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ABSTRACT

Train generated microseisms at Socorro, New Mexico, were recorded
at five locations. Power spectral density analyses of the registered
signals obtained by statistical methods revealed frequency peaks. At a
distance of about 15000 feet from the train, frequency peaks at about
2.1 and 3,0 c/s were present. At distances of about\lZOOO, 7000 and
2000 feet, peaks in the noise spectra were found at 3.6, 3.6, and
4.5 c/s, respectively. Two segments of a record taken at the railroad
station at a distance of 6 feet from the rail-track were analyzed, one
segment was noise produced by the train when it was about 6500 feet
north of the station, the other when it was at about the same distance
south of the station., DPeaks in the noise spectrum for these examples
were not the same even after correction for the Dopfler shift,

For all examples of train noise, 90 percent ox more of the energy
was found to be concentrated in a narrow frequency range which at no
time exceeded a width of 4 c¢/s. All of the frequency peaks established
in the study lie within the 4 ¢/s band-width at all locations, However,
the narrow band, where 90 percent of ﬁhe energy is concentrated, shifts
as a whole to lower frequencies with an increase in the distance between
the noise source and the recording location., An increase in the dis-
tance of the recorder from the noise source also shifts the frequency
peaks contained in the frequency band. However, the exact relation be-

tween distance and frequency peak shifts could not be established,



FREQUENCY ANALYSIS OF SHORT-PERIOD MICROSEISMS

GENERATED BY TRAINS

INTRODUCTION

The objective of this study was to investigate the frequency
spectrum characteristics of the noise generated by trains passing
through Socorro, New Mexico,

In ?revious stu&ies, Frantti, et al, (1962), and Walker, et al.
(1964) have shownvthat thé frequency spectfum of the microseisms
contain a high-energy peak between the frequencies of 2 and 3 ¢/s, a
peak that Walker has suggested is caused by industrial noise. In
Socorro, Long (1964), on the basis of a histogram of measured fre-
quencies, suggested two frequency peaks (at 2.9 and 3.4 c/s) in the
noise produced by trains at a distance of about 15000 feet, A pri-
mary reason for the ?resent study was to establish these peaks more
accurétely by determining the power spectral density of the train
noise usiﬁg statistical methods.

The results of the power spectral analyses indicate two peaks
T I I

in the train noise at a distance of about 15000 feet, but at somewhat



different frequencies (2.1 and 3.0 c/s) than suggested gy Long (1964).
In additien, the ‘analyses of fhis study show that 90 percent of the
noise produced by trains is always restricted to a narrow_frequency
range (less than 4 c¢/s), but the band of noise shifts as a whole to

higher frequencies with decrease in distance from the noise source.
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THEORY

INTRODUCTION.,

Two methods, one functional and the other stochastic, are used in
the analysis of physical phenomena. In-the functional approach, the
phenomenon under investigation is assumed to be a mathematical function
ideally defined for-all time. Whereas, in the stochastic approach, the
sample function is assumed to be randomly extracted from the universe,
thus chance elements are included in the analysis. If the physical
realization is limited to a single function, the stochastic approach
is the seme as the functional approach (Paulson, 1964, p. 11). Because
the stochastic approach is more general, especially in that it includes
chance elements, it was adopted for this study.

In this section some important definitions and concepts, pertinent
to the development of power spectral density estimates using the sto-

chastic approach, are presented.

DEFINITIONS,

Probability.

Probability function or probability measure: Probability function
Y I )

or probability measure, P(8), is defined as a real valued function which
is (1) known on sets of some space, (2) non-negative, and (3) additive
for unions of disjoint sets (Cramer, 1946, p. 56).

