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ABSTRACT

With growing concerns about declining snowpack, warmer temperatures,
and land use changes, it is becoming increasingly important to determine the
sources that contribute to surface-water. Most hillslope hydrology models dis-
regard deep groundwater contributions to surface-water (see Beven, 2006 for a
review of seminal hillslope papers) due to limited bedrock permeability. Lit-
tle correlation between stream geochemistry and basin drainage area has been
observed in some mountain watersheds (Wolock et al., 1997), with mean resi-
dence times estimated to be less than one year (Vitvar et al., 2002). In contrast,
Frisbee et al. (2011) observed a positive correlation between surface-water so-
lute concentrations and basin drainage area in the Saguache Creek watershed,
which the authors conclude is due to significant contributions of deep ground-
water to streamflow. Are deep groundwater contributions to surface water in the
Saguache Creek watershed anomalous due to hydrologic and geologic conditions
unique to the area? Or is our assumption that the processes that generate stream-
flow at the hillslope scale the same as those that generate streamflow at the basin

scale incorrect?

This thesis tests the transferability of the conceptual model developed for
the Saguache Creek watershed (Frisbee et al., 2011) by applying it to the Rio
Hondo watershed, which has different geology, topography, climate, scale, and
human impacts. Tectonic activity near the Rio Hondo has resulted in highly frac-

tured bedrock that may provide permeability similar to that of Saguache. Similar



methods used by Frisbee et al. (2011) were employed in the Rio Hondo to im-

prove comparability between the two watersheds.

Stable isotopic data indicate that nearly all waters in the Rio Hondo are
sourced from late winter and spring precipitation, despite only about one-third
of total annual precipitation falling during this period. Solute concentrations in
surface-water increase as a function of basin drainage area for nearly all solutes.
Dating of waters in the Rio Hondo using >°H, CFC’s, and C indicate that mean
residence times in the watershed range from modern to thousands of years. Mean
residence times in the Rio Hondo are similar to those reported by Rademacher et
al. (2005) for the Sagehen basin and Frisbee et al. (2011) for the Saguache Creek
watershed using CFC’s and '*C, respectively. Quantitative streamflow separa-
tions using EMMA indicate that most surface-waters have a large groundwa-
ter component. The proportion of groundwater tended to increase later into the
year, with lower elevation sampling locations showing more evolved groundwa-
ter end-members. Contributions from groundwater were detected throughout

the year, even during the peak of the snowmelt pulse.

These results indicate that deep groundwater is a significant source of
streamflow in the Rio Hondo watershed throughout the year. This suggests the
Saguache Creek watershed conceptual model is transferrable to another high-
elevation mountain watershed. Furthermore, deep groundwater contributions to
surface water in the Rio Hondo watershed appear to develop by about 10 km?,
a scale much smaller than previously published. This may be due to the steep
topography of the Rio Hondo, which would allow for deeper, more localized

flowpaths to develop (T6th, 1963; Gleeson & Manning, 2008; Harding, 2012).
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CHAPTER 1

INTRODUCTION

1.1 Background

High-elevation mountain watersheds are one of the most salient features
in the western US. Nearly all of the surface water in this region originates from as
runoff from high-elevation mountain ranges like the Rocky Mountains and Sierra
Nevada (Winograd et al., 1998; Mote et al., 2005; Bales et al., 2006; ). These wa-
tersheds are able to store large quantities of water during the winter months as
snowpack when demand (evapotranspiration, agricultural, recreational, etc.) is
low and slowly release it during the summer months when demand is greatest
(Mote et al., 2005). As this water is released, it is partitioned into different parts
of the hydrologic budget including surface water runoff, groundwater recharge,
soil moisture storage, evapotranspiration, and even sublimation directly off the
snow surface. Although most of the snowpack is converted to surface runoff,
there is evidence that groundwater is recharged within the mountains during the
winter months and snowmelt season (Wilson & Guan, 2004; Earman et al., 2006;
Sigstedt, 2010; Frisbee et al., 2009b). Eventually this mountain groundwater finds
its way to mountain springs and streams where it provides baseflow, and all the
way to the mountain front where it directly recharges adjacent basins. Human
activities and ecological functioning are highly dependent on this slow release

of water from the mountain block during the summer, as water is generally the
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ultimate limiting resource in the western US (Newman et al., 2006; Phillips et
al., 2011). Water managers and farmers rely on it to replenish resevoirs and wa-
ter crops; fish and riparian species rely on it for habitat and spawning grounds;
recreational industries rely on it for economic purposes. Unfortunately, moun-
tain watersheds are particularly vulnerable to the effects of climate change due
to the likelihood that warmer average global temperatures will result in greater
potential evapotranspiration and more winter precipitation falling as rain instead
of snow. These effects have already been observed in the western US, with ear-
lier onset of spring snowmelt timing since the mid-1970s (Cayan et al., 2001) and
widespread declines in spring-time snow-water equivalent (SWE) (Mote et al.,
2005). These climatic changes will undoubtedly alter the partitioning and timing
of water released from snowpack, including runoff and recharge to the moun-
tain block. Therefore, it is critical that we have a better understanding of the role
groundwater plays in how streamflow is generated (both processes and sources)
in mountain watersheds so that we can better predict future hydrologic changes
and how these systems will respond to climate perturbations (Rademacher 2005;

Frisbee et al., 2011; Singleton & Moran, 2010; Manning et al., 2012).

It has been observed in the Saguache Creek watershed that runoff is in-
creasingly generated from groundwater discharge as the scale of the upstream
contributing area increases (Frisbee, 2010). One important factor likely contribut-
ing to this behavior is that the basin lithology is volcanic rock that is probably
significantly permeable to great depth. I seek to answer the question: is similar
runoff behavior observed in a nearby basin that is largely composed of crystalline

bedrock, which has low primary permeability and porosity?

Most of the research on streamflow generation has been conducted at the
hillslope or small catchment scale (see Beven, 2006 for reviews) at scales less than
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100 km?2. Typical methods included hydrograph separation (Hewlett & Hibbert,
1967; Sklash & Farvolden, 1979), geochemical mass balance calculations (Pinder
& Jones, 1969), hillslope trenching (Dunne & Black, 1970; McGlynn et al., 2002)
and sprinkler experiments (Dunne & Black, 1970, Rodhe et al., 1996; Montgomery
et al.,, 1997; ). While this work has provided valuable insight into streamflow
generation processes such as Hortonian overland flow, saturation excess flow,
and variable source area to name a few, it is not certain that process informa-
tion gained at smaller scales can be transferred to larger watershed scales where
groundwater may become an increasingly important component of streamflow
generation and where larger complexities in geology and terrain exist. Many
study areas were also located in humid regions with potentially different process
that result in streamflow generation compared with more arid, and larger spa-
tial scale, western U.S. watersheds. Furthermore, most of these studies made a
critical assumption that the mountain bedrock is impermeable (Beven, 2006); as a
consequence, this implies that flow over or within the soil accounts for all or most
of the water reaching a stream (Dunne & Black, 1970; Frisbee et al., 2013b). There
have been a few studies that examined flow within the bedrock at the hillslope
scale (Anderson et al., 1997b; Kosugi et al., 2006), but they focused on shallow
flow within the upper portion of the fractured bedrock; deeper groundwater was

almost always ignored.

By neglecting the presence of deep groundwater flowpaths, hillslope scale
conceptual models confine the movement of water to surface and shallow sub-
surface flowpaths. The relatively short travel distances of these flowpaths result
in short residence times, where residence time is defined as the weighted mean
time it takes water to be routed out of the watershed. Short residence times im-
ply that water reaches the stream quickly and does not remain in the watershed
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for very long. The implications of short residence times are that changes in pre-
cipitation and/or land-surface will be quickly conveyed to the stream (Pearce et
al., 1986; Hogan & Blum, 2003, McGuire & McDonnel, 2006). Residence times
for these surface and shallow subsurface flowpaths are on the order of minutes
to months (Horton, 1933; Hewlett & Hibbert, 1967; Dunne & Black, 1970; An-
derson et al., 1997b; Brown et al., 1999; Vitvar et al., 2002; Tetzlaff et al., 2007).
In comparison, residence times of outflows in some catchments have been esti-
mated to be decades to tens of thousands of years, despite the relatively short
transit times of runoff generated by mechanisms previously observed at the hill-
slope scale (Michel, 1992; Rademacher et al., 2005; Frisbee, 2010; Gardner et al.,
2011 Manning et al., 2012; Smerdon et al., 2012). This suggests that there is a sig-
nificantly older portion of streamflow that is not observed when looking only at
hillslope-scale processes. This older portion is likely derived from deep ground-

water flowing through the bedrock that eventually discharges to surface water.

Deep groundwater flow in mountain watersheds has largely been disre-
garded due to the belief that bedrock does not have significant storage compared
with the soil zone (Hewlett, 1961; Anderson et al., 1993). While the primary per-
meability of bedrock can be very low, metamorphic and tectonic forces can cre-
ate extensive fracture networks. This fracturing creates secondary permeability
that is mainly responsible for deep circulation of groundwater within the moun-
tain block. At the hillslope scale, groundwater contributions to surface water
may not always be operative or the signals too weak and masked by more lo-
calized processes. At the watershed scale these deep groundwater contributions
can become increasingly important as bedrock has the potential to comprise a
significant reservoir within the catchment (Anderson et al., 1997a). Interactions
between regional groundwater flow and surface water are more likely to occur
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at the watershed scale, as the soil zone becomes a relatively thin veneer on the

surface as scale increases.

Frisbee et al. (2011) have conceptualized mountain watersheds into a con-
tinuum comprised of 2-D and 3-D flow systems on each end (Figure 3.1). The 2-D
conceptual model is characterized by streamflow contributions from surface and
shallow subsurface flowpaths with no significant contributions from basin-scale
groundwater. This type of system would have limited storage, suggesting rapid
response of streamflow to precipitation events (Figure 3.1b) and short residence
times (Figure 3.1c). Stream chemistry would look heterogeneous at sites near the
headwaters, but would eventually reach some asymptotic value as lateral flow
paths to the stream reached some characteristic length of the basin and become
mixed within the stream and, possibly to a lesser degree, riparian areas (Figure
3.1d). The 3-D conceptual model has the same processes operating as the 2-D
conceptual model, and also includes topography-driven (Téthian) flow through
fracture networks in the bedrock, producing basin-scale groundwater flow paths
(Figure 3.1e). As the basin scale increases the importance of these deep ground-
water flow paths also increases. In other words, more deep groundwater flow
paths are intercepted as you move downstream. In comparison with the 2-D
conceptual model, the 3-D conceptual model has greater storage and flowpath
length variability, resulting in an attenuated discharge response (Figures 3.b and
3.1f). Due to this distribution of flowpath lengths, the 3-D model would also
have a greater distribution of longer residence time waters (Figure 3.1g), with the
longest flowpaths associated with basin-scale groundwater. Deeper groundwater
flowpaths are expected to be more geochemically evolved as solute release from

water/rock interactions is time-dependent (Lasaga, 1984; Bricker & Jones, 1995).
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Figure 1.1: Conceptual models for endmembers of mountain block flow systems.
The conceptual model for the 2-D flow system is on the left including a) schematic
representation, b) runoff reponse to precipitation, c) residence time distribution,
and d) streamflow chemistry as a function of upstream contributing area. The
conceptual model for the 3-D flow system is on the right including e) schematic
representation, f) runoff reponse to precipitation, g) residence time distribution,
and h) streamflow chemistry as a function of upstream contributing area. Modi-
fied from Frisbee et al., (2011).




Therefore, solute concentrations in the stream are expected to increase with in-
creasing basin area due to contributions from increasingly evolved groundwater
(Figure 3.1h). This flux of old, evolved groundwater controls the geochemistry

and age distributions of the stream from the headwaters to the outlet.

Streamflow in the Saguache Creek watershed has been shown to be in-
creasingly generated from groundwater discharge as the scale of the upstream
contributing area increases (Frisbee et al., 2011). One important factor likely con-
tributing to this behavior is that the basin lithology is volcanic rock that is proba-
bly significantly permeable to great depth. I seek to answer the question: is sim-
ilar runoff behavior observed in a nearby basin that is largely composed of crys-
talline bedrock, which has low primary permeability and porosity? The study
presented in this Thesis was performed as part of a larger group effort looking at
three different watersheds in northern New Mexico and southern Colorado, all
tributaries to or headwaters of the Rio Grande but having different geology. The
lithology of the Rio Hondo watershed represents crystalline rock, Saguache Creek
lithology represents volcanics, and the lithology of a third northern New Mexico
watershed, El Rito, represents sedimentary rock. The objective of this research
is to explore streamflow generation and surface-water/groundwater interactions
at the watershed scale in a crystalline-rock watershed. Due to the difficulty of
directly observing groundwater contributions to surface water, I use patterns in
geochemistry, stable isotopes, and radiometric dating to infer flow paths, timing

of recharge, and relative contributions.

My hypotheses are 1) deep groundwater contributions are a significant
source of streamflow generation in the Rio Hondo watershed, and 2) the rel-
ative contribution and/or geochemical evolution of this deep groundwater in-
creases with watershed drainage-area. Here I define significant contributions as
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being greater than or equal to 10% of the average annual flow. These hypotheses
are based on the similarity of normalized hydrographs for the Rio Hondo and
Saguache Creek watersheds, as well as geochemical and isotopic results from the
Rio Hondo watershed presented by Harding (2012). If my hypotheses are correct,
then I would expect to see longer residence times than those produced solely by
fast runoff processes. Furthermore, mean residence times should increase from
the headwaters to the outlet of the watershed as deeper, more regional ground-
water flowpaths are intercepted by the stream. This increase in average residence
time would result in more time for water-rock interactions. In such a case case,
the concentration of chemical constituents in water will increase with increas-
ing residence time (Lasaga, 1984; Bricker & Jones, 1995) as more geochemically

evolved groundwater would control stream chemistry.

Unfortunately, there are only sparse data on the contribution of deep ground-
water to surface water at small catchment scales. Kosugi et al. (2006) observed
higher solute concentrations in a small (0.06 km?), mountainous catchment in
Japan that they concluded were the result of increased residence times. Rademacher
et al. (2005) found mean residence times of groundwater feeding the 27km? Sage-
hen Creek watershed in California to be approximately 28 years using Chloroflu-
orocarbons. Frisbee (2010) collected water from a mini-piezometer installed in
the streambed of a 89 km? subwatershed of Saguache Creek in southwestern Col-
orado that showed a radiocarbon age of over 3000 years. These studies were
conducted in watersheds or subwatersheds with scales well within the range of
those typically investigated in small catchment studies, and suggest that it is not
always appropriate to ignore the effects of deep groundwater at scales less than

100 km?.



