlinear model and thatbpredicted by the linearizéd model in h2'
is about 10%; for P = 0.0759 and the same sr/D, the difference is less
?han 9%. It is obvious from this that the linearized model in h?2 doeé
not approximate thé_exact horizontal flow model‘for the problem of
recharge as adequately as it'does for the well flow problem (see
figureIG){ Nevertheless, the linearized hofizontal-model in h?
approxiﬁates the‘nonlingarity effects for most practical purposes

‘(sffb_j 0.5) with an error of less than 107%.

5.4 Potential Flow Model

According to potential theory, equation (2.7a) is the govérning
equation for flow through. a porous medium under incompressible,
séturated and homogeneous condiﬁions.' The free surface boundary
conditionvis described by a nonlinear partial differential equation
containing a time derivative. This can be used to determine the height
of tﬁe phreatic surface after the other terms in the equationvare
known; Sincé it iélnoﬁlinear no general analytical solution is avail-

" able..

A. Linearized Model
Assuming that the rise of the groundwater mound is small
compared to the initial saturated thickness and neglecting the seepage

" face, the linearized potential flow model can be described as folloVé:
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Ky 2 +t R, 57 = Q - | (5.10)
P(x,z,t = 0) =0
99 - 0 '6h z = =D
oz .
(5.11)
%9-= 0 onx=20
X
(x> Rz,t) =0
S
Sy Qﬁ _R _ 99 Conz =0 (5.12)
Ky 3t K, 9z .
" By letting X = /kv/KH x in equation (5.10), we get
ELJP_+.§_9 =0 , ' (5.13)

AXZ  5z2

© Also let & = L/KV/KH

"Equations (5.11), tS.lZ) and (5.13) are analogous to the equations
oBtained by Dagan (1967) and Hunt (1970), who used perturbation techw
'niqués aﬁd assumed an isotropic medium (K = KH = K). Their

solutions are identical (equation (26) of Dagan's paper and equation
(31) of Hunt's paper), and can be written in the transformed form (for

anisotropic medium) as
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2 © ] _ v .
' = °r RygD™ 21 sin ) %OS AX' 1.~ e (AtTn) tanh (1 /) da
D rZ wng A » tanh (/1)
wheére n = VRV/KH L/D , “and D' = D/&

'This integral was evaluated numerically using Simpson’s rule (see
Appendix (C) fqr program 1isting);l The results are shown in figuré
46 for varioué'values of n. lThe figure shows that the linearized
*potgntialﬂflow model predicts a higher rise of the phreatic surface

for smaller values of 1.

B. ﬁohlinear,Model

Amar (1973) and Singh (1972) solved the nounlinear potential
flow‘model numerically withouﬁ infréducing any linearization. Amar
used the accelerated Liebman‘rélaxation method to calculate the
values of head ét interior points of the flow domain from the known
_initial position of the phréatic surface and the varioﬁé boundary
cqnditions except the upper moving phredtic surface. He then
determined the position of the phreatic surface at succéssiVe intervals
of time bf apglyinghthe forward finite difference approximation. The
computer pfqgramvused to solve this problem,is'unavailable, as are
~thé‘tiﬁe and space increments and the error involved in the'differeﬁce
approximation. His results are reproduced in figure A?, This figure
shows that the noﬁlinéar potential flow.ﬁodel predicté a lower rise of

phreatic surface than the linearized model.
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5.5 Cerelation‘of.the Horizontal Flow Models and the Vertical Flow
‘Models

Figure 46 compareg the dimensioﬁless rise of the water table
obtained from the linearized potential model with that from the
linéariéed horizontai model iﬁ h. ’The two solutions are practically
identical for n = (L/D)VE;7EE 3 4. TFor smaller values of n, the"
linearized pofential flow model predicts a higher rise than does the
linéarized horizontal model in h, particularly beﬁeath the recharge
Easin. Outside the recharge basin, the geverse is true; the
linearized horizontal model shows a higher rise of the water table, but

the difference is relatively small (see figure 48).'

Figure.47 shows a comparison‘of'the nonlinear potential flow
model aﬁd-the‘nonlinear horizontal model. The dimensionless rise of
the water table predicted by the two models.practicaily‘coincides for
‘=2 and P = O.l; In general the ﬁonlinear‘horizontal and potential
flow modeis predict a 1dwer rise of the water than the corresponding
lineaiizedlmodels.

From this investigation, we conclude that beneath a fécharge
basin the vértical flow effects are insignificant and can be neglected
provided_that n > 4 (this is the séme‘critiqal value obtained in the
‘well flOW‘andvdrainage problems). Consequently the nonlinear horizontal
flow model ig valid provided that n > 4 and the unsaturated zone is
small and can be neglected. The linearized horizontal model in hzl
is a fair approximation (with an error.of less than 10%) for determining

the rise of the water table provided that n > 4 and s./D < 0.5.
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to parallel drainage ditches in agricultural land, and artificial
. groundwater recharge in unconfined aﬁiéotropic.aquifers are the problems

that have been considered. Analysis of these problems was made using:

1)  horizontal flow models assuming hydrostatic'pressureldistribution
and no contriﬁutioﬁ from the.unsaturated zoﬁe; |

2) potential flow modéls (vertical fléw) éssuming that the unsaturated
zone does. not contribute to flow,

3) variably saturated models where both the saturated and partly
saturated flow are taken into account (This model has not been
considered in the artificial groundwater recharge problem), and

4)  improved Horizontal flow model, in which vertical flow effecté

are approximated (only for well flow).