Probability distribution function: Probability distribution function,

F(x), is a non-decreasing function having the following properties:



0 ¢ F(x) €1

F-®) = 0 and Flew) = 1 ,

Probability density function: Probability density function,
p(x), is the derivative of the probability distribution function, F(x}),
if this derivative exists (Solodovnikov, 1960, p. 65-66), i.e.,
dlF(x)]

p() = (1)

Stochastic Events,

Stochastic variable: A stochastic variable, xj(w), is defined

over the space 2, the probability measure, P(S), of which is known.
It, xj(m), assigns values of x for each element w of the space Q.

Stochastic function: Stochastic function, Xj(t,w), is defined

such that for fixed time, t=t,, the stochastic function, xj(to,w), is
a stochastic variable, >When t is variable, xj(t,w), generates a set
f stochastic functions known as a stochastic process. A set of
stochastic functions generated by a stochastic process is an ensemble
of stochastic functibns (Davenport and Root, 1958, p. 39).
If w is fixed and t is variable, X;(t,uo) is said to be a

physical realization, sample function, or particular history of the
stochastic process (Paulson, 1964,~p. 12).

Moments,

Tirst and nth moments: If x is a stochastic variable with

probability density, p(x), the expectation of X, x, (also first mo=-

ment of x) is defined as



~

x = E(x) = xp(x}dx, (2)
(Solodovnikov, 1960, p..70). The nth moment of the stochastic

variable x with probability density p(x) is defined as

m (o]

X0 = E(xP) = xDp (x) dx ' (3)

(Davenport and Root, 1958, p. 49),

The first moment indicates the average, m, over the ensemble,
and when the process is statiocnary (a concept which will be introduced
later), the second moment indicates the intensity or the average power

(Davenport and Root, 1958, p., 49).

Central moments: The nth central moment, u,, of a stochastic
variable x is defired as
(=]
up = B[ (x=m)? ] = (x-m)® p(x)dx, (4)

wiere m is the average or the first moment, Of particular interest is

the second central moment, u,, which is

8

Uy = o2 = B [ (x=m)2 ] = E(x?) - [ BE(x) ]% = (x-m)?p(x)dx (5)

where oi is called variance or dispersion. The positive square root
of ci is the standard deviation of the stochastic variable x (Daven-
port and Root, 1958, p. 49).

Joint central moments: If Xy and X, are stochastic variables with




first moments m; and m,, respectively, the joint central moment, Hyqs

or covariance is defined as

. g = B[ (xg-mp) (xg-mp) 1, (6)

where E is the mathematical expectation (Davenport and Root, 1958, p., 49-

50),

THEORETICAL CONCEPTS.

Stationarity.

Stationary stochastic processes are those families of stochastic
functions for which the outcome of any operatibn,-Fﬁ averaged over the
ensemble, is independent of time. In other words, the statistical
properties of the process are independ@nt of time translations across
the ensemble, For example, if F is the operation to determine sta-
tistical averages over the ensemble, the process, xj(t), is stationary

when
F (T = F { x.(t : 7
(xg0ep) 1= F x50t ) (7)
for any fixed t; and t,. For non-stationary stochastic processes

F{ xj(tl) P#EFEA Xj(tz) ¥ (8)
(Bendat, 1958, p. 4).

Ergodic Hypothesis,

Assume a stationary stochastic process, xj(t). If statistical

~

averages, X, across the ensemble are the same as the time averages,

x, along the time axis of any randomly chosen member of the ensemble,

the process is said to be a stationary stochastic ergodic process. In

other words, for such a process time and statistical averages can be



equated, 1., e.,

s ]

%= %= lin [x(t)]dt | (9)
Toro 2T

~T
(Solodovnikov, 1960, p. 89-90). The ergodic hypothesis has a still
more practical use in time-series analysis, If a single function,
which is afparticular history of the stochastic process, is under in-
vestigation, it can be divided into pieces 2T long., The length 2T is
chosen to be much greater than any period'contéineé in the process,
Then, the ensemble of functions, each of 2T length, represents the sto-
chastic process, A statistical analysis of any sample randomly chosen
from this ensemble is sufficient to describe the process (Bendat, 1958,
p. 6-7). |