The results from Saguache Creek suggest an emergent behavior of deep
groundwater contributions to surface-water in mountain blocks. Emergent be-
havior are patterns that arise from a multiplicity of simple reactions in a complex
system after a certain number of molecules are present. The volume required
for this to happen is usually referred to as the representative elementary volume
(REV), and is dependent on the type of system you are looking at. Behavior can
be described differently depending in the scale at which you are looking. We use
the idea of emergent behavior all the time in the field of hydrology. Instead of
describing the behavior of each individual water molecule, emergent properties
of the liquid, such as temperature, density, viscosity, etc. are used. Deep ground-
water contributions to surace-water in mountain blocks may have been neglected
by hillslope hydrologists because they were either looking in watersheds where
they didn’t exist, or were looking at headwater catchments that were below the

REV and therefore not fully developed.

The main goal of this thesis is to test the transferability of the conceptual
model developed for the Saguache Creek watershed in southwestern Colorado
by Frisbee et al. (2011). Although the Rio Hondo and Saguache Creek are both
high-elevation mountain watersheds, Saguache Creek drains a much larger area
and is developed in a differing geologic terrain, . If similar geochemical pat-
terns exist between the two watersheds it is likely that similar processes are ac-
tive within both drainages. Frisbee et al. (2011) have shown that Saguache Creek
receives significant contributions from groundwater that is thousands (possibly
even tens of thousands) of years old. This suggests that the Rio Hondo, and pos-
sibly small mountainous watersheds in general, may also be receiving significant

deep groundwater contributions that are much older than currently believed.



If this is indeed the case, it has important implications for the impact of
climate-change, not only for the Rio Hondo but similar mountainous watersheds,
as longer residence time water may provide an additional hydrologic buffering
capacity against climate forcings. I define the hydrologic buffering capacity as the
ability of a system to moderate climatic forcings such that the discharge statistics
of the system stay relatively constant over a given period of time. Increasing
global surface temperatures will likely result in less winter precipitation falling
as snow and earlier onset of spring melting (Leung & Wigmosta, 1999; Cayan et
al., 2001; Barnett et al., 2005). A reduction in snowpack and earlier onset of spring
melting means that the snowmelt pulse in surface water will be routed through
the system in a shorter period of time, and baseflow will dominate through the
rest of the year. Baseflow that has a longer residence time is less likely to be

influenced by shorter term climatic forcings.

Obviously this is dependent on the nature of the hydraulic system, as
hydraulic response times are nearly instantaneous whereas chemical/tracer re-
sponse times are much longer in comparison. Therefore, it is important to con-
sider how the gradient driving groundwater from the subsurface to the surface is
generated. If modern recharge is controlling hydraulic gradients in the system by
creating groundwater mounds on ridges, then a reduction in recharge rates could
reduce or completely eliminate hydraulic gradients that move groundwater from
the subsurface to the surface. If this is the case, then groundwater discharges will
be very sensitive to short term climatic changes even if the residence time of the
groundwater is very old. However, if topography is the major control on subsur-
tace hydarulic gradients, then even if modern recharge is completely shut off the
groundwater system has the potential to maintain contributions to streamflow
via gravity drainage. In this case groundwater discharges would not be sensitive
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to short term climatic changes. It should be stated that this potential buffering
capacity, if it does indeed exist, would not continue indefinitely but would only

provide additional time for development of alternative management strategies.

In addition to surface-water flow, a significant component of the regional
water balance is “mountain-front recharge” (MFR), in which groundwater is recharged
along the contact of the alluvial basin and the mountain block (Wilson & Guan,
2004; Earman, 2004). While irrigation in the Rio Hondo Valley uses surface wa-
ter almost exclusively, this is not the case in many other areas of the Southwest.
Although this research does not attempt to specifically quantify MFR, it does pro-
vide some insight into the nature of groundwater flowpaths from the mountain
block to the valley. Previous estimates of MFR have largely been based on mass-
balance methods (Aishlin & McNamara, 2011) or calibration of a basin ground-
water model (Wilson & Guan, 2004; Burck et al., 2004), but they ignore many of
the complex processes operating within the mountain block itself. It is crucial to
understand these complex, watershed-scale processes in order to improve exist-

ing water management policies and better inform future planning activites.

1.2 Scope

I tested my hypotheses of deep groundwater contributions to surface wa-
ter and the geochemical evolutionary progression of groundwater by utilizing
an approach that integrated multiple geochemical methods to quantify the age
distribution and proportion of groundwater that contributes to surface-water .
This is different from previous reseach in the area that has largely focused on
groundwater flow in the basin aquifers and almost completely ignored ground-
water flow within the mountain block. This research seeks to explicitly determine
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the contribution of groundwater to surface water at both spatial and temporal

scales. The methodology used to test my hypotheses was the following:

1. Characterize the isotopic and geochemical composition of waters within the
Rio Hondo watershed to determine if there are any spatial or temporal pat-

terns present.

2. Use several different age-dating techniques to constrain the residence time

of the water in the system.

3. Use end-member mixing analysis (EMMA) with isotopic and geochemical
data to quantify the porportion of groundwater contributions to the surface

water system.

4. Integrate geochemical and age data to identify the sources of water that

contribute to streamflow generation within the mountain block.

Chapter 2 discusses characteristics of the Rio Hondo watershed and previous hy-
drogeologic investigations that have been performed in the area. Chapter 3 ad-
dresses the first goal by analyzing isotopic and geochemical data collected from
multiple field sampling campaigns. The isotopic and geochemical data collected
are also used for EMMA in Chapter 4, where I attempt to quantify the contribut-
ing sources to surface water. Chapter 5 discusses the results from the different
age dating techniques used in the watershed, and I seek to build a geochemical
chronometer for the Rio Hondo watershed. Chapter 6 integrates the results from
Chapters 3-5 and discusses how the data collected from the Rio Hondo supports
the conceptual model developed by Frisbee et al. (2011), as well as the potential

hydrologic buffering capacity of the watershed.
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CHAPTER 2

SITE DESCRIPTION AND PREVIOUS INVESTIGATIONS OF
RIO HONDO WATERSHED AND SURROUNDING AREA

2.1 Introduction

The Rio Hondo watershed is located in northern New Mexico on the west-
ern side of the Sangre de Cristo Mountains about 50 km south of the Colorado
border (Figure 2.1), with Taos Ski Valley located at UTM 13S 460198 4050346.
The watershed drainage area is approximately 190 km? and can be split into two
distinct geologic landforms: the mountain block (comprising the Taos Range),
which is made of mostly of crystalline basement rocks, and the Taos Valley, which
is composed primarily of alluvial sediments and basalt flows and is part of the
southern extent of the San Luis Valley. These two landforms are separated by the
Sange de Cristo fault, part of the Rio Grande rift zone that extends from central
Colorado to Mexico (Rawling, 2005). There is over 2 km of relief in the watershed,
ranging from an elevation of 1971 m.a.s.1. at the outlet of the watershed (conflu-
ence with the Rio Grande) to 4013 m.a.s.l. at Wheeler Peak (the highest peak in

New Mexico).
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Figure 2.1: Basemap of the Rio Hondo Watershed showing perennial and
ephemeral streams with population centers indicated.

2.2 Physical Setting

2.2.1 Geology and Structure

Several studies on the geology of the crystalline bedrock in the Sangre de
Cristo mountains and the volcanics of the Taos Valley were completed through-
out the 1900s (Gruner, 1920; Clark & Read, 1972; Condie, 1979; Lipman & Mehn-
ert, 1979). Rocks within the mountain block are composed mostly of Precambrian
gneisses, schists, and mafic metavolcanics (Gruner, 1920; Clark and Read, 1972;
Condie, 1979) with Tertiary granodiorite to granitie intrusions (Clark and Read,
1972; Johnson et al.,1989) (Figure 2.2). Lithology of the mountain block is pri-
marily quartz monzonite, felsic gneiss, amphibolite, quartzite, and minor quartz
mica schist. The mountain block is characterized by high-relief topography, evi-
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Figure 2.2: General geology of the Rio Hondo watershed with hillshade overlain
and major faults shown.

denced by the local phrase, “Taos is a four letter word for steep” in reference to
Taos Ski Valley (TSV). Slopes within the mountain block range from 0 to 72°, with
an average slope of 26° and standard deviation of 9°. Coarse alluvium is present
in the lowest portion of the valleys within the mountain block. Glaciation has
been shown to exist in the Sangre de Cristo Mountains from the late Pleistocene
to late Holocene (Armour et al, 2002), and glacial till deposits have been mapped
near the headwaters of the Rio Hondo (Clark and Read, 1972). There is also evi-
dence of a current rock glacier, discussed in the Hydrogeological Framework and

Previous Investigations section below.

The mountain block is separated from the valley by the Sange de Cristo
Fault, a steeply west-dipping normal fault that bisects the watershed generally
from northeast to southwest. Estimates of displacement on the fault are up to 7

or 8 km (Lipman & Mehnert, 1979) although most of the fault is currently unex-
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Figure 2.3: a) Photograph of a rock outcrop near the mouth of the Rio Hondo
canyon. Note the high fracture density resulting in greatly enhanced secondary
permeability. b) Stereonet projection of fracture planes in the southern portion of
the Sangre de Cristo mountains (Paul Bauer, 2003, unpublished data) shows no
preferential fracture orientation.

posed, being buried by young sediments. Fault geometry ranges from essentailly
a single lineament in the north to several buried faults accomodating deforma-
tion in the south (Rawling, 2005). There are also several mapped faults with
the mountain block itself (Figure 2.2), including normal and thrust faults. The
stresses required to produce faults are generally not localized strictly to the fault
itself but in a zone adjacent to the fault trace. When faults are located in rel-
atively brittle rocks, like the crystalline basement rocks of the Rio Hondo, the
stresses associated with movement of the fault tend to break the rocks instead
of deforming them plastically. This area of brittle deformation adjacent to the
fault is commonly referred to as a “damage zone.” Damage zones are areas with
increased fracture density, and therefore significantly enhanced secondary per-
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meability (Caine et al., 1996; Gundmundsson, 2000; Caine & Tomusiak, 2003).
The presence and relatively close spacing of both compressive and extensional
faults in the area (Clark & Read, 1972) is evidence that the mountain block has
experienced several tectonic stress periods, resulting in the pervasive nature of
fractures within the mountain block that is observed today (Figure 2.3a). Stere-
onets (Lambert equal-area lower-hemisphere projection), a method of mapping
3D planes onto a 2D surface, display patterns in the orientation of these fractures,
if indeed patterns do exist. Vertical fractures will plot as arcs near the center of
the stereonet, while horizontal fractures will plot near the edge. The strike (the
direction the fracture “points” relative to the earth’s surface) determines the ro-
tation of the arc around the stereonet. Therefore, fractures that have similar ori-
entations will plot as similar arcs on the stereonet. Figure 2.3b shows a stereonet
projection of multiple fracture orientations measured across the southern portion
of the Sangre de Cristo mountains (Paul Bauer, 2003, unpublished). The lack of
any pattern shows there is no preferential fracture orientation. Thus, it is highly
likely that many of the fractures intersect with each other, creating a fracture net-
work that acts as a resevoir in which water is able to be transmitted through
and stored within the mountain block. The lack of preferential orietation of the
fracture network would allow for the mountain block to be represented by an

effective isotropic hydraulic conductivity for groundwater modeling purposes.

Sediments in the valley are composed of unlithified to poorly lithified
Santa Fe Group sediments (Figure 2.4). These were eroded from the uplifted
Sangre de Cristo Mountains in the east and deposited by streams flowing to the
west (Rawling, 2005). Sediments were also formed by eolian and lacustrine pro-
cesses (Burck et al., 2004). Interbedded within the Santa Fe Group is the Servilleta
Formation, a series of basalt flows associated with rifting that tend to pinch out
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to the east and south (Bauer et al., 1999). The best exposures of basalt are in the
Rio Hondo Canyon near the confluence with the Rio Grande. The Cerro Negro
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2.2.2 Climate

The Rio Hondo watershed is located in a semiarid climate with mild to
moderate summers and cold winters. The topographic differences between the
mountain block and the valley result in markedly different climates between the
two. Average annual precipitation ranges from 48.2 to 99.0 cm (19 to 39 in) on the
mountain range, while, in contrast, the average annual precipitation ranges from
28.0 to 45.7 cm (11 to 18 in) in the valley (OSU, 2012) (Figure 2.5). Approximately

33% of the precipitation on the mountain range falls as snow, while only 13 to 18%
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Figure 2.5: Average annual precipitation in the Rio Hondo Watershed from
PRISM (OSU, 2012). Averages are from 1981-2010.

falls as snow in the valley (Garrabrant, 1993). The majority of the precipitation
that falls

within the watershed comes from short, intense summer and fall convec-
tive thunderstorms that take place during the monsoon season. Average daily
temperatures in the mountain block area range from -25 to 17 °C (NRCS, 2013),
with average daily valley floor temperatures ranging from -1 to 31 °C (WRCC,
2013).
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Figure 2.6: Soil map of the Rio Hondo watershed (data from NRCS, 2008).

2.2.3 Soils

Soil development within the watershed can be quite spatially variable.
Outside of the mountain block the soils are mostly composed of loams and clay
loams on generally shallow slopes. Within the mountain block, soil development
is somewhat limited depending on location and slope. Most soils listed in the
SSURGO database are listed as cobbly loams or steep rock outcrops (Figure 2.6),
suggesting that a large portion of the watershed may have limited soil devel-
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opment. One soil pit that was dug at approximately 3,566 m (11,700 ft) during

the installation of a weather station showed that soils in the area were at least

1.4 m (4.6 ft) deep and bedrock was not encountered (Figure 2.7). However, the

weather station was sited at the flattest spot in the area, which may have been

due to a small rotational slide. This would result in artificially deep soils imme-

diately under the weather station where the soil put was dug. Even if this is not

the case, the soil map (Figure 2.5) shows a large number of steep rock outcrop

associations that indicates significant
soil development in the waterhsed, like
that seen at the weather station site, is

not likely widespread.

2.2.4 Vegetation

Due to the large elevation range,
a number of different vegetation types
are found within the watershed (Fig-
ure 2.8). The highest elevation portions
of the watershed are above tree line
and support subalpine grassland. Most
of the mountain block is forested, con-
sisting of pinyon, juniper, spruce, fir,
bristlecone pine, and aspen woodland.
The valley consists primarily of pinyon-

juniper woodland and shrubland.

Figure 2.7: Soil pit dug into hillslope
at about 3,577 m (11,735 ft) with tape
measure for scale. Total depth was 1.4
m (4.6 ft) and bedrock was not encoun-
tered.
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Landcover Types
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Figure 2.8: Landcover map of the Rio Hondo watershed (data from USGS, 2001).