A mathematical model for fhe fourth case was derived for the first
time here; analogous to Boulton's (1963), the analytical solution‘
for this model was obtained and evaluated.

Correlation and analysis of the existing analytical and‘numerical.
solutions for the first three cases as well as the solution for the
fourth case made iﬁ possible to evaluate the effects and the significance
of the followiﬁg physical factors:

1) thinﬁing of the flow.zone,

-156~
SUMMARY, CONCLUSIONS AND RECOMMENDATTONS . ,
' Axisymmetric flow toward a fully penetrating pumping well, flow
2) vertical flow and the anisotropy of permeability
|
|
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3 the unsaturéted zone above the phreatic surface. These in turn

made it possible to examine the validity of the horizontal fldw models.
" The following conclusioné can be drawn from this research:

D Tﬁe variably séturated model predicts‘higher drawdown than do

the éaturéted ﬁodels. The ratio between the critical height or

thickness of the unsaturated zone to the initial saturated thickness

’ (hcr/D) can serve as a criterion for determining whether the contribution

from the unsaturated zone is important. The larger the value of hcr/D’
the more significant the unsaturated zone is. TFor values of this
parameter less than_d.07 the unsaturated zone can usually bé

neglected. Under this condition errors in hydraulié head are.less
than-iO%-for fﬁlly pénetrating of deep observation‘wells (z/b'i 0.5).
This same critical value holdé~in the drainage préblem where the

ratio of drainabie depth to the initial saturated thickﬁess (4/D)

is equal to or less than 0.5. For H/D = 1, thére_is about a 12% error.
2). The paraméters‘r/B.= (r/D)/§;7§E'in well flow and n = (L/D)VF;7E£
in linear flow can serve és criteria for determining Whether the
effects of vertical flow and anisotropy of permeability are impo;tant.
The.smaller.the'value'of r/B and n, the‘larger the effects ére. The
cfitical value of 7 and r/B above which the yertical flow effects één be
neglected was found to be 4.0.

.3) Tﬁe'paraﬁete?s s/D in‘wellvflow, ﬁ/D in flow to parallel

drainage ditches, and P = RLZ/KHD2

in artificial groundwater recharge
can serve as criteria for determining the effects of thinning of the

flow zone. The larger the value of these parameters, the larger
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will be the effects of thinning of the floﬁ zone. The critical
values are é/D = 0.2 with an error < 10%, H/D = 0.2 and P = 0.01 with
less than 5% error. |
T 4) The nonlinear horizéntal flow model in general is valid
provided that'f/B.apd n are eqdal to or greater than 4.0 and hcr/D is
equal to or less than 0.07 (with an error of less than 10%).
_5) The horizontal flow model has beeﬁ improved by a correction
developed to account for the vertical flow and. flow zone thinning.
This model has beeﬁ analyzed énd‘a transition zone (where_the‘vertical
flow and flow zone thinniﬁé interact) has been provided for the first
tiﬁe. A new‘field-equation suitabie for numerical simulationsL
-combining the above effects, has also been obtéined.
It is recommended that furtherlreéearch be éonducted in the
"following:
1) The investigation and ahalysis pfesented here needs to be
extended to.more practical problems of partially penetrating‘stream—
connected aquifers and agricultural drainage.' The effects éf the.
‘unsaturated zone ﬁan be very important in these problems and analytical
corrections for them can be aevelopéd similar to ﬁhe one by Kroszynski
~and Dagan; 1974, for weliAflow.r
2) The improved hqrizontal floﬁ model ‘developed here (for the well
flow problem) to éccount for flow zoné.thinning and vertical.flow
- can be solved for égriculturai drainagé and artificial groundwater
recharge problems.

3) The new field equations obtained in this study, combining the
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vertidal‘flow effécts and the flow zone thinning, need to be tested

for numerical simulations.
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APPENDIX A

Input Data for the Computer Program of the Variably

Saturated Flow Model by Kroszyuski and Dagan, 1974

The flow domain is divided into rectangles in the r,z plane,
and these in turn are divided into triaﬁgels; the total number of
- nodal points used is 550 (25 nodes in the z~direction and 22 in the
r—difection, the.radial and the vertical coordinates are shown below).:
Thé.initial saturated thicknéSS‘D is 10‘meters; the horizontal -
and vertical conducﬁivities-are 40 m/day and 10 m/day respectively;
the specific yield S

¥

is 0.2 and the discharge Q is 800 m>/day.
The well radius Ty, is 0+1 meters. -

Radial coordinates (meters): 0.1, 0.2, 0.3,'0.4, 0.5, 0.6, 0.7, 0.8,

1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 10.0, 20.0, 50.0,

100.0, 500.0, 1000.0
Vertical coordinates (meters): 0.0, 1.0, 2.0,-3.0, 4.0, 5.0, 6.0,
7.0, 7.50, 8.0, 8.25, 8.5, 8.75, 9.0, 9.25, 9.5, 9.75, 10.0,

10.2, 10.4, 10.6, 10.8, 11.0, 11.5, 12.0
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APPENDIX C

Program listing of the linaarized Potential flow model
(Integral equation) for the artificial ground water

recharge (Hunt, 1970)
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