The conditions for strict stationarity, which are not'easily
realizable, are that the ensemble averages of all the moments are in-
dependent of time. Second order stationarity, which is more easily
realizable, requires only that ensemble averages of the first and
second moments are independent of time, Second order ergodicity
(Paulson, 1964, p. 48-49) means that first and second moments are the
same across the ensemble and along any single element of the ensemble.
It should be mentioned that stationarity is a necessary but not
sufficient condition for ergodicity (Paulson, 1964, p. 48-49),

The ergodic hypothesis, in spite of several attempts, has not
been proved (Xhinchine, 1949, p. 54-55). In geophysical research,
especially in time series analysis, the ergodic hypothesis has been
assumed, implicitly or explicitly. In this study it was assumed that

the conditions for second order stationarity and ergodicity were met,



and therefore, ensemble averages were replaced by time averages.

Autocorrelation Function.

If x; and X, are stochastic varigbles at times t; and t,, of a
real stochastic process, xj(t), the autocorrelation function,
o :

Rye(tq, tp) is equal to the expectation of x; . X,, 1. e.,

Rx(tl, t2) = E(x1 . x2) -(10)

-

(Davenport and Root, 1958, p. 59). The normalized autocorrelation
function, p,(ty, ty), is expressed in terms of the joint central mo-
ment, Myg, and the variances, 0Oy and o,, of the random variables as

follows:

Hil

9192

When the stochastic process is assumed stationary, Ry(ty, t,) depends
only upon the time lapse or lag, 1 = t, - €y, Under this condition,

the normalized autocorrelation function (11) simplifies to

Ry (1) - mzx

2
0%x

p (1) = , (12)

where m, = my = My and 0y = 01 = 03 (Davenport and Root, 1958, p. 59-60).

X by

If the first moment, my, is assumed zero, then

R
o (t) = x)

‘ (13)
X 2
0%

Moreover, if the process is assumed ergodic, the time autocorrelation

function, C(1),




C(7) = lim -2 | x(ter) x(t)dt (14)
T

oo 21

o e

equals the statistical autocorrelation function, R, (7).

The following properties of the autocorrelation function are im-
portant: : )

1.. The autocorrelation function for a stationary process depends
upon the elapsed time difference (time lag'T = ty-ty) but is invariant
to time translations (Bendat, 1958, p. 19-20),

2, From relation (14)

G

c) = x% (15)

where x2 is the average power (Solodovnikov, 1960, p. 92).
3. The autocorrelation function, C(r), is an even function of
time lag, t, since C(t) = C(-7), as shown below, assuming the process

to be stationary,

C(t) = x(O)x(t+1) = x(t-1)x(t) = x()x(t-1) = C(~T1) - (16)

(Soledovnikov, 1960, p. 92).
4, The autocorrelation function, C(t), is bounded from above by

its value at time zero (also called variance), i. e.,

C(0) = C(m) ‘ : (17

(Paulson, 1964, p. 24).
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Power Spectral Density Function and Windows,

Power spectral density function: If x(t) is a signal, xT(t) is

-~

defined as

x(t) when ~T<t<T

0 otherwise,

In other words, xT(t) is a truncated function of length 2T extracted from
x(t) .+ "The Fourier transform of the truncated function, called Xp (Gl
is o T
Xp(Gw) = | xp(t)e~Ivtdt = I x(t)e~IWtat, (18)
-co -T

The true power spectral density function, P(w), is defined as
— 1 2
Plw) = 1lim -;l Xep (G ) ’ (19)
Trco 2T '

(Solodovnikov, 1960, »., 95), Also, it can be shown that

&

5] o]

— , 2 1
X2 = lim — | ] Xy (50) } do = == | P(w)dw (20)
Tsw 2T | 2T - 2w

where X2 is the average power (Solodovnikov, 1960, p. 96).
Cp(t), the autocorrelation function for the truncated piece, xp(t)
is