2.2.5 Land Use

The majority of the watershed (65%) is managed as part of the Carson Na-
tional Forest and Wheeler Peak Wilderness (Figure 2.9). Taos Ski Valley (TSV) and
the Village of Toas Ski Valley (VISV) comprise the largest development within the
mountain block, with a few cabins and condominiums located about halfway up
the mountain valley in a location known as “Taos East.” One large tract of private
land exists at the eastern edge of the watershed and is owned and administered
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by the Pattison Family Trust. This land is used for mountain biking and guided
horseback riding trips in the summer and snowmobiling in the winter. Due to the
limited availability of private land and the steep slopes in the area, development
within the mountain block has been limited. Outside of the mountain block the
land is mostly privately owned, with some tribal and public lands as well. Pri-
vate land in the watershed accounts for 34% of the total area, with Indian/Tribal
lands making up just over 1%, and public Bureau of Land Management (BLM)
lands being less than 1%. According to data from the USGS GAP Analysis Pro-
gram (2004), agriculture occupies approximately 13% of the private land in the

valley, or about 5% of the total watershed area.

The major impermeable areas of the watershed are the Toas Ski Valley
parking lots and other development associated with Toas Ski Valley. These ar-
eas represent less than 1% of the total area, and therefore do not likely contribute
significantly to runoff generation within the mountain block. Paved roads and
houses are the largest contributors to impermeable areas outside of the mountian
block, but the relatively low density of both precludes substantial generation of

runoff from either source.

Agricultural lands are farmed almost exclusively using traditional acequia-
style practices that have been present in New Mexico for hundreds of years (Rivera,
1998). Acequias are networks of hand-dug, generally unlined, gravity-fed water-
courses. These systems are community-operated and divert water from the main
channel to irrigate distant fields. For the Rio Hondo watershed, this diversion
is just below the United States Geological Survey (USGS) stream gauging station
(8267500). Most acequia-style farming is for subsistence purposes and uses flood

irrigation with little-to-no application of fertilizers or pesticides. Acequias are
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Figure 2.9: Land ownership in the Rio Hondo watershed by entity.

unique in New Mexico, as the water is shared equally among those in the com-
munity instead of allowing those with senior water rights to receive their full
delivery before those with junior water rights during times of drought, a practice
known as priority administration. A much more detailed account of acequia his-
tory and operation can be found in Acequia Culture: Water, Land, and Community

in the Southwest (Rivera, 1998).

2.2.6 Water Use

According to the Taos Regional Water Plan (DBS&A, 2008), about 90% of
water used in Taos County comes from surface water. However, nearly all munic-
ipal, domestic, and commercial water is dervived from groundwater. Although
these numbers were not developed for the Rio Hondo watershed specifically, the
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actual numbers are likely very close. The water supply for the Village of Taos
Ski Valley is a developed spring near the Williams Lake trailhead, with an aver-
age flow of approximately 128,000 m3/year (DBS&A, 2008). Residences that are
not part of the village distribution system obtain their water from shallow wells
drilled into the bedrock Unfortunately, no well information was readily available.
The ski valley uses surface water in the winter for snow-making operations, and
is the only known user of surface water in the mountain block (excluding the

village sewage treatment plant which discharges to the Rio Hondo).

Water use outside of the mountain block is mostly confined to the ar-
eas serviced by the local acequia associations. Acequia communities have been
built around the construction, maintenance, and management of Spanish-style
hand-dug irrigation canals. There are three main acequia communities in the Rio
Hondo watershed: Arroyo Hondo, Valdez, and Des Montes. Farmers in these
communities typically employ flood irrigation. As in the mountain block, nearly

all of the water for domestic use comes from private wells or small municipalities.

2.2.7 Water Quality

Surface-water quality within the Rio Hondo watershed is generally very
good with low amounts of total dissolved solids (TDS) (38 to 240 mg/L, this
study). The largest point source on the Rio Hondo is the Village of Taos Ski Val-
ley sewage treatment plant that discharges just below Taos Ski Valley. The first
treatment plant was built in 1967 and replaced in 1983 due to concerns that phos-
phorus and fecal coliform loading was too high. The new treatment plant greatly

improved the water quality below the ski valley and has remained in complaince
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with state regulations ever since. The current treatment plant services approx-
imately 90% of the residents of the Village of Taos Ski Valley (Donald Schieber,
VTSV, personal communication), and is scheduled to be replaced by 2020 (Joseph
Apodaca, VTSV, personal communication). Other non-point sources include sep-
tic systems from the residences that are not serviced by the village treatment
plant, although the number of these is fairly low and many of the residences are
only occupied seasonally. Deicing activities in the watershed consist of spread-
ing 3/8” pea gravel on the roads for traction and chemical deicers are not applied
(Ray Keen, VTSV, personal communication). There is potential for chemical de-
icers to be transported into the watershed by vehicles that have traveled on roads
where they have been applied. However, surface runoff samples (this study) do
not indicate the presence of chemical deicers, and therefore they are not consid-
ered to be a source of contamination. One other potential non-point source is
runoff from the parking lots but the area is relatively small and likely not a sig-

nificant source of contamination.

Outside of the mountain block, agricultural runoff and discharge from
septic systems are the primary non-point sources. Average nitrate concentration
in the lower Rio Hondo (outside of the mountain block) is <1 mg/L (this study),
suggesting that these sources have relatively little impact. Low nutrient loads
are likely due to the low population density and limited application of fertiliz-
ers. High temperatures in the lower section of the river due to low flows from
diversions, irrigation returns, and depletion of bank shade trees have caused the
Rio Hondo to be listed by the New Mexico Surface Water Quality Bureau (NM-
SWQB) as one of the tributaries to the Rio Grande regulated for total maximum

daily load (TMDL) for temperature (NMSWQB, 2004). However, it appears that
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there has been no consistent water quality sampling in the Rio Hondo by regu-
latory agencies since the NMSWQB effort in 2000 (NMSWQB, 2004b), with most
water quality sampling currently completed by non-profit groups such as Ami-
gos Bravos. Groundwater in the watershed is generally of very high quality, with
elevated pH and arsenic concentrations in the deep valley aquifer (Drakos et al.,
2004a). Water-quality data collected from wells in Valdez, Arroyo Hondo, and
Arroyo Seco did not show any constituents exceeding Environmental Protection
Agency primary drinking water maximum contaminant levels (MCLs) (DBS&A,

2008).

2.3 Hydrogeological Framework and Previous Investigations

2.3.1 Surface Water

The Rio Hondo flows approximately 32 km (28 mi) from the Sangre de
Cristo Mountains in the east to the Rio Grande in the west. It is fed by numerous
perennial tributaries, including South Fork, Manzanita Creek, Yerba Creek, and
Italianos Creek, all located within the mountain block (Figure 2.1). Tributaries
in the valley only appear to flow during large storm events. A USGS stream
gauging station (USGS 08267500) measures the average daily discharge from the
Rio Hondo just before it exits the mountain block and has been continuously
monitored since 1934. Two other USGS gauging stations were located on the
Rio Hondo just east of Valdez (USGS 08268200) and near Arroyo Hondo (USGS
08268500), but those have been discontinued. Yearly flow for the Rio Hondo
as it exits the mountain block is approximately 28,853,608 to 31,889,206 m3/ yr
(23,392 to 25,853 acre-ft/yr) using the median and mean of the streamflow dataset
(Johnson, 1999). Numerous acequias divert water from the Rio Hondo (Figure

27



Acequias in the Lower
Rio Hondo Watershed

- o r ; # L £
A ——————" [ 1 Acequia de San Antonioc & Canoncito South

2 Cuchilla Diteh 9 Acequia Madre del Llano
L Legend
Scale: 1:46,680 - e 3 Prando Ditch 10 Acequia del Medio Lateral
SS08 Susa s 4 Revalse Ditch 11 Acequia del Cordillera Lateral
’ 5 Uano Ditch 12 Acequia de la Plaza
chwmﬁam n"'""‘“ 6 Des Montes Ditch 13 Acequia de Atalaya
7 G North

Figure 2.10: Map of acequias located within the Rio Hondo watershed. From
Sabu et al. (2012)

2.10) below the current USGS stream gauge to irrigate approximately 11.6 km?
(2,870 acres) (Johnson, 1998) in the valley. The largest surface water body in the
watershed is Williams Lake, a tarn located at 3,365 m (11,040 ft) within a closed
section of the basin. Williams Lake is fed by two streams and, likely, melt from a
rock glacier (Clark & Read, 1972; Jerry Fairley, personal communication) on the

western side of the cirque (Figure 2.11).

2.3.2 Groundwater

Groundwater studies in the area have primarily focused on the Taos Val-
ley, sometimes including Rio Hondo Valley below the mountain front. The first

28




ET
Lake

Rock Glacier
Spring

Rio Hondo Rock Galcier

= = = Approximate Extent of Rock Glacier

«.(GOOg le

Imagery Date: 8/13/2010 & 1991 135 461097.18 m E 4045550.32 m N elev 3461 m Eyealt 501 km

Figure 2.11: Aerial photograph of Williams Lake area showing approximate ex-
tent of Rio Hondo rock glacier. Notice lobes near the base of the rock glacier that
are indicative of flow. A spring formed from rock glacier melt is located near the
toe and has consistently colder temperatures and differing geochemistry than
Williams Lake. Inset shows location within the Rio Hondo watershed. Image
modified from Google Earth (2010).

hydrogeological study in the area was performed by Winograd (1959) and fo-
cused on the availability of groundwater for irrigation in the Sunshine Valley to
the north of the Rio Hondo. It also examined the potential effects that heavy
groundwater withdrawals would have on the Rio Grande and Red River. Coons
& Kelly (1984) developed a conceptual model of the regional groundwater flow
system consisting of a two-layer aquifer system: a shallow unconfined aquifer
and a deeper semi-confined aquifer. They showed that the regional groundwater
flow is to the south-southeast on the western side of the Rio Grande, and to the
west-southwest on the eastern side. Bauer et al. (1999) conducted a study of the
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hydrogeology in the southern portion of the Taos Valley and found evidence that
supported the conceptual model developed by Coons & Kelly. They also noted
the prevalence of fault-related fracture zones within bedrock aquifers, resulting

in areas with high hydraulic conductivity and therefore low hydraulic gradients.

Burck et al. (2004) published a regional groundwater flow model for Taos
which incorporated data from previous studies as well as from new Bureau of
Reclamation wells. The authors stated that the model simulated observed heads
and groundwater discharges reasonably well, however the value for mountain
front recharge was chosen based off of calibration necessity and was quite sim-
ilar to the rate of evapotranspiration in the valley. The same year Drakos et al.
(2004a) published results from a basin-wide study identifying a shallow, uncon-
fined aquifer consisting of the Servilleta Formation and overlying alluvium, and
a deep, semi-confined aquifer consisting of Tertiary-age rift-fill sediments such
as the Tesuque and Picuris Formations. The authors stated that the vertical hy-
draulic conductivity of the basalts can be very low, which was supported by
Bauer et al. (1999). The vertical hydraulic conductivity of the basalt is depen-
dent on factors such as fractures and cooling joints that can vary both spatially

and from flow to flow.

A study of the Arroyo Seco area just to the south of the Rio Hondo was
performed by Rawling (2005). He concluded that the general groundwater flow
direction was from east to west in the northern part of the Taos Valley and to the
southeast in the southern portion of the valley (Figure 2.12). However, structures
such as the Sangre de Cristo fault, the Airport fault near Arroyo Hondo, and the
Cerro Negro dacite appear to significantly affect groundwater flow patterns. This
is manifested by aquifer compartmentalization (Drakos, 2004a), locally steep hor-
izontal hydraulic gradients near the faults (Johnson et al., 2009), and regions with
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strong vertical hydraulic gradients (Rawling, 2005). The Gates of Valdez, located
just west of Valdez and formed by incision of the Rio Hondo into the Cerro Negro
dacite complex, was identified as one such region, with predominantly down-
ward flow due to the high transmissivity of the material. Pumping tests in the
area indicated horizontal hydraulic conductivity values ranging from 0.1 to 2.8
m/day (0.4 to 9.2 ft/day), depending on depth. Estimated travel times from the
mountain front to the town of Arroyo Seco using average hydraulic gradients and
effective porosities were calculated between 300 to 10,000 years. These calculated
travel times were discounted because recharge to the shallow and deep portions
of the groundwater system was interpreted to be on a time scale of less than five
to ten years based on tritium data collected by Drakos et al. (2004a). However, a
tritium sample collected during the same study from the Rio Hondo had a value
of 25.8 Tritium Units (TU) which can be interpreted to be mixture of modern and
1960s recharge (Clark & Fritz, 1997). Rawling’s interpretation appears to ignore
potential mixing of young and old water. The potentiometric surface map in-
cluded in the report (Figure 2.12) indicates the Rio Hondo is a strongly gaining
stream as it exits the mountain block (contours pointed upstream). The stream
also appears to be gaining water from the southern portion of the valley, likely
due to an increased gradient from the elevated stream terrace that is present in

that area.

2.3.3 Surface-Water/Groundwater Interactions

Johnson (1999) performed an assesment of surface water in the Taos area.
Using minimum stream-discharge values during the months of December through

February, she suggested that baseflow can contribute from 9 to 20% of annual
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discharge in the upper reaches of most basins in the Sangre de Cristo mountains
where rocks with high permeability (high fracture density) and relatively low
storage exist. Her work also indicated that the highest baseflow estimates range
from 30 to 37% in places like the lower Rio Hondo where the streams cross Santa
Fe Group basin fill. This is consistent with winter streamflow data that show
the downstream Arroyo Hondo gauging station measured 1,356,838 m? (1,100
acre-ft) more than the upstream Valdez gauging station (Johnson, 1998). How-
ever, these conclusions are in conflict with Rawling’s (2005) interpretations that
the Rio Hondo is losing or approximately neutral west of the Gates of Valdez,
and that the Precambrian basement rocks are essentially aquicludes despite their
highly fratured nature (Winograd, 1959, DBS&A, 2008). This illustrates the com-
plexity of the watershed and the need to take a new approach in examining the

interactions between groundwater and surface water in the watershed.

2.3.4 Moving from a Valley-Centered to a Mountain-Centered View

While the previous studies have done a good job of improving our under-
standing of the hydrogeology of the area, they all have one thing in common: a
valley-centered approach. This can be quite useful for determining groundwater
resources within the valley, but it has been shown that the predominant source
of water use in the area is surface water. Therefore, it seems that a better under-
standing of how streamflow is generated within the mountain block is needed,
one that specifically incorporates the mountain block. Instead of working from
the valley up, my approach was to work from the mountain block down. To
accomplish this I collected samples along the Rio Hondo from the headwaters

in the mountain block to the confluence with the Rio Grande in the valley. In
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addition, I collected samples of precipitation, groundwater, springwater, runoff,
and soil water throughout the watershed to determine if any spatial and/or tem-
poral patterns in geochemisty, stable isotopes, or radiometric ages dates existed.
The following chapters discuss the results from my geochemical sampling and
indicate that, while only one third of the precipitation falls during the winter
and spring months, nearly all of the water in the system is sourced from that pe-
riod. Therefore, climatic perturbations to the winter and spring months can have
profound impacts on streamflow generation in the system. However, the full ef-
fects on the surface water system may be delayed if a proportion of the water
is dervived from long-residence-time groundwater flow paths discharging to the
stream. This additional buffering capacity may affect predictions of water supply

changes and how watersheds will respond to future climate perturbations.
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CHAPTER 3

GEOCHEMICAL AND STABLE ISOTOPIC
CHARACTERIZATION OF WATERS WITHIN THE RIO
HONDO WATERSHED, NORTHERN NEW MEXICO

3.1 Introduction

This chapter uses geochemistry and stable isotopic data to test the trans-
ferability of the conceptual model developed by Frisbee at al. (2011) for the
Saguache Creek watershed by applying it to the Rio Hondo watershed, and iden-
tifies spatial geochemical patterns between groundwater, surface water, and spring
water. Hydrographs are also used as qualitative indicators of processes operat-
ing at the watershed scale. The Rio Hondo watershed is similar to the Saguache
Creek watershed in that both are snow-covered, high-elevation mountain catch-
ments, but the Rio Hondo watershed is much smaller, steeper, and geologically
distinct from the Saguache Creek watershed. In addition, the Rio Hondo water-
shed also has a greater degree of anthropogenic impacts that must be taken into

account.