T
Cp(7) = 5%1- J[ xT(t)xT(t+T?dt. , (21)
-T

The true and truncated autocorrelation functions are related as

C(t) = lim Cp(r) . (22)

T
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Taking the Fourier transform of the auto-correlation function,

_ 1 [
Cplrye™¥tdr = e I | xp(t)xp(t+T)dt
- O ; bl v -3
- ;% ar | xp(£)edUT x(eer)e IO g, (23)

and introducing equation (18) into (23) gives

-
By | (24)

‘ -jwT 1 .
C({t)e dr = ““*l X (w)
o7 T(J

°

If we take the limit of the above expression and make use of equation (19),

<]

8

then ‘
P) = lin | Cplme?ar= | crre?ar (25)
Treo
- -

(Solodovnikov, 1960, p. 98-959). ' This shows that the autocorrelation
function, C(7), and power spectral density function, P(w) (also P(£)),
are a Fourier transform pair, Furtﬁer, since the autocorrelation
function is an éven function, the autocorrelation function and power
spectral density function are Fourier cosine transforms of each other,
i. e., o |

Plw) = 2 C{t) cos (wt) dr - (26)

0

(Solodovnikov, 1960, p. 98).
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Windows: It can be shown that the sample (truncated) auto-
correlation function, Cp(t) is a consistent estimate of the true auto-
correlation function, that is, the following variance and probability

[

relations hold:

1in E { | €7(t) - C(x) |2} =0 (27)
To0
“and P { Lin Cp(t) = C(x) } =1 (28)
C Tow

(Paulson, 1964, p. 51)., However, for the power spectral density
esfiﬁates the statements corresponding to (27) and (28) above do not
hold true (Paulson, 1964, p. 52). This indicates that the truncated
power spectral density function will not give a consistent estimate of
the true power spectral density. One way to overcome this difficulty is
by introducing spectral windows (Q(f)), which are bounded even functions,
into the expressions, for it can be showﬁ that for every such Q(f) the

following relation holds,

Q(£) p(fjdf, (29)

1.i.m. Q(E) Pp(£) df

T-o0

.(Paulson, 1964, p. 53). The equation (29) as applied to Q(£)P;(£)
guarantees equations like (27) and (28) for power spectral density esti-
mates (Davenport and Root, 1958, p. 63-64). In this study, spectral
windows, Q(f), were used to obtain consistent estimates from the trun-
cated data,

For every spectral windoﬁ, Q(£), a corresponding lag (time)

window is defined such that the Fourier transform of the one is the



other (transform pair).

Windows are chosen to possess certain properties. In addition
to being bounded even functions, the principal requirements of a
spectral window afe that (1) the main lobe be concentrated near fre-
quency zero, £ = 0, and (2) the side lobes be as low in amplitude as
possible (Blackman and Tukey, 1958, p. 14). These requirements specify
that the lag window be flat and blocky, but simultaneoﬁsly smooth and
gently changing. Moreover, the lag window, D(t), should vanish when
lT’>Tm. Since these requirements are contradictory, several investi-
gators have attempted compromises through trial solutions, For example,
the Hamming lag windéw, D(t), is given as

0,54 + 0.46 cos [gzﬂ when |T|<Ty

D(t) = ‘m (30)
0 otherwise
/’//
where || = (tp-t7), is the time lag and Ty is the maximum lag (Black-
man and Tukey, 1958, p. 98). The Hamming spectral window, Q(£f), which

results from taking the Fourier transformation of the lag window, is

given by
Q(£) = 0.54Qq(£) + O.23‘{Q0(f + 1/2 Tm) + Qp(f - 1/2 Tm)] (31)
where
. sin(2wfTy)
On(f) = : 32
Qo (£) s (32)

(Blackman and Tukey, 1958, p. 95-98)., Hamming windows were used ex-

clusively in this study (Fig. 1).
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METHOD APPLIED

In the previous section, the basic theory of the nower spectral
density estimation for continuous gata was introduced. The autocorre-
lation function and power spectral density estimates were derived
under assumptions of second order stationarity and ergodicity,

Vhen the data are in discrete form, the above formulas can be
modified without any additional assumptions., Equations for the case of

discrete data and a discussion of the confidence limits on power spec-

tral density estimates are presented below.

DISCRETE DATA.

Aliasing,

Aliasing of frequencies is introduced when the signal is digitized
at equi-spaced intefvals. Thus in this study, aliasing can be con-
sidered the contribution of power in the higher frequencies to the
pbwer in the lower frequencies, which,’if not considered, may lead to
spurious results (Bendat, 1958, p. 52).

Suppose that the truncﬁted function, Xyp(t), is diéitized at in-
tervals, At,

0, At, 20t, .« o . « , (n=1)At, Ty .

The power spectral estimate, P, (f), calculated from such digitized

data, covers only the frequencies, Osfcfy, where

£, =

g (35)

2At

In this instance, fN is said to be the Nyquist or folding frec. -ncy.
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The power spectral estimate, PA[f), vanishes at frequencies higher
than fi\}, ic ea,
P () when Osf&fN
Palf) =
0 otherwise,

where P, (£f) is the aliased power spectrum,

If the highest frequency in the signal falls within the interval
Osfsfy, the power spectral estimates derived from digitized signal at

intervals At = 1/2f will not be aliased (Shannon, 1949, p. 11) and as a

result,

Ppa(E) = P, (6) = P(), : - (34)

where P(£) is the true power spéctral density estimate, However, if
frequencies higher than £ = fN,exist in the original signal, they will
contribute some power to the lower frequencies., The contribution of
aliasing in any frequency range

Osfsty,
comes from the frequencies

anN * f,

where n is an integer, n = 1, 2, 3, ...., n (Blackman and Tukey, 1958,

5. 32, p. 120).

Numerical Estimation,

The formulas for the numerical estimation of the autocorrelation
function and power spectral density for discrete data are given below,

The autocorrelation function with the lag interval At = hAt is
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a=n-hr

Xy Xgopr s

1
r n-rh q=0

(@]
i

n . .
where, r = 0, 1, 2, ...., m, m € =, The constant h, in most practical

i

cases is chosen equal to one (Blackman and Tukey, 1958, p. 120).

The raw spectral density estimate is

_ q=m-1 T
V_ = at[Cy + 2021 Cy cos (F5) + ¢, cos (zm], - (36)

where frequencies corresponding to r are r/2mAt (Blackman and Tukey,
1958, p. 121).
At this stage, the window is introduced to smooth the raw spectral

estimates. The convolution integral in the continuous case simplifies

to ‘a summation process for the discrete data. In this investigation
the Hamming window was used to smooth the raw power spectral estimates,

The Hamming window provides a three-point smoothing with weights of

N

0.23, 0,54, 0.23. As a result, refined or smoothed spectral estimates,

Ups, are

Up = 0,23Ve_q + 0.54Vy + 0.28Vyg, (37)
where lsrsm-1 (Blackman and Tukey, 1958, p. 36).

CONFIDENCE LIMITS OF THE ESTIMATES,

The reliability of power spectral density estimates could be
tested accurately ifkthe processes under investigation were Gaussian,
T.¢ processes under investigation are not necessarily Gaussian, However,
hv assuming an approximate Gaussian process, some tests of the accuracy

of the estimates have been devised (Blackman and Tukey, 1958, p. 15-25).
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These tests were used in the study, although the approximate Gaussian
character of the processes was not established,

In all, there are two variables in the power spectral density
estimation, the effegtive length of the record, T', (in this study
T', = Tp), and the maximum lag, Tp. The stability of estimates is
directly proportional to the ratio T',/T, (Blackman and Tukey, 1938,
p. 112)., For practical considerations, it is suggested that for any
estimation the inverse of this ratio should not exceed 0,1, i. e.,
Tp/T'y € 0.1 (Elackman and Tukey, 1958, p. 11). This means that if the
nower spectral density estimate is smooth, the root mean square (RMS)
deviation of any estimate is below one-third of its average value
(Blackman and Tukey, 1958, p. 21). In all the cases of this study, this
ratio, Tp/T'y, was kept within the limits suggested above.