Stable isotopes of water 180 and 2H were used as they provide information
on the timing of recharge and physical processes such as evaporation. Geochem-
istry can provide insight to the residence time of different waters, as geochemical
reaction kinetics control the rate at which solutes are released during weather-

ing reactions (Lasaga, 1984; Bricker & Jones, 1995). It is unlikely that surface
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water and groundwater would have similar geochemical signatures given their
drastically different residence times, even if one assumes the very conservative
residence time of days to months for all subsurface waters. Therefore, if surface-
water and groundwater do not show similar geochemistry there are likely lim-
ited contributions of groundwater to surface-water. However, if there are signifi-
cant contributions from deep groundwater, the geochemistry of the stream would
likely be controlled or strongly influenced by this flux of old, evolved groundwa-

ter.

3.2 Methods

3.2.1 Surface water, groundwater, and spring samples

Samples of surface water, groundwater, and spring water, denoted with
sample prefixes of RHR, RHW, and RHS, respectively, were collected throughout
the watershed seasonally from July 2010 to March 2012, and monthly to sub-
monthly from May 2012 to November 2012. Additional sampling rounds were
completed in March 2013 for comparison with March 2012 data and in June 2013
to collect snowmelt recharge from passive capillary samplers (see Soil Moisture
section below). Field parameters of temperature (°C), pH (SU), specific conduc-
tivity (uS/cm @25°C), dissolved oxygen (DO) (%), and oxidation reduction po-
tential (ORP) (mV) were collected using a YSI Professional Plus that was cali-
brated prior to each sampling trip. Samples were either field or lab filtered to 0.2
pum and analyzed for general chemistry at the University of New Mexico (prior
to 2012) and the New Mexico Bureau of Geology and Mineral Resources Analyti-
cal Chemistry Lab (2012 and 2013) using approved methods (see Appendix C for
tull list of consistuents and analytical methods). Geochemical data collected in
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the watersehd prior to 2012 has been presented by Harding (2012) and therefore
will not be presented again here. In addition, samples with charge imbalances

greater than 5% were excluded from additional analysis.

Stable isotopes 80 and 2H were measured using a Picarro L.1102-i Isotopic
Water Liquid Analyzer cavity ringdown spectrometer at the New Mexico Tech
Stable Isotope Laboratory. Samples were run a total of six times with the first
three runs excluded due to possible system memory effects, and the sample result
being an average of the last three runs. Corrections were applied using internal
standards and results are reported in per mil notation (%.) relative to Vienna

Standard Mean Ocean Water (VSMOW).

3.2.2 Precipitation

Precipitation was collected seasonally (early winter, late winter, spring,
summer/monsoon) from six bulk collectors (Earman et al., 2006) located from
3,643 m (ISO-01) to 2,057 m (ISO-06) with roughly equal elevation spacing. Col-
lectors were 4 in diamater acrylonitrile butadiene styrene (ABS) or polyvinyl
chloride (PVC) sealed on one end with a cemented cap. The PVC collectors were
painted black to accelerate melting. Mineral oil was placed in the collectors with
a sufficient thickness to prevent evaporation (Friedman, 1992). Sample volumes
were measured to provide a weighted seasonal average, with general chemistry,
180 and ?H analyzed using the methods described above (see Appendix B for full

list of consistuents).
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3.2.3 Soil Moisture

Grab samples of soil were collected at the two highest precipitation col-
lector sites (ISO-01 and ISO-02) and vacuum distilled to obtain the pore water
according to the procedures described by Knowlton (1990). Modified passive
capillary samplers (PCAPS) were installed at these two locations from October
20th, 2012 to June 29th, 2013 according to the methods described by Frisbee et al.
(2009b) in order to obtain a time-integrated snowmelt signature in the soil. Each
PCAPS installation contained four wick samplers with the wicks placed into two
specific soil horizons at each site (Figure 3.1). Opposite walls of the soil pit had a
wick placed in both the upper and lower soil horizon. PCAPS-1 had two upper
wicks placed in a clay loam at 15 and 18 cm below ground surface (bgs), and two
lower wicks placed in a silty clay at 49 and 51 cm bgs. PCAPS-2 had two upper
wicks placed in a silty clay at 25 cm and 29 cm bgs, and two lower wicks placed
in a clay loam at 41 cm and 42 cm bgs. Samples obtained from the PCAPS were
measured for general chemistry, 180 and ?H using the methods described above,

whereas only 80 and ?H were measured in soil grab samples.

3.2.4 Streamflow

A USGS stream gauge (08267500) has been continuously monitoring av-
erage daily discharge (cubic feet per second or cfs) from the Rio Hondo since
1934, at a location just upstream of the mountain front. Streamflow data were
obtained from the station for the period of record. The mean of the average daily
streamflow for each day of the year (excluding leap days) was calculated and then

normalized to the maximum average daily mean for the same dataset. The same
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Figure 3.1: Schematic of passive capillary samplers (PCAPS) installed in the wa-
tershed. PCAPS-1 and PCAPS-2 were co-located with precipitation collectors
ISO-01 and ISO-02, respectively.

was done for hydrographs from the mountain watersheds of El Rito (1931-1950)
and Rio Ojo Caliente (1932-2005) located in northern New Mexico, and Saguache
Creek (1910-2007) located in southern Colorado. This allowed comparison of the
hydrographs, even though absolute flows between streams were not of the same
magnitude. The maximum average daily streamflow used to normalize the aver-
age daily streamflow was 127.2 cfs, 198.5 cfs, 148.9 cfs, and 419.9 cfs for the Rio

Hondo, Saguache Creek, El Rito, and Rio Ojo Caliente, respectively.
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Figure 3.2: Normalized average daily streamflow for Rio Hondo, Saguache
Creek, El Rito, and Rio Ojo Caliente. Previous research has shown Saguache
Creek has significant groundwater contributions to surface water (Frisbee et al.,
2011). The similar shape and timing of the Rio Hondo and Saguache creek water-
sheds suggest similar processes may be occuring in the two watersheds, despite
differing geologic conditions. El Rito and Rio Ojo Caliente are located on the
opposite side of the southern San Luis Valley from the Rio Hondo, in the Tusas
Mountains. The sharp rise and fall of the hydrographs with little to no baseflow
outside of the snowmelt season suggests limited groundwater connectivity with
surface water in these watersheds.

3.3 Results and Discussion

3.3.1 Hydrographs

Normalized mean daily flow hydrographs from the Rio Hondo, Saguache
Creek, El Rito, and Rio Ojo Caliente are shown in Figure 3.2. The shape and tim-
ing of the Rio Hondo and Saguache Creek curves are nearly identical, with steady

rise and recession of flow during the snowmelt period. Baseflow is also present
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for both streams, at approximately 9% of the peak flow or greater using straight-
line analysis, suggesting there is significant storage and release from storage in
the two systems. Hydrographs from El Rito and Rio Ojo Caliente do not indi-
cate significant storage, as they have sharp rises and recessions of flow during
the snowmelt season and there is little baseflow outside of the snowmelt season.
The rise in baseflow for El Rito and Rio Ojo Caliente during the late summer is

attributable to monsoonal stormes.

The similar shape and timing of the Rio Hondo and Saguache Creek hy-
drographs suggest related processes are operating in both drainages. Previous
work in the Saguache Creek watershed has shown significant groundwater con-
tributions to surface water during the later parts of the year (Frisbee et al., 2010).
The Saguache Creek watershed (1,670 km?) is nearly ten times larger than the
Rio Hondo and is dominated by felsic volcanic tuffs erupted from the San Juan
Volcanic Field (Steven and Lipman, 1976; Lipman and McIntosh, 2008), a geolog-
ically distinct terrain from the Precambrian metamorphics and Tertiary igneous
intrusions found in the Rio Hondo. However, heavily fractured units are found
in both watersheds. While factors such as elevation, slope, aspect, vegetation,
etc., can influence streamflow, the presense of fracture networks appear to be a

significant control on streamflow generation in both mountain systems.

3.3.2 Stable Isotopes

Precipitation stable isotopes showed a strong seasonal signature of lighter
isotopic compositions in the winter and spring and heavier isotopic compositions
in the summer and fall. These results are consistent with trends in the published
literature (Clark and Fritz, 1997). Volume-weighted averages of 6180 for winter
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Volume-weighted Isotopic Composition of Precipitation

¢ Late Winter 2011 B Spring 2011 A Monsoon 2011
¢ Early Winter 2011-2012 B Late Winter 2012 © Spring 2012
@ Summer 2012 & Monsoon 2012 B Early Winter 2012
0 A |ate Winter 2012-2013 — LMWL ——-GMWL
-20
-40
o
-60
X
I
~
W 100 |
-120 =
-140 | =%
-160 |
-180
-20 -18 -16 -14 -12 -10 6 -4 2 0

-8
6130 (%o)

Figure 3.3: Volume-weighted isotopic composition of precipitation. Shaded areas
show approximate seasonal precipitation range.

and spring precipitation fell between approximately -19%o and -12 %o, while sum-
mer and monsoonal precipitation values ranged from -8%o to -5%. (Figure 3.3).
Winter and spring precipitation tends to originate from the Pacific Ocean, and by
the time storms reach New Mexico they have already rained out and fractionated,
resulting in a light isotopic composition. In comparison, summer/monsoonal
storms start from the Gulf of California, Gulf of Mexico, and localized orographic
lifting mechanisms. The shorter travel distance coupled with the greater amount
of energy (higher temperature storms) explains why the summer/monsoonal
storms are so much more enriched in heavy isotopes compared to the winter and

spring precipitation fronts.
Despite the relatively large fluctuations in isotopic composition of sea-
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Figure 3.4: Major sampling locations in the Rio Hondo watershed with sample
designation shown.

sonal precipitation, measured values of 680 and §?H are remarkably consistent
for surface water, groundwater, and spring water samples (Table 3.1). Average
5180 for surface water was -14.03 %o with a standard deviation of 0.73%. (n=191).
One surface water sampling location, RHR-20, was excluded from this and sub-
sequent calculations, as it was collected from the Arroyo Seco watershed directly
to the south and consistently showed significantly heavier isotopic ratios than
were measured at any of the streams within the watershed. Groundwater sam-
ples had an average 5'80 of -13.87%. with a standard deviation of 0.99%. (n=79).
5180 in springwater had an average value of -14.01%. with a standard deviation

of 0.75%o (n=66). One spring water sample, RHS-03, was excluded from this and
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Table 3.1: Mean isotopic compositions for surface water, spring water and
groundwater at sampling locations. Values indicate that essentially all water is
sourced from winter/spring precipitation. See Figure 3.4 for sampling locations.

Sample Sample 5180 5’H

Type ID Mean Mean n
RHR-01 | -13.98 (£0.69) | -93.49 (+£1.77) | 18

RHR-02 | -13.67 (£ 0.67) | -93.09 (£1.98) | 17

RHR-04 | -13.81 (£0.70) | -92.79 (£1.93) | 17

RHR-10 | -14.06 (£0.71) | -93.39 (£2.20) | 17

RHR-11 | -14.52 (£0.83) | -97.97 (£2.47) | 17

Surface Water RHR-14 | -14.36 (£0.79) | -95.30 (£2.58) | 16
RHR-15 | -14.11 (£0.76) | -94.95 (£2.25) | 16

RHR-16 | -13.77 (£0.76) | -91.50 (£2.56) | 18

RHR-18 | -13.91 (£0.58) | -92.66 (£3.00) | 13

RHR-21 | -14.41 (£0.73) | -92.92 (£1.23) | 9

RHR-22 | -13.89 (£0.85) | -90.22(+5.33) | 8

RHR-24 | -14.40 (£0.67) | -93.69 (£1.64) | 8

RHS-01 | -14.07 (£0.71) | -93.97(x2.22) | 17

RHS-05 | -14.14 (£0.83) | -94.74 (£2.28) | 12

RHS-06 | -14.29 (£0.58) | -93.50 (£1.04) | 7

Spring Water | RHS-07 | -13.86 (£0.82) | -88.07 (£0.72) | 4
RHS-08 | -13.99 (£0.58) | -88.07 (+£0.77) | 5

RHS-09 | -14.24 (£0.51) | -91.87 (£2.11) | 4

RHS-10 | -15.52 (N/A) | -97.92(N/A) | 1

RHW-02 | -14.31 (£0.52) | -96.31 (£1.17) | 11

RHW-05 | -13.62 (+£1.02) | -93.99 (£3.33) | 12

RHW-06 | -14.19 (£0.65) | -96.48 (£2.31) | 15

Groundwater | RHW-10 | -12.92 (£0.47) | -88.77 (£1.69) | 10
RHW-11 | -13.43 (£0.55) | -91.31 (£0.98) | 9

RHW-12 | -14.74 (£0.90) | -95.11 (£1.76) | 7

RHW-13 | -14.82 (£0.75) | -96.54 (£1.36) | 8

subsequent calculations as it was collected from a cave seep directly below RHR-
20 in the Arroyo Seco watershed and had similar geochemistry and isotopic ratios
as RHR-20. I could not rule out the possibility that this spring had emerged fur-
ther upslope then recharged some distance downslope before discharging from

the cave ceiling. Earman (2004) termed such groundwater discharge that later
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infiltrated again “re-recharge”.