The safest measure of stability is the similarity of results when.
a computation is repeated several times (Blackman and Tukey, 1958, p.21).
If the results of power s?ectral computations are nearly the same for
phenomena under relatively similar conditions, the estimate has a high

degree of stability.
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ANALYSIS OF THE DATA

SEISMOMETER LOCATIONS,

Microseisms, generated By trains passing through Socorro, have
been recorded‘at the five locations shown in Figure 2, These lo-
cations were as follows:

Location No. 1 (West): Seismometers were located 7440 feet west
of the New Mexico Institute of Mining and Tecﬁnoiogy (NMIMT) campus.

Location No. 2 (Vans): The seismometer was located 4625 feet west
of the NMIMT campus,

Location No, -3 (REDD): The seismometer was located in a small
basement room adjacent to the elevator in the Research and Development
Division Building on the NMIMT campus.

Location No. 4 (Latham's): The seismometer was 1oca£ed at a farm
house northeast of Socorro.

Location No., 5 (Station): The seismometer was located at a dis-
tance of six feet from the track at the Santa Fe depot,

At Location No. 1, three seismometers were oriented to register
vertical, north-south, and east-west components of the velocity of the
‘grdund motion, whereas, at Locations 2 through 5 only the vertical
component of the ground velocity was recorded.

Table 1 is a list of the seismometer locations with their re-

spective elevations and distances from the railroad track.

TNSTRUMENTATION,

Willmore seismometers were used as ground motion detectors at

all stations. Mechanically these units behave as displacement meters
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Table 1,

21

Elevation and Disténces

of Seismometer Locations,

|
Location No,

Elevation in TFt.

Distance from Rall Track

(921

4810

4770

4639

4600

4590

14125
11250
6750
1750

6 .
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for frequencies gbove their natural frequency (1.43 ¢/s was the
approximate natﬁral frequency during this study). However, because
the signal from the seismometer is generated by relative motions be-
tween a coil and a permanent magnet, the output is proportional to
ground velocity (the open circuit response is about 1 volt per unit
ground velécity of 1 cm./sec.).

The frequency response of the recording system (excluding the
seismometer) at Location No, 1 w;s flat from 2 to 5 c/s (Long, 1964,
p. 9). The frequency response curve drops rapidly after 5 c/s. At
Locations 2 through 5 the response of the recording units was flat
from zero c¢/s to at least 50 ¢/s.

'The signal registered by the recorders at the five locations
~represents the velocity of the ground motion, consequently power spec-
tral density functions (also, power spectra) computed from these sig-

nals are the power spectral estimates of the velocity of the ground

motion generated by trains,

ANALYSIS OF THE RECORDS,

The resnonse of the recording units and the components of ground
I g T g

motion recorded at the five locations suggests the data can be grouped

“as follows:

1. The records taken at Location No. 1.

2. The records taken at Locations 2 through 5.

The records taken at Location No. 1, understandably, did not
contain frequency components higher than S c¢/s since the frequency

response of the recording unit drops sharply beyond that frequency.

For this reason, a folding frequency (Nyquist), £y, of 7-1/2 ¢/s was
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selected for the analysis of the records taken at this lqcation° In
this case, the digitization time interval, At, was At=1/2fy=1/15 second,
No.appreciable amount of high frequency noise was present in the
records taken at Locations 2, 4 and 5. As for the record taken at
Location No. 3, it did contain high frequenc? noise which was removed

S

manually before digitization. It should be pointed out that the high-
frequency noise at Location No. 3 was not generated by the train.
The details of the digitization process, folding frequency,'fN,

time interval At, frequency resolution Af, etc., are presented in

Table 2,

THE COMPUTER PROGRAM,

A computer program (Appendix) was obtained from Bhartendu (Ph.D,
Thesis, 1964)., The input data for this program were the amplitude
readings, Xj, at intervals At from the train records., The program per-
forms the following steps:

Gstas

1. Computes the mean value of Xj (input data), X,

1
n+l

X =

, X, : (38)

i o~103

i

where n+l is the number of the data points,

2. computes the deviation from the mean, X':,

x; =X - X, (39)

~

which guarantees a zero mean for the data X'j,

e

3, computes the autocorrelation function, Cyp,

1 N1 '
Cp= === ] X'g Xgur | (40)
=0 : |

4
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where, =0, 1, 2, ...., m, and m*l is the number of solutions
& 5 E k] 3 F 3

4, computes the raw power spectra, Vr’

m=-1 arm
V. = CO + 2 21 Cq cos (“wm) + Cm cos (rw)
a=1 n

where =0, 1,2, ...., 1, and
& ] K] Kl 9

5. finally, computes the smoothed power spectra, Ugp,

U = vV

T pe1 ¥ OBV SVpps

where v, B and § are in the Hamning window weights (0,23, 0.54,

respectively). Uy and Uy are computed as
UO = 0.54\[0 + 0.46‘\71
Uy = 0,46V, 4 + 0,54V, .

In steps (1) -and (3),

“

i
1

nht
mAt = T

where T, is the total time of the record digitized and T

mum lag.

(413

(42)

0.23,

(43)

(44)

(45)

(46)

w is the maxi-
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RESULTS

e

The reccrdgd signals, which indicate the velocity of the ground
motion generated by. the trains, were digitized manually at the inter-
vals épecified in Table 2 and this data fed intoia computer (IBM 1620,
models I and II), The results of these computations (the smoothed
power spectra, and the normalized autocorrelation functions) are pre-
sented in this section, In Figures 4, 5 and 6, the results from the
three-component records taken at Location No, 1 are presented, and in
Figures 7, 8 and 9, the results from the records taken at Locations 2,
3 and 4 are given, Two separate segments of the record taken at Lo-
cation No, 5 were digitized, each segment being the noise produced by
the train when its position with respect to the'seismomefer was as shown

in Figure 3\(beloW).

Station
r30 S?i“""128.5\soc. 128.,5\S€C. '{“ 305."]

bisoole 58000 o
Loc, Neo, 5

South ' lopt}

T Direction of Travel North

Figure 3, The position of the train with respect to the
recording Location No. 5.
Figures 4, 5 and 6 are power spectra from a Location No., 1 record
o & & &
of a south bound train., Figure 4 shows the power spectra when the train
is north of Socorro, Figure 5 when the train is at the station, and
Figure 6 when the train is south of Socorro. All three components of

Ps

the noise are analyzed.
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Normalized Autocorrelation Function
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.Figure 7. Power spectral dcnsity and normalized autocorrelation
function (top of figure) of the train noise recorded
at Location No, Z,
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Figure 8, Power spectral density and normalized autocorrelation

function (top of figure) of the train noise recorded
at Location No, 3,
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Normalized Autocorrelation Function

WA AN AN RS

ot

-0.6 1
- r'_*
-1.0 AT = T = lag
At = At = 1/25 sec,
5007
400 A
=
200 G O
T E
£
S
J =
& o
o G
[ 90
. =
- B o
c 200 o
I~ A
6‘..
- o

100 1

50 -

T T T T T T T T T T T
0,50 1.0 2,0 3,0 4,0 5.0 6,0 7,0 8.0 9,0 10,0 11.0 12,0 12.5
Frequency c/s
Figure 9, Power spectral density and normalized autocorrelation function
(top of figure) of the train noise recorded at Location No. 4.
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The graphs in Figures 4, 5 and 6 show two distinct noise peaks:
one at about 3.0 c¢/s, the other at about 2.1 c/s. The peak at 3.0 c¢/s
appears to be sharﬁer and more prominent than the peak af about 2,1 c¢/s.
In general, the fesults of the power spectra estimates taken from the
records at Location No. 1 are quite similar, This indicates a high de-

grec of stability in the estimates (Blackman and Tukey, 1958, p. 21).