Average isotopic values of 580 and 6*H of surface water, groundwater,
and spring water fall within the winter/spring precipitation range (Figure 3.5),
despite only 1/3 of precipitation falling during that period on average. There are
two possible explanations for this behavior: 1) mixing between winter and sum-
mer/monsoonal precipitation, or 2) evolved snow and spring precipitation is the
primary source of surface and subsurface water. The mixing hypothesis is un-
likely, as surface water samples did not show any isotopic evidence of monsoonal
precipitation inputs. Monsoonal storms in the mountain block are generally in-
tense and of short duration, usually occuring daily during the season. However,
none of the surface water samples collected during the monsoon season showed
isotopic ratios near monsoonal precipitation. This is possibly due to the runoff
being routed through the system before sampling could be completed just after
the storms, indicating short residence times on the order of minutes to hours for
this type of runoff. The prevalence of rocky outcrops in the watershed would
facilitate quickflow processes in portions of the watershed. Another explanan-
tion is that most of the monsoonal precipitation is lost to canopy interception,
bare soil evaporation, and uptake by vegetation. The potential evapotranspira-
tion (ET) is greatest during the summer (Stewart et al., 1999) and it is likely that
none of the precipitation that falls during monsoonal storms makes it past the
root zone (Kurc & Small, 2004). Most likely a combination of fast runoff and
ET processes is responsible for the lack of an observed monsoonal signature in
surface-waters, although I suspect the latter is more dominant. A simple calcu-
lation of the average annual discharge of the Rio Hondo (1.10E9 ft3; USGS, 2013)
at the USGS stream gauge using the reported average daily streamflow values
and the average annual precipitation in the mountain block (about 75 cm; OSU,
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Figure 3.5: a) Average isotopic composition of different sample types with b) inset
showing area indicated by box. Shaded areas indiate approximate precipitation
range from Figure 3.3. Error bars show one standard deviation.
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2012) shows that average annual streamflow volume is about 37% of average an-
nual precipitation volume that falls on the mountain block. Although this is a
rather crude estimation, it does provide some support for my assertion that the
majority of water in the Rio Hondo is sourced from winter and spring precipita-
tion despite only one-third of annual precipitation falling during that time. This
importance of seasonality on groundwater recharge is similar to the conclusions
reached by Earman et al. (2006) in their estimate of the snowmelt contribution to

groundwater recharge in areas of Arizona and New Mexico.

3.3.3 Geochemistry

Piper diagrams show that waters range from calcium-bicarbonate to calcium-
sulfate in composition (Figure 3.6). Precipitation chemistry shows a seasonal in-
fluence, with winter precipitation being more bicarbonate dominated, summer
more chloride dominated, and spring precipitation having an intermediate com-
position of the two. Surface-water, groundwater, and spring-water samples do
not appear to be controlled by precipitation, as they fall on a sulphate mixing line
whereas precipitation falls on a chloride mixing line. When plotted on the main
triangle, groundwater, surface-water, and spring-water samples are relatively in-
distinguishable from each other. Exceptions to this include groundwater samples
from RHW-05, RHW-10, RHW-13, and effluent from the village wastewater treat-
ment plant (WWTP). RHW-05 and RHW-10 are both wells located just outside of
the mountain block in Arroyo Seco and at the mouth of the Rio Hondo, respec-
tively. Although the screen interval of the wells is unknown, they are both near
the Sangre de Cristo fault. RHW-05 shows distinct geochemistry from RHW-11,

a well located only 330 m away and screened at approximately the same depth
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(Neil Ogden, personal communication). This suggests that faults have a signifi-
cant effect on well geochemistry in the area, and by extension groundwater flow
paths. One possible explanation for the geochemical signature of RHW-13 may
be that it is more geochemically evolved due to being located furthest down the
valley. However, there may be some mixing with regional groundwater coming
from the northern portion of the San Luis basin. The geochemical uniqueness of
the WWTP effluent provides evidence that anthropogenic impacts to the system
are limited as it is the largest point source of contamination in the watershed. The
first sampling point downstream of the effluent (RHR-24) does not show signif-
icant chemistry change from the sampling point above (RHR-23). This indicates
that while the effluent does have a distinct geochemical signature, the volume of
effluent discharge is small in comparison to the volume of water in the stream
discharge, at least while we conducted our sampling. There is a seasonal aspect
to the discharge volume from the WWTP, as the highest volume of tourism is dur-
ing the winter months when I was not sampling. While this seasonality should
be taken into consideration if sampling is to be conducted year round, the im-
pact of the effluent chemistry on the streamflow samples I collected appears to
be minimal. However, this may change in the future as the ski valley expands its

summer recreational offerings.

Although relative geochemistry of samples is mostly non-unique, absolute
concentrations do show some interesting patterns. Surface-water samples show
a positive correlation between solute concentration and basin drainage area for
Ca?*, K+, Mg?*, and Na?* (see Appendix D). SiO, and Sr** (Figure 3.7), which
are unlikely to be introduced antropogenically, show a similar trend. Trends like
these were first reported by Frisbee et al. (2011) for the Saguache Creek water-
shed. They inferred that the trends were controlled by kinetically limited dissolu-
tion of aluminosilicates. While silica concentrations can be influenced by uptake
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Figure 3.6: Piper diagrams of a) surface water, b) groundwater, and c) spring
water. Waters are mostly calcium-bicarbonate to calcium-sulfate dominated and
relatively indistinguishable from each other with the exception of groundwater
samples from RHW-05, RHW-10, RHW-13, and effluent from the village wastew-
ater treatment plant (WWTP). Samples collected just downstream of the treat-
ment plant do not show mixing with the effluent, suggesting treatment plant dis-
charges are not high enough to significantly affect stream chemistry below outlet.

See Figure 3.4 for sampling locations.
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or release by certain plant species (assuming the rate of growth and decompo-
sition is not in equilibrium), strontium is not likely to be affected significantly
(Rediske & Selders, 1953). Furthermore, evaporation alone cannot explain the in-
creases in solute concentration, as there is no change in $2H values as basin area

increases (Figure 3.8).

Plots of Mg2+ and NaZt vs elevation for surface water, groundwater, and
spring water samples (Figures 3.9, 3.10, and 3.11) show similar geochemical evo-
lutionary pathways. High elevation samples tend to plot on the lower left portion
of the Mg?™ and Na?" graph and are tightly grouped. Lower elevation samples
tend to plot to the upper right portion of the Mg?* and Na?* graph and have a
greater range of concentrations. The greater variability in geochemistry for low
elevation samples suggests that they are integrating a variety of flowpaths, and
that these flowpaths or the contributions from them may change seasonally de-
pending on hydrologic conditions. The low variability of the high-elevation sam-
ples suggests that they are integrating a limited number flowpaths that are rela-
tively stable. When selected samples of surface water, groundwater, and spring
water are plotted together (Figure 3.12) a geochemical evolution curve is appar-
ent, showing the same general pattern of tightly grouped, high-elevation samples
plotting to the lower left and lower elevation samples with greater variability
plotting in the upper right. This strongly indicates that surface water, groundwa-
ter, and spring water have either evolved in a similar manner or surface water
and groundwater have a high degree of connectivity. The much smaller propor-
tion of water in contact with rock in the stream compared with groundwater leads
me to infer that it is unlikely that surface waters would show the same degree of
geochemcial evolution as groundwaters if the two were not in communication.
Therefore, evolved groundwater contributions appear to be one, if not the major,
control on surface water geochemistry.
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Figure 3.7: Plots of a) silica and b) strontium vs upstream contributing area for
surface water samples. Both solutes show increasing concentration with increas-
ing drainage area. Silica and strontium are unlikely to be introduced anthro-
pogenically, and while silica can be taken up or released by certain plant species
it is not expected for strontium.
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82H vs Upstream Contributing area
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Figure 3.8: 2H values vs upstream contributing area for surface water sam-
ples. Isotopic ratios do not change significantly downstream, indicating evapo-
ration and /or mixing with another source are not likely mechanisms for increas-
ing solute concentrations downstream. The red and blue shaded area indicate
the weighted mean and one weighted standard deviation for summer and win-
ter/spring precipitation, respectively.

3.4 Conclusions

Although the Rio Hondo and Saguache Creek watersheds have different
geologic settings, climate, topography, drainage areas and impacts from human
development, they both exhibit similar trends in normalized discharge and simi-
lar structuring of solute concentrations with increasing drainage area, indicating
that the 3D conceptual model developed for the Saguache Creek watershed pro-
vides a good explanation of process behavior in the Rio Hondo as well. Normal-
ized average daily streamflow for both watersheds are nearly identical in shape
and timing, with slow rises and recessions indicative of significant storage within
the basin despite relatively thin soil cover in the mountain block. Comparable
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Figure 3.9: 3D scatter plot of magnesium, sodium, and sample elevation, along
with 2D scatter plots of sodium vs elevation and magnesium vs sodium for sur-
face water samples. The general trend is higher elevation samples showing lower
solute concentrations compared to lower elevation samples. Higher elevation
samples also tend to have lower variability in sampled solute concentrations. Let-
ters correspond to the planes represented by the 2D plots. Estimated best fit line
shown.

geochemical trends are also present in both watersheds, with surface-water so-
lute concentrations increasing with basin drainage area. This is likely a result of
the stream integrating more deep groundwater flowpaths as it travels from the
headwaters to the basin outlet. These deep groundwater flowpaths should have
long residence times, and therefore be much more geochemcially evolved. This
is consistent with results presented by Frisbee et al. (2013), who showed that un-
derestimation of residence times resulted in calculated weathering rates orders
of magnitude higher than those observed. Therefore, some proportion of deep
groundwater must be discharging to the surface water system, as short residence
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Figure 3.10: 3D scatter plot of magnesium, sodium, and sample elevation, along
with 2D scatter plots of sodium vs elevation and magnesium vs sodium for
groundwater samples. Samples show relatively little variability, indicating wells
are not sampling from a large distribution of groundwater flowpaths. Letters cor-
respond to the planes represented by the 2D plots. Estimated best fit line shown.

time waters (i.e., direct runoff and soil water) are unlikely to produce the ele-
vated solute concentrations observed in surface water. In addition, it is unclear
how shallow subsurface flow paths could reproduce the pattern of increasing so-
lute concentration with increasing basin drainage area, as the maximum shallow
subsurface flowpath length would quickly be reached, and geochemistry would

likely stabilize beyond that point (2D Conceptual model).

Stable isotopic data is also evidence for a significant proportion of deep
groundwater contributions to surface water in the Rio Hondo. Surface water,
groundwater, and spring water samples all consistently showed isotopic signa-

tures of late season evolved snow and spring precipitation. Isotopic values close
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Figure 3.11: 3D scatter plot of magnesium, sodium, and sample elevation, along
with 2D scatter plots of sodium vs elevation and magnesium vs sodium for spring
water samples. The general trend is higher elevation samples showing lower so-
lute concentrations compared to lower elevation samples. Higher elevation sam-
ples also tend to have lower variability in sampled solute concentrations. Let-
ters correspond to the planes represented by the 2D plots. Estimated best fit line
shown.

to that of monsoonal precipitation were not measured even when sampling was
conducted soon after summer storms. This suggests either very short residence
times for surface runoff, or that very little monsoonal precipitation makes it to
the stream, although a combination of the two is the most likely. The most likely
sources for streamflow in the basin would be waters that were not subject to the
physical processes that result in isotopic fractionation; deep groundwater is one

such source.

While Saguache and the Rio Hondo display similar geochemcial trends,
they represent very different spatial scales. Frisbee et al. (2012) were unable
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Figure 3.12: 3D scatter plot of magnesium, sodium, and sample elevation, along
with 2D scatter plots of sodium vs elevation and magnesium vs sodium for se-
lected surface water, groundwater, and spring water samples. Letters correspond
to the planes represented by the 2D plots. Estimated best fit line shown.

to discern structured groundwater contributions below a critial drainage area
of about 300 km?, an area much larger than the entire Rio Hondo basin. My
data indicates structured groundwater contributions begin to occur at around 5
to 10 km?, as the pattern of increasing solute concentration with increasing basin
drainage area develops at this scale. This is in contrast to the trend reported
by Wolock et al. (1997), whereby stream chemistry became invariable above a
critical threshold of 8 km?. Topography may be an explanation for this, as ele-
vation changes in the Saguache Creek watershed are much more subdued due
to its large area compared to the Rio Hondo. It may take larger spatial scales for
deeper flow paths to develop in the Saguache Creek watershed, whereas high
relief in the Rio Hondo waterhsed allows them to form at smaller scales (Gleeson
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& Manning, 2008). These results indicate that discharge from deep groundwater

sources can be present at much smaller scales than previously thought.

The implications of significant deep groundwater discharge is dependent
on a number of factors, including the residence time and the relative contribution
to streamflow. If the residence time is relatively short, then short-term climatic
perturbations will propogate through the system quickly and there will be little,
if any, additional buffering capacity. The relative contribution of deep ground-
water to surface water is also just as important, since water that is very old and
evolved can control the geochemisty of the surface water but still be insignificant
from a buffering standpoint as it does not contribute a large volume of water.
The next two chapters of this thesis examine these two factors, first by attempt-
ing to quantify the residence time distribution of waters in the system and sec-
ond by quantifying the contributions from deep groundwater using geochemical

streamflow separation.
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CHAPTER 4

RESIDENCE TIMES IN THE RIO HONDO WATERSHED
USING CHLOROFLUOROCARBONS, TRITIUM, AND
RADIOCARBON.

41 Introduction

Waters in mountain basins can take a variety of flowpaths (e.g., overland
flow, interflow, deep percolation, etc.) to streams due to the heterogeneity and
complexity of mountain systems. The time it takes water to be routed out of the
basin either as surface water or groundwater after it has fallen as precipitation
is commonly referred to as the “residence time” of the water. Like many aspects
of earth science, residence times can span several orders of magnitude ranging
from minutes to thousands of years (Dunne & Black, 1970; Weissmann et al., 2002;
Frisbee et al., 2011). Due to convergence of groundwater flow paths, subsurface
mixing, and hydrodynamic dispersion processes, water samples collected from a
spring or well are not a single age but a distribution of ages. Estimation of mean
residence times and residence time distributions (RTDs) has been important in
hydrology as they have been used to determine process behavior such as stream-
flow generation (Pearce et al., 1986; McGuire & McDonnell, 2006), weathering
rates (Maher, 2010; Pacheco & Van der Weijden, 2012; Frisbee et al., 2013b) and
more recently watershed response to climate change (Rademacher et al., 2005;

Singleton & Moran, 2010; Manning et al., 2012).
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Multiple environmental tracer techniques exist that are able to identify wa-
ters recharged at varying time scales. Quantitative age dating methods such as
3H-3He, chlorofluorocarbons (CFC’s), and '#C are able to estimate the amount of
time waters have spent in the subsurface since being recharged, with *H->He and
CFC’s identifying young waters (<60 yrs) (Szabo et al., 1996, Plummer et al., 2006;
) and *C identifying older waters (<45,000 yrs) (Plummer & Glynn, 2013). Tri-
tium concentrations can also be used as a qualitative indicator to identify young,

old, or mixed age waters (Clark & Fritz, 1997).

Recently, these water-dating techniques have been employed within high-
elevation mountain catchments (Rademacher et al., 2005; Frisbee et al., 2011;
Manning et al., 2012) in California and Colorado. Results from these basin-scale
studies show that residence times can range from modern to thousands of years,
significantly longer than the residence times found for hillslope and small head-
water catchment studies (Horton, 1933; Hewlett & Hibbert, 1967; Dunne & Black,
1970; Anderson et al., 1997b; Brown et al., 1999; Vitvar et al., 2002; Tetzlaff et al.,
2007). This suggests that streamflow generation processes have drastically differ-
ent residence time distributions for different scales, and illustrates the need to use
multiple age-dating techniques for the same sample. Limited age dating using
CFC’s and tritium has been performed outside of the Rio Hondo mountain block
to help characterize the groundwater flow system of the southern San Luis val-
ley basin sediments (Drakos et al., 2004; Rawling, 2005; Johnson et al., 2009), but
have not been used to identify groundwater and surface-water residence times

within the mountain block of the Rio Hondo watershed.

The importance of determining mean residence times for surface water

is matched only by the difficulty in sampling for them. Since surface water is in
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constant communication with the atmosphere, many water-dating techniques are
useless as radioisotopic clocks (®H-*He, “He, #C) and known-concentration at-
mospheric tracers (CFC’s) are reset when waters re-equilibrate with atmospheric
water vapor and gases. In-stream piezometers can be used to sample ground-
water that is upwelling into the stream, however without specialized equipment
they were impossible to install in the rocky streambed of the Rio Hondo. Tritium
can be used as a qualitative tracer in surface water as atmospheric exchange does
not significantly affect >H concentrations, but it is unable to provide quantitative
measures of apparent residence times. Therefore, it is necessary to determine
the sources of streamflow and apply water-dating techniques to streamflow end-
members in situ where re-equilibration with the atmosphere is unlikely to have
occurred. This chapter focuses specifically on age dating of different waters in
the Rio Hondo, while Chapter 5 examines the sources contributing to streamflow

using End-Member Mixing Analysis (EMMA).

The goal of this chapter is to identify the range of residence times for
groundwater, spring water, and surface water in the Rio Hondo watershed. Three
different age dating techniques were employed for this purpose. CFC’s and *C
were used to quantify young and old waters, respectively, while >H concentra-
tions were used as a qualitative age indicator of recharge timing. The use of these
three different methods allowed for estimation of the range in residence times

within the watershed.

4.2 Methods
4.21 Tritium
Tritium samples were collected at groundwater, spring water, and surface

water sampling locations. A total of 1,000 mL was collected from each site and
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stored in two 500 mL high density polyethylene (HDPE) bottles with polypropy-
lene (PP) lids. Samples were enriched by electrolysis prior to analysis by liquid-
scintillation counting at either Isotope Tracer Technologies, Inc. in Waterloo,
Canada or the Tritium Laboratory at the Rosenstiel School of Marine and Atmo-
spheric Science at the University of Miami in Miami, FL. Results are reported in
Tritium Units (TU), where 1 TU = 1 tritium atom per 10'® hydrogen atoms. Stan-
dard deviations from Isotope Tracer Technologies and the University of Miami

were reported at 0.8 TU and about 0.2 TU, respectively.

4.2.2 Chlorofluorocarbons

CFC samples were collected from selected groundwater and spring wa-
ter sites. Only springs believed to be the first emergence of the water were
chosen. Samples were collected in three 500 mL narrow-mouth, clear, Boston
Round borosilicate glass containers with foil-lined caps. Viton® tubing was used
to minimize contact between the sample and the atmosphere during collection.
A peristaltic pump was used for collection from springs and a metal adaptor
with the o-rings removed was used to attach the Viton® tubing to well spig-
ots. Sample collection was done according to USGS CFC sampling procedure
(http:/ /water.usgs.gov /lab/chlorofluoro- carbons/sampling/bottles/). Bottles
were filled from the bottom up, allowed to overflow with at least two liters of
water, and then capped underwater. Bottles were checked to make sure there
were no bubbles present and then taped. Samples were then sent to the USGS

Reston Chlorofluorocarbon Laboratory in Reston, VA for analysis.

Apparent ages for CFC samples were determined using the data-reduction
sheet provided with the results. Recharge temperature was assumed to be 0° C

61



as stable isotopic results from Chapter 3 indicate nearly all recharge in the water-
shed is sourced from snowmelt. Recharge elevations were assumed to be 4,000

m, 3,200 m, or 2,900 m depending on the elevation of the sampling site.

4.2.3 Radiocarbon

Radiocarbon samples were collected from selected groundwater and spring-
water sampling locations. A total of 1,000 mL was collected from each site and
stored in two 500 mL HDPE bottles with PP lids and taped shut. Only springs be-
lieved to be the first emergence of the water were chosen. Samples were then sent
to Beta Analytic at their headquarters in Miami, FL where they were analyzed for
14C activity and 6'3C using the Accelerator Mass Spectrometry (AMS) technique.
14C activities are reported as percent modern carbon (pmc) with measurement
error about 0.37%. §13C values are reported in per mil (%o) notation relative to

Vienna Pee Dee Belemnite (VPDB).
Apparent ages were determined using the equation

- @zn<ﬂ) 4.1)

In2 A

where t is the time elapsed since recharge, 5730 is the modern half-life of 14C, Ag
is the initial 1*C activity (pmc value), and A is the measured “C activity (pmc
value) of the sample. The Vogel correction method (Vogel, 1967, Plummer &
Glynn, 2013) was used and assumes a value of 85.0 (£5.0) pmc for A.

4.3 Results and Discussion
4.3.1 Chlorofluorocarbons
Apparent piston flow ages for CFC-11, CFC-12, and CFC-113 (Table 4.1;

Figure 4.1) range from about 24 to 57 years. There is moderate agreement between
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Table 4.1: Apparent piston-flow ages for groundwater (RHW) and spring water
(RHS) samples for CFC-11, CFC-12, and CFC-113. Apparent age using all CFC
analysis is shown in the last column with one standard deviation. Dashed en-
tries indicate the sample was contaminated and was not used. See Figure 4.1 for
sample locations.

Sample ID | CFC-11 Age (yrs) | CFC-12 Age (yrs) | CFC-113 Age (yrs) | All CFC’s (yrs)
RHS-01 35.0 29.5 27.0 30.0 (3.7)
RHS-08 28.3 243 25.5 25.6 (+£1.8)
RHW-05 56.8 61.2 50.0 55.5 (£4.9)
RHW-06 31.5 27.7 27.5 28.4 (+£2.0)
RHW-10 50.0 44.0 39.5 44.0 (+4.7)
RHW-12 32.0 - 26.0 28.5 (43.5)

the different tracers, with CFC-11 giving the oldest age dates and CFC-113 giving
the youngest, in general. According to the USGS Guidelines for Assignment of
Apparent CFC Age (http:/ /water.usgs.gov/lab/chlorofluorocarbons/lab /assig-
ning_age/), young CFC-113 age relative to CFC-11 and CFC-12 age indicates mix-
ing of young and old groundwater has occurred. Nearly all samples show the
youngest age for CFC-113, suggesting some degree of mixing between young and
old waters is present. This mixing would bias waters young, so the apparent CFC
ages presented here are likely minimum ages. Even with the potential mixing of
young and old water, samples near the mountain front show ages approaching

the useful limit (~60 yrs) of the CFC dating technique.

Although only a limited number of CFC samples were collected, apparent
ages within the moutain block show some degree of correlation with elevation
(Figure 4.2). High elevation samples have younger CFC apparent ages while low
elevation samples show older apparent ages. RHS-01 is not consistent with this
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Figure 4.1: Apparent piston flow ages using average of CFC-11, CFC-12, and
CFC-113 results. High-elevation samples show younger ages with lower eleva-
tion samples showing older ages approaching the useful age limit (~60 yrs) of
the technique. RHS-01 is located in an area that receives irrigation waters and
is potentially biased young due to mixing with infiltrating recharge waters that
have equilibrated with contemporary atmospheric concentrations of CFC’s.

trend, possibly due to the fact that it is located in an area that receives irrigation
waters and therefore is likely to have a greater degree of mixing between young
and old waters. While it is difficult to make accurate inferences from only five
data points, the apparent correlation of age with elevation shown in Figure 4.2
is consistent with my hypothesis of increasing contributions to streamflow from

deep groundwater with increasing basin scale.
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CFC Age vs Elevation in the Mountain Block
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Figure 4.2: Apparent CFC age vs elevation for mountain block springs and wells
and mountain front wells. Age appears to be moderately correlated with ele-
vation, with high-elevation samples showing younger ages and lower elevation
samples showing older ages. RHS-01 was exluded due to possible contamination
from infiltrating irrigation waters. If RHS-01 is included the R? value is reduced
to 0.33. Error bars indicate one standard deviation.

4.3.2 Tritium

Tritium concentrations in precipitation were not measured in the Rio Hondo
watershed during this study, but have recently been reported to range from about
3 to 10 TU in the Sacramento Mountains to the south (Newton et al., 2012). The
highest concentrations were sampled during the spring, consistent with typi-
cal seasonal trends (Michel, 2005, Newton et al., 2012). The warming of land
masses in the spring causes an instability in the tropopause between 30° and

60°N. This instability mixes air from the stratosphere, the main repository for
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Table 4.2: Tritium concentrations for
groundwater (RHW), spring water (RHS),
and surface water (RHR) sampling loca-
tions. See Figure 4.3 for sampling locations.

Sample ID | Tritium Concentration (TU)
Ditch 7.9 (£0.8)
RHR-01 6.59 (£0.22)
RHR-14 6.67 (£0.22)
RHR-18 7.41 (£0.24)
RHS-01 6.2 (+0.8)
RHS-04 7.2 (£0.8)
RHS-08 7.0 (£0.8)
RHS-09 8.5 (+0.8)
RHW-10 1.5 (£0.8)
RHW-12 4.8 (£0.8)
RHW-13 13.2 (£0.8)

atmospheric tritium, into the troposphere. Tritium concentrations in the strato-
sphere are greater than those in the troposphere because the stratosphere is un-
able to exchange with ocean water vapor that has relatively low tritium concen-
trations. This annual increase in tritium concentrations in the troposphere of the
northern hemisphere resulting from this mixing is commonly referred to as the
”Spring Leak” (Michel, 2005). Stable isotopic evidence presented in Chapter 3
suggests that most water in the Rio Hondo is sourced from a mixture of winter
and spring precipitation, so a contemporary tritium concentration of 10 TU was
chosen for the Rio Hondo watershed. Pre-1953 tritium concentrations in precip-
itation for Albuquerque, New Mexico have been estimated to be at least 6 TU,
with 1963 bomb-pulse maximum concentrations of about 1900 TU (Shevenell &

Goff, 1995).

Given the half-life of tritium is 12.33 years (Lucas & Unterweger, 2000),
pre-1953 recharge has underwent approximately five half-lives and would have
a concentration of 0.21 TU today. Waters recharged during the 1963 bomb-pluse
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would have tritium concentrations of about 114 TU today as they have under-
went approximately four half-lives. It should be noted that hydrodynamic dis-
persion would likely result in dilution of the maximum peak of the bomb-pulse.
Contemporary tritium concentrations in the atmosphere, though seasonally vari-
able, appear to have been reached by about the mid 1990’s (Clark & Fritz, 1997).
Therefore, It is likely safe to assume that all precipitation falling after the year
2000 would have an intital concentration of about 10 TU. Using this value, wa-
ters recharged 5 and 10 years ago would have tritium concentrations of 7.5 and
5.7 TU, respectively. Since tritium mixes conservatively we can also calculate an
estimate of tritium concentrations for mixtures of modern and submodern wa-
ter. An equal mixture of pre-1953 water (0.21 TU) and modern recharge (10 TU)

would be yield a tritium concentration of 5.1 (TU).

Tritium concentrations (Table 4.2; Figure 4.3) range from 1.5 to 13.2, with
the lowest tritium concentration measured in a mountain-front well and the high-
est measured in a valley well near the Rio Grande. Concentrations were used as
a qualitative indicator of the age and degree of mixing between young and old
waters that the sample underwent. Table 4.3 shows the qualitative age estimates
used based on the concentration of precipitation during recharge and the num-
ber of half-lives the water has likely experienced. Most of the samples fell on the
lower (older) end of the “Young (<5 to 10 yr)” age estimation, with two samples,
RHW-10 and RHW-12, having concentrations less than 5 TU and one sample,
RHW-13 having a tritium concentration greater than 10 TU. This suggests age
distributions in the watershed range from modern to submodern and are likely

mixtures of young and old water.

Tritium concentrations for mountain block springs and wells show the
same general correlation as CFC ages with elevation (Figure 4.4). Higher ele-

67



[7.41 (2024

Age Dating Result Sample Type N
| 1.5(£0.8) | = Tritium Concentration (TU) = Groundwater 0 1 2 4
RHW-10 | = Sample D « Spring Water e Kilometers -
= Surface Water

Figure 4.3: Map of sampling locations showing measured tritium concentrations.

vation springs and wells tend to have greater (younger) tritium concentrations
compared with lower elevation samples. Shallow wells and springs located in
the valley do not show this trend, likely due to mixing with infiltrating irriga-
tion waters. The highest tritium concentration (13.2 TU) came from a deep well
located near the Rio Grande. This suggests the well is likely receiving a signif-
icant amount of modern recharge such that tritium concentrations are reset to
modern values. The lowest tritium concentration (1.5 TU) came from a well lo-
cated on the hillslopes of the mountain front, suggesting predominantly pre-1952

recharge mixed with a small proportion of modern recharge.

Three measurements of tritium collected at surface water sampling loca-
tions (RHR-01, RHR-14, and RHR-18) show a similar, though less pronounced,
correlation of tritium concentrations with elevation. However, with only three
samples it is impossible to definitively state a correlation exists. If the correlation
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Table 4.3: Qualitative age estimates for tritium concentrations. See
Clark and Fritz (1997) for comparison.

Tritium Concentration (TU) Qualitative Age Estimate
Submodern
<02 recharged prior to 1952
Mixture between submodern
0.2to ~5 and recent recharge
5to 8 Young (<5 to 10 yr)
8 to 10 Modern
10 to 30 Some “bomb” 3H present
Considerable component of recharge
>30 from 1960’s or 1970’s
>60 Dominantly the 1960’s recharge

is accurate, it would be consistent with my hypothesis of increased deep ground-

water contributions to surface water with increasing scale.

A similar, though less pronounced, trend can be seen in surface water tri-
tium concentrations (Figure 4.4). Higher elevation samples show greater tritium
concentrations compared to lower elevation samples within the mountain block.
Mixing of young and old waters within the stream may explain why the correla-
tion with elevation is not as pronounced as for groundwater and surface water

samples.