s

The power spectral density estimates from the records taken at
seismometer Locations 2, 3 and 4 (Figs. 7, 8 and 9) each show a dis-
tinct peak at frequenqies of 3.6, 3.6 and 4.5 c¢/s, respectively. For
these three estimates, the normalized autocorrelation functions are
also plottedv(top of Figs, 7, 8 and 9). The normalized autocorrelation
functions in all these cases show average frequencies corresponding to
the frequency peaks in the power spectra estimate plots.

The plots of power spectra estimates from the record taken at Lo-
cation No, 5 are shown in Figures 10 and 11, Figure 10 shows two peaké
at frequencies of 3.0 and 4.0 c¢/s, while in Figure 11 the peaks are at
3.5 and 4,75 ¢/s.  The difference in frequency peaks is unexpected since
the positions of the train for these examples were symmetric with re-
spect to the seismometer at Location No. 5 (Fig. 3)5.

By applying a correction to remove the Doppler effect (Sears and
Zena say3 1955, p. 395), the peaks in»Figu?e 10 are changed to 3.1 and
4,13 ¢/s, and the peaks in Figure 11 are changed to 3.4 and 4.6 c/s.
Thé Doppler effect was calculated using a train velocity of 31 mph and

Rayleigh wave velocity of 1350 feet per second (Long, 1964, p. 34).
The corrections made for the Dovpler effect are not significant since

the magnitude of the correction is less than the frequency re 2solution,

0.25 ¢/s, of the estimation,
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In exnlaining the difference in freauency peaks, it should be
mentioned that when the train is south of the seismometer Location No, &

$
it is in a narrow part of the valley where the terrain is rugged, In
contrast, when the train is north of the seismdmeter Location No, 5, it
is in a wider part of the valley where there is almost no topographic
relief,

In Table 3 all significant frequency peaks for the analyzed records
are tabulated. Thegc peaks were tested according to the arguments put
forward by Blackman and Tukey (1958, ». 15-25) and found to be signifi-

In all of the records used in this study, high-frequency components
(higher than 5 c¢/s) were absent or negligible, This means that there is
no significant amount of energy contribution from high frequencies

(aliasing) in the power spectra estimates,
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CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The conclusions from the freguency analyses of the train-
.5

1. At Location No, 1 two nredominant freguency peaks in the
plots of power spectra are present, one at about 2.1 c¢/s and the
other at 3.0 ¢/s.

. At all locations; 90 percent or &ore of the energy is con-
tained in a narrow frequency range which does not exceed 4 ¢/s, All
frequency peaks are found to lie within the 4 ¢/s bandwidth at all
locations,

3. The narrow band, where 90 percent or more of the energy is
concentrated, shifts as a whole to lower freguencies with an increase
in the distance between the noise source and the recording systen.

4. The distance of the recorder from the noise source also
appears to be an important factor in the location of frequency peaks
in the power spectra plots. The frequency peaks shift to lower fre-
quencies with increase in the distance between the noise source and
the recording system. 'However, the relation between distance and
shift in frequency peaks does not appear to be linear,

Further experiments should be performed to check and clarify the
relations between distance from the noise source and the frequency
peaks in power spectra. For this purpose, it is feasible to use any
seismometer with a natural period of one second or more and a re-
cording system having a flat response for a wide frequency range.
Measurements of noise should be made in an area where the topographic

relief is a minimum. It would zlso be advantageous if the scismometers



could be equally spaced in a straight line perpendicular to the
rail-track, After relations between distance and frequency are

cstablished, some analyses of the effect of rugged terrain might be

of interest,
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APPENDIX

Computer Program of Power Spectral Density

Estimation in Fortran Language
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