4.3.3 Radiocarbon

Radiocarbon activities, 613C values, and calculated ages using Equation
4.1 are presented in Table 4.4 and Figure 4.5. Geochemical analyses of the major

cations and anions associated with each sample are shown in Table 4.5. Measured
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Tritium Concentration vs Elevation in the Mountain Block
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Figure 4.4: Tritium vs elevation for mountain block springs and wells. There
appears to be a correlation between tritium concentration and elevation, with
higher elevation samples showing greater (younger) tritium concentrations rela-
tive to lower elevation samples. Surface water samples show a similar, though
less pronounced trend. Trend lines with equations and correlation coefficients
shown.

radiocarbon activities range from about 65 to 99 pmc, with associated ages rang-
ing from modern to 2,300 yrs. Radiocarbon activity does not show any significant
correlation with §'3C values or bicarbonate concentrations (Firgure 4.6). Moun-
tain block waters also do not show a strong correlation between *C activity and
elevation (Figure 4.7), unlike CFC ages and tritium concentrations. However, the
limited number of data points makes it difficult to definitively state that no cor-
relation exists. CFC and tritium data indicate a mixture between old and young
waters, so the lack of correlation may be due to the highly non-linear mixing
relationship of 4C compared with CFC’s and tritium. This is also a possible ex-
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Table 4.4: C activities, 6'3C values, and calculated ages using the
Vogel correction method. See Figure 4.5 for sampling locations.

Sample ID e Activity (pmc) S13C (%o) | Calculated Age (yrs)
RHS-01 91.77 (£0.34) -17.7 Modern
RHS-08 64.68 (+0.24) -16.8 2300 (4500)
RHW-02 95.02 (£0.35) -18.9 Modern
RHW-06 89.62 (+0.33) -18.3 <100
RHW-10 71.28 (+0.26) -22.4 1500 (£500)
RHW-12 69.01 (4+0.25) -18.2 1700 (£500)
RHW-13 98.76 (+0.36) -16.2 Modern

planation for the modern ages observed in the all of the valley wells. Mixing of
older waters with infiltration from irrigation waters that have equilibrated with
modern *C would reset the radiocarbon clock, making the waters appear mod-

ern.

Although the Vogel correction method is useful, it does not account for
more complex geochemcial reactions that can add or remove dissolved inorganic
carbon (DIC) from waters, such as equilibration of waters with soil-gas during
recharge and dissolution of radiocarbon-dead calcite. 5'C values can be an indi-
cator of these types of reactions, with soil-gas CO; values for C3 plants ranging
from -23 to -35%0, and commonly assumed to be -25%.(Clark & Fritz, 1997). §13C
values in my samples range from -16.2 to -22.4 %o, indicating dissolution of some
enriched carbon source relative to soil-gas. Potential carbon sources include cal-
cite derived from magmatic degassing of CO; during the late stages of plutonism,
and potentially calcite precipitated along fracture walls. Two samples that yield
old ages have §13C values that are close to those of soil-gas CO,, suggesting only
slight interactions with minerals that alter the carbon composition of the water.
Therefore, it is likely that some of the old ages I am seeing are accurate, and that
significantly old water (>100 yrs) does indeed exist in the system. Future refine-
ment of radiocarbon ages using the geochemical modeling software NETPATH
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Figure 4.5: Map of sampling locations showing '#C age dates calculated using
Vogel correction method.

(Plummer et al., 1994) may be helpful, however the apparent mixing of waters in

the Rio Hondo watershed might prove to be outside the capabilities of the model.

One of the big questions that remains is are the multiple age-tracers re-
vealing different portions of the age distribution, or are they simply sampling
different flow paths that are converging at the same sampling point. For springs,
this is difficult to separate as deep groundwaters must pass throuth the shallow
soil zone before emerging at the surface. While passing through the shallow soil
zone mixing of deep groundwater and short residence-time soil water is likely.
However, this is less likely to occur in groundwater samples, where well screens
are located at some location along a flowpath and therefore not a likely loca-
tion of flowpath convergence. I saw the same age-tracer patterns in groundwater

samples as spring-water samples, which leads me to believe that my age-tracer
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results are sampling different portions of the age distribution and not different
flow paths that happen to converge at the same sampling location. In our case,
the different dating techniques are similar to frequency filters. Since we appear
to have a large age distribution, whichever filter we use will select only the fre-
quency, or age in our case, that it is designed for. For example, we see ages up
to 60 years using CFC’s because that is the age range it is best suited to detect.
One way to test this would be to create synthetic age distributions for different
distribution types (normal, logarithmic, etc.) and compare them to the age dis-
tributions we have. Whichever synthetic age distribution matched our observed
age distribution would be the best explanation. However, this does assume that
the age distribution of the watershed can be represented with a single, relatively

simple age distribution, which may not be the case.

4.4 Conclusions

The results from multiple age-dating tracers in the Rio Hondo watershed
(Figure 4.8) indicate residence times range from modern to possibly thousands
of years old. Average CFC ages are similar to those reported by Rademacher et
al. (2005) for the Sagehen basin in California and *C ages are the same order of
magnitude reported by Frisbee et al. (2011) for the Saguache Creek watershed in
southern Colorado. This suggests that similar basin scale processes resulting in
streamflow generation are operative in all three basins, although because multi-

ple tracer techniques were not used in Sagehen basin or Sagurache creek this
remains speculative. This illustrates the need to utilize multiple age dating tech-
niques in mountain watersheds because there appears to be a wide distribution

of ages, with mean residence times likely on the order of decades to thousands
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Radiocarbon Activity vs 613C
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Figure 4.6: Plots of *C activity vs a) §1C values and b) bicarbonate concentra-
tions. Trend lines with equation and correlation coefficient shown.
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14C Activity vs Elevation in the Mountain Block
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Figure 4.7: '4C activity vs elevation for mountain-block springs and wells. Unlike
CFC ages and tritium concentrations, 1*C activities do not appear to be correlated
with elevation. This may be the result of the highly non-linear mixing relation-
ship between young and old waters for radiocarbon.

of years. Frisbee et al. (2013) used solute concentrations and geochemical weath-
ering rates to demonstrate that long residence times are necessary to produce
observed solute concentrations in springflow. These long residence times are
several orders of magnitude greater than the months-to-years that is the current
belief (Horton, 1933; Hewlett & Hibbert, 1967; Dunne & Black, 1970; Anderson et
al., 1997b; Brown et al., 1999; Vitvar et al., 2002; Tetzlaff et al., 2007).

The correlation of CFC ages and tritium concentrations with elevation also
supports my hypothesis of increasing deep groundwater contributions with in-
creasing basin scale. Although *C ages do not show this correlation, mixing

between young and old waters may be one possible explanation why they do
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Figure 4.8: Age dating summary for all samples collected in the Rio Hondo Wa-
tershed.

not show this trend. Chapter 3 provided evidence for similar geochemical evolu-
tionary pathways for groundwater, surface water, and spring water, suggesting
contributions from deep groundwater are controlling stream geochemistry. Ages
for CFC’s and tritium concentrations show older waters near the mountain front
and younger waters near the headwaters, a trend predicted by the 3D conceptual
model with deep groundwater contributions to surface water. The wide range
in age distributions is also predicted by the conceptual model, and is evidence
for the existence of deep flowpaths within the watershed. The next chapter will
use geochemical and isotopic separations of streamflow using end-member mix-
ing analysis to determine the end-members contributing to streamflow, as well as
quantify the realtive contributions from each end-member at each surface water

sampling location.
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CHAPTER 5

GEOCHEMICAL STREAMFLOW SEPARATION USING
END-MEMBER MIXING ANALYSIS

5.1 Introduction

Hydrologists have investigated streamflow generation for 150 years or
more, particularly low-flow characteristics as they provide threshold values for
resource management and water quality. Understanding the sources that con-
tribute to streamflow is essential for proper water resource management and fu-
ture sustainability and adaptive management strategies. The sources of water,
or end-members, that mix and ultimately contribute to streamflow represent wa-
ter that has reached the stream via different flow paths within the watershed.
These flowpaths have different residence times, and as a result different geo-
chemical signatures. While conceptually it may seem relatively easy to identify
these end-members, in practice in can be quite difficult. Despite this difficulty
numerous methods have been developed to determine the recession behavior of

hydrographs and the sources that contribute to streamflow.

One of the earliest methods of identifying the sources that contribute to
streamflow was graphical separation of the discharge hydrograph into “ground-
water” and “direct runoff” during storm events, where groundwater was defined
as any "“pre-event” (pre-storm) water and direct runoff was event (storm) wa-

ter. This was accomplished by extrapolating the groundwater recession curve
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beneath the flood peak (Pinder & Jones, 1969), with extrapolations ranging from
the very simple (Linsley & Franzini, 1964; Hewlett & Hibbet, 1967; McNamara et
al., 1997) such as a line with an arbitrary slope drawn from the rising to the falling
limb of the stormflow hydrograph, to more complex (Frolich et al., 1994; Szilagyi
& Parlange, 1998; Mendoza et al., 2003) procedures such as transformation of
the hydrograph into a dimensionless recession curve. Graphical techniques for
hydrograph separation have received considerable criticism due to the arbitrary
classification of rates and sources of flow (Hewlett & Hibbert, 1967), and have
been referred to as “convenient fiction” (Freeze, 1972; Dingman, 1994) since there
is no physical basis to their assumptions. As a result, new methods for stream-

flow separation using chemical and isotopic tracers were established.

The first chemical separation methods were developed to estimate surface
water quality by determining the quality and quantity of groundwater and direct
runoff that was discharging to the stream (Archer et al., 1968; LaSala, 1967; Pin-
der & Jones, 1969). This was accomplished using a simple two-component mass

balance mixing model given by
Cr = (ercdr + ngcgw)/Qtr (5.1)

Qtr = er + ng (52)

where C is the tracer solute concentration (mg/L), Q is the discharge (m?3/s), and
the subscripts tr, dr, and gw refer to the total runoff (streamflow), direct runoff
(stormflow), and groundwater discharge, respectively. This method was even-
tually expanded to include more than two end-members, using measurements
of isotopic tracers (2H, 3H, 180) and geochemical composition (Martinec, 1975;

Sklash & Farvolden, 1979). One of the currently used methods of geochemical
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and isotopic separation of streamflow is referred to as end-member mixing anal-
ysis (EMMA) (Christopherson & Hooper, 1990), where streamflow chemistry is
mathematically transformed using least-squares multivariate analysis. EMMA
is more statistically robust than previous methods and offers advantages in that
many different sources of water can be screened simultaneously. Chemical con-
stituents and end-members that account for the greatest amount of variability are
identified, and the transformation reduces the dimensionality of the mixing sub-
space to n-1 dimensions, where 7 is the number of endmembers. For example,
a three end-member mixing mixing model can be plotted in a 2D mixing sub-
space. This method is well established and has been used in several studies of
streamflow generation at hillslope, small catchment, and basin scales in a variety
of catchments (Christopherson & Hooper, 1992; Hooper, 2003; Liu et al., 2004,
2008; Frisbee et al., 2011, 2013).

One of the major outcomes of previous hydrograph separation investiga-
tions was the discovery that pre-event water makes up a large portion of storm
runoff even during peak flow (Pinder & Jones, 1969; Martinec, 1975; Sklash &
Farvolden, 1979; Laudon & Slaymaker, 1997; Brown et al., 1999). Unfortunately,
most of the conceptual models developed for hillslope hydrology assume im-
permeable bedrock or only consider relatively shallow groundwater flow, and
as a result it has become commonplace to use the terms “pre-event water” and
“groundwater” interchangeably. If the conceptual model developed by Frisbee
et al. (2011) is correct then this practice is misleading because soil water and
groundwater would be expected to have different geochemical compositions due
to their respective residence times in the system (i.e.,, groundwater being more
geochemically evolved than soil water). Therefore I specifically differentiate be-
tween shallow soil water and deeper groundwater contributions to streamflow.
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Table 5.1: Surface water sampling locations used for streamflow separation.

Sample ID | Sample Location (UTM 13S) | Elevation (m) | Drainage Area (km?)
RHR-01 450184E 4044192N 2334 96.1
RHR-02 436785E 4043411N 1982 187.7
RHR-04 440357E 4043510N 2073 164.1
RHR-10 459817E 4050082N 2867 14.8
RHR-11 459878E 4050231N 2881 8.3
RHR-14 454658E 4047878N 2551 59
RHR-15 454485E 4047765N 2553 54.8
RHR-16 454458E 4047756N 2555 19.2
RHR-18 460742E 4047705N 3133 8.3
RHR-21 449213E 4043314N 2290 97.7
RHR-22 461603E 4045329N 3404 24
RHR-24 458751E 4049977N 2865 244

One might comment that the conclusions reached by Frisbee et al. (2011),
that old groundwater is contributing to streamflow in the Saguache watershed,
are a result of unique conditions that may only exist within that watershed. In
order for the Saguache conceptual model to be robust, it must apply to a range
of climates, topographies, geologies, etc.. Therefore, I used similar techniques
and applied them to the Rio Hondo watershed in northern New Mexico (See
Chapter 2 for complete site description). The Rio Hondo varies from Saguache
geologically (crystalline vs volcanic bedrock), climatically (one-third of annual
precipitation as snowfall vs two-thrids), and in size (187 km? vs 1,600 km?). The
Rio Hondo watershed also has a much larger degree of human development and
impacts that must be accounted for in comparison to the Sagauche Creek water-
shed. Therefore any similarities between the two watersheds are likely the result
of similar processes operating within both basins. By identifying the sources con-
tributing to streamflow in the Rio Hondo, I can simultaneously investigate the
processes generating streamflow within the basin and test the transferability of

the Saguache conceptual model to a very different watershed.
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Figure 5.1: Surface water sampling locations used for streamflow separation by
EMMA.

The goal of this chapter is to investigate the processes controlling stream-
flow generation primarily within the mountain block of the Rio Hondo water-
shed and assess the transferability of the Saguache conceptual model developed
by Frisbee et al. (2011). I do this by identifying the major sources of water con-
tributing to the 12 surface water sampling locations (listed in Table 5.1 and shown
on Figure 5.1) using measurements of stream chemistry and EMMA to identify
the groundwater fraction in streamflow. I will then compare my results to those
from the Neversink River and Saguache Creek watersheds, which appear to rep-

resent the 2D and 3D conceptual models, respectively.

Wolock et al. (1997) have shown that stream geochemistry in the Nev-
ersink River watershed in New York stabilizes above a threshold basin size of
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approximately 3 km?. The authors state that this trend is attributable to stabiliza-
tion of subsurface contact times, as the topographic gradients assumed to control
subsurface contact time significantly decrease above this scale. Vitvar et al. (2002)
have also estimated mean baseflow residence times on the order of nine months
in a 2 km? headwater basin in the Neversink River watershed using the convolu-
tion integral approach. The asymptotic trend in surface-water geochemistry with
basin drainage area and the relatively short residence times in the watershed im-
ply a limited distribution of shallow subsurface flowpaths consistent with the 2D

conceptual model.

In contrast, Frisbee et al. (2011) have demonstrated increasing surface-
water solute concentrations with increasing scale in the Saguache Creek water-
shed. Radiometic dating and EMMA results indicate that the weighted mean res-
idence time of surface-water can range from modern during the snowmelt pulse
to hundreds of years during the later part of the year (Frisbee et al., 2013). The
consistent increase in surface-water solute concentration with increasing basin
drainage area and the significantly long residence times found in groundwater
suggest deep groundwater flowpaths are present in the watershed and have sig-
nificant control on surface-water geochemistry, consistent with the 3D conceptual

model.

My hypothesis is that the Rio Hondo watershed will behave more like
the 3D conceptual model due to the presence of highly fractured bedrock, and
therefore surface-water geochemistry will be controlled by contributions from
deep groundwater. If this hypothesis of increasing deep groundwater contribu-
tions is correct, then I should see 1) a significant proportion of groundwater end-

members chosen and 2) an increasing proportion of groundwater moving from
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the headwaters to the outlet, sites with larger basin drainage areas showing more
evolved groundwater contributions, or both. Because there is a distribution of
groundwater flow paths, and waters are assumed to be evolving as they travel
along a given flowpath, we cannot assume a single composition of groundwater
(the same applies to soil water). Instead, non-stream water samples are assumed
to represent different potential flow paths in the system, each with a different
degree of geochemical evolution and residence time. Table 5.2 shows the end-
members critiqued in this study and the types of waters or flowpaths they likely

represent based off of geochemistry and field observations.

5.2 Methods

Geochemical and isotopic sampling and analysis is explained in detail
in Chapter 3, but a brief summary is provided here. A total of 11 sampling
rounds were conducted between March 2012 and March 2013 using standard
sampling procedures, with monthly to sub-monthly sampling between May 2012
and November 2012. Samples were either lab or field filtered to 0.45 ym before
being sent to the New Mexico Bureau of Geology Analytical Chemistry Lab to be
analyzed for general chemistry using accepted procedures and the New Mexico
Stable Isotope Lab to be analyzed for 680 and §?H using a Picarro L1102-i Iso-
topic Water Liquid Analyzer cavity ringdown spectrometer. Samples with pre-
tixes RHRO, RHS, and RHW are ephemeral springs, perennial springs, and wells,
respectively. The PCAPS (Passive Capillary Sampler) sample is an integrated soil
signature collected during the snowmelt season (see Chapter 3 for more details).
The Ditch sample was an opportunistic sample collected from a spring emerging

from a construction ditch dug near the Williams Lake trailhead. EFF is effluent
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from the Village of Taos Ski Valley sewage treatment plant, and WL-01 and WL-
02 are samples collected from Williams Lake and a spring near Williams Lake,

respectively.

EMMA was used to determine end-members and their proportional con-
tribution to surface water sampling locations, following the procedures by Christo-
pherson et al. (1990) and Christopherson & Hooper (1992). Only samples with
a cation-anion charge balance within 5% were used. The geochemical tracers
Electrical Conductivity (EC), Ca?*, Mg?", Na*, KT, SiO, were chosen as they
were measured on a consistent basis in every sample and are believed to repre-
sent the major weathering release products; 6°H, and 680 were also chosen as
isotopic tracers due to their known conservative mixing bahavior. A principal-
component analysis (PCA) was applied first as a diagnostic tool to determine
conservative tracers of the end-member matrix. Eigenvectors extracted from the
conservative tracer correlation matrix were used to reproject both surface-water
samples and end-members into a mixing subspace (Liu et al., 2008). Appropriate-
ness of a tracer was determined by examining the residuals calculated from the
original and reprojected chemistry data. According to Hooper (2003), A well-
posed model is indicated by random pattern of residuals; any structure in this
plot suggests a lack of fit in the model, which can arise from the violation of any
of the assumptions inherent in the mixing model.” Therefore, only tracers with
residuals from the PCA having p >0.05 and R? <0.4 were chosen. The accumu-
lated percent variance of the eigenvalues was analyzed to determine model fit
with a well-posed model accounting for the greatest amount of variance in the
lowest dimension mixing subspace. After the conservative tracers were selected

for each sample location, new eigenvectors were calculated and the orthogonal
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Figure 5.2: Conceptual representation of how end-members are plotted in U-
Space. Blue diamonds represent streamflow samples while colored squares are
different end-members, with each color representing a different end-member
classification (i.e., soil water, evolved groundwater, etc.). In this idealized case,
the end-member groups A, B, and C provide the best mixing subspace as they
constrain all of the samples and result in the smallest mixing area (i.e., lowest
dimensional mixing subspace).

projections of the surface-water samples and end-members were plotted together

in the mixing subspace.

In order to prevent conceptual model bias, all non-stream water samples
were used as potential end-members. This was done to identify regions in the
mixing subspaces that represent distinct geochemical pathways and processes.
Thus, it provides an assessment of whether or not end-members share similar
geochemical histories. A stream sample will therefore be a mixture of waters
representing these geochemical pathways (Figures 5.2 and 5.3). If my hypothe-
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Figure 5.3: A) U-space plot of end-members and streamflow samples collected
from RHR-01 (USGS gauging station 08267500). The blue triangle indicates
the area bounded by the end-members that produced the smallest mixing sub-
space. B) Time series of relative contributions from selected end-members (end-
members displayed as subjective category, see Table 5.2) calculated from geomet-
ric position within the mixing subspace.

sis was correct then streamflow contributions from evolved groundwater with
increasing scale requires geochemical evolution, and therefore I could not as-
sume a single composition of groundwater. In other words, a single ground-
water sample represents a specific point along a given flow path, but is not de-
scriptive of all groundwater in the system. However, if my hypothesis was in-
correct then EMMA would simply point to precipitation and/or geochemically
immature source waters (and by default, shorter residence time waters); more
evolved groundwater projections would plot far away from streamflow projec-
tions. Given the large pool of end-members and the spectrum of flowpaths they
represent, the likelihood that two or more end-members plotted near each other
in the mixing subspace, and therefore could both be chosen as end-members, was
a very real possibility. Again, this is because samples that plot near each other in
the mixing subspace represent similar flowpaths and geochemical pathways in
the watershed. When this occurred, it was necessary to select from the potential
end-members according to the following criteria: 1) Surface-water samples were
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mostly, if not completely, within the area bounded by the end-members, and 2)
the mixing area of the three end-members was minimized as much as possible.
For most samples this was easily achieved; specific samples that appeared to have
missing end-members are discussed below. After end-members were chosen, the
geometric mixing proportion of each contributor was calculated for each sample

date. Reconstructed stream chemistry was calculated according to the equation
Cr = FiC1 + KC, + FCs (5.3)

where C is the solute concentration, F is the geometric mixing proportion, the
subscript R refers to the reconstruction, and the subscripts 1, 2, and 3 represent
the selected end-members. Model fit was ascertained by plotting reconstructed
streamflow chemistry against observed stream chemistry. A well-posed model

produces p <0.05 and R? >0.70 (Frisbee et al., 2010).

Although input into EMMA individually, potential end-members were
also grouped into seven categories according to geochemistry and field observa-
tions (Table 5.2) to aid in the interpretation of the EMMA results. These subjective
categories represent the type of geochemical pathway the sample is assumed to
have traveled, with more evolved geochemistry suggesting a longer flowpath.
While it is impossible to determine if each potential end-member is classified
correctly, given the unknown flowpath of each sample, the inclusion of some
samples in a certain category can be deduced. For example, precipitation and
snowmelt recharge would be expected to be relatively dilute, and indeed they
fall within the “Very Immature Water” category. All of the ephemeral spring po-
tential end-members fall within the “"Soil Water” classification, suggesting they
are fed by a limited subsurface reservoir (i.e., the soil zone) and have a relatively
short residence time. Finally, only groundwater samples collected from wells are
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included in the "Evolved Groundwater” and ”Very Evolved Groundwater” cate-
gory, as they would be expected to have the longest residence time and therefore
the most evolved geochemistry. Radiocarbon results presented in Chapter 4 cor-
roborate the long residence times of some of the groundwater wells sampled.
This is not to say that springs in the watershed do not receive waters from very
evolved groundwater flowpaths, but the signal is likely damped by mixing with
shallower subsurface flowpaths the spring is integrating. Since well screens are
usually far below the surface, groundwater wells are more likely to exclude these
shallow, shorter residence time flowpaths and be more representative of a point

along a given flowpath.

5.3 Results and Discussion

Surface water samples were collected longtitudinally down the Rio Hondo
as well as from the East Fork (RHR-11), Manzanita Canyon (RHR-14), and South
Fork (RHR-16) subwatersheds. A surface water sample was also collected from
a perennial stream that discharges into the closed portion of the headwaters that
forms Williams Lake (RHR-22). The results from plotting original stream chem-
istry against its orthoganol reprojection are shown in Table 5.3. Of the 12 stream-
flow sampling locations, PCA indicated that eight locations showed conservative
behavior for all tracers (EC, Ca?*, Mg?*, Na™, KT, SiO,, $°H, and §'%0), while
two locations selected seven tracers and another two six tracers. All but one sam-
ple location (RHR-11) showed cumulative percent variances greater than 80% for
the second eigenvalue (Table 5.4), indicating a three end-member (2D subspace)

mixing model was most appropriate. The high cumulative percent variance of
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Table 5.3: Correlations between residuals of reprojected and original stream
chemistry from PCA for a 2D, three end-member mixing model. Only tracers
that showed random distributions in the plots (p >0.05) were selected to be used
for EMMA. R? is the coefficient of determintation (goodness of fit) and p describes
the statistical significance of the correlation. Bolded and shaded cells show cor-
relations with p <0.05.

Sample ID EC (uS/cm) Ca?* Mg?* Na*
R? p R? p R? p R? p
RHR-01 0.03 0.62 0.05 0.52 0.09 0.39 0.13 0.30
RHR-02 0.01 0.74 0.13 0.30 0.05 0.52 0.05 0.52
RHR-04 0.02 0.73 0.03 0.62 0.03 0.60 0.22 0.16
RHR-10 0.09 0.40 0.03 0.62 0.02 0.67 0.07 0.44
RHR-11 0.06 0.51 0.18 0.21 0.09 0.39 0.65 0.003
RHR-14 0.04 0.56 0.01 0.76 0.005 | 0.85 0.03 0.65
RHR-15 0.03 0.61 0.22 0.16 0.04 0.57 0.11 0.35
RHR-16 0.03 0.61 0.05 0.54 0.11 0.34 0.22 0.16
RHR-18 0.02 0.67 0.09 0.40 0.56 0.01 0.03 0.63
RHR-21 0.02 0.70 0.06 0.49 0.02 0.73 0.05 0.54
RHR-22 0.04 0.58 0.05 0.52 0.06 0.50 0.19 0.20
RHR-24 0.04 0.60 0.02 0.68 0.08 0.42 0.16 0.25
Sample ID K+ SiO, 5180 0?H
R? p R? p R? p R? p
RHR-01 0.15 0.26 0.06 0.48 0.39 0.05 0.21 0.17
RHR-02 0.57 0.01 0.01 0.78 0.12 0.32 0.45 0.03
RHR-04 0.39 0.05 0.04 0.57 0.09 0.40 0.33 0.08
RHR-10 0.04 0.58 0.03 0.64 0.33 0.08 0.10 0.36
RHR-11 0.24 0.14 0.32 0.08 0.33 0.07 0.37 0.06
RHR-14 0.13 0.30 0.09 0.39 0.22 0.16 0.10 0.37
RHR-15 0.11 0.35 0.48 0.02 0.17 0.24 0.09 0.40
RHR-16 0.21 0.18 0.26 0.12 0.13 0.30 0.27 0.11
RHR-18 0.05 0.51 0.07 0.45 0.55 0.01 0.14 0.28
RHR-21 0.10 0.38 0.13 0.30 0.26 0.13 0.30 0.09
RHR-22 0.10 0.38 0.26 0.12 0.26 0.12 0.05 0.54
RHR-24 0.16 0.25 0.02 0.72 0.02 0.71 0.16 0.25
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Table 5.4: Cumulative variance explained by eigenvalues.

Cumulative variance explained by eigenvalues
Sample 1st 2nd 3rd 4th 5th 6th
ID Eigenvalue Eigenvalue Eigenvalue Eigenvalue Eigenvalue Eigenvalue

RHR-01 67.9 85.9 94.8 97.3 99.0 99.7
RHR-02 62.4 82.7 944 98.1 99.3 99.8
RHR-04 69.1 86.0 93.6 97.5 99.9 100
RHR-10 80.9 91.1 98.2 99.1 99.4 99.7
RHR-11 54.9 73.3 88.7 96.9 98.4 99.5
RHR-14 76.2 91.9 97.8 99.3 99.7 99.9
RHR-15 72.2 84.4 93.3 97.9 99.6 99.9
RHR-16 68.2 84.2 924 97.0 98.9 99.7
RHR-18 67.2 814 91.5 99.1 99.9 100
RHR-21 66.6 88.1 94.1 98.3 99.7 100
RHR-22 67.8 87.4 96.3 99.8 100 -

RHR-24 78.8 91.6 95.4 98.0 99.4 99.8

the eigenvalues for each sampling location provides confidence that I have cor-
rectly identified the required number of end-members and dimensionality of the

mixing subspace.

Table 5.5 shows the correlation coefficients and p-values of the relation-
ship between the original and reconstructed stream chemistry for each sampling
location. Overall, stream chemistry is predicted very well using the selected end-
members with 76% of reconstructions showing significant correlation (p <0.05)
with original stream chemistry. EC, Ca?*, Mg?*, and Na* showed the best re-
constructions, with 91% of reconstructions using only these four tracers showing
significant correlation (p <0.05) with original stream chemistry. This suggests
that Ca?*, Mg?*, and Na™ are useful descriptors of the dominant bedrock weath-
ering minerals, consistent with the mineralogy of the mountain block described

in Chapter 2.

Figure 5.4 shows the spatial and temporal EMMA results for each sam-
pling location, with end-members converted to the subjective classification given

in Table 5.2. Groundwater and soil water end-members were chosen consistently
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Table 5.5: Correlations between reconstructed and orignal stream chemistry
for a 2D, three end-member mixing model. Statistically significant correlations
of p <0.05 are indicated by bold entries. R> >0.70 shows a well-posed model
and are indicated by shaded entries. Dashed entries indicate the tracer was not
selected from the PCA. R? is the coefficient of determintation (goodness of fit)
and p describes the statistical significance of the correlation.

2+ 2+ +
Sample ID EC (uS/cm) Ca Mg Na

R? p R? p R? p R? p

RHR-01 0.88 0.0004 | 0.85 | 4.91E-05 | 0.77 | 0.0004 0.44 0.03

RHR-02 0.99 | 1.15E-10 | 0.91 | 4.91E-06 | 0.90 | 8.35E-06 | 0.76 0.0005

RHR-04 0.87 | 2.54E-10 | 0.74 | 0.0007 | 0.77 | 0.0004 0.68 0.002

RHR-10 0.79 0.0003 | 0.74 | 0.0008 | 0.27 0.12 0.78 0.0003

RHR-11 0.89 | 1.06E-05 | 0.88 | 1.57E-05 | 0.04 0.57 - -

RHR-14 0.81 0.0001 | 0.72 0.001 0.98 | 2.09E-09 | 0.57 0.009

RHR-15 0.94 | 4.24E-07 | 0.87 | 2.11E-05 | 0.79 | 0.0002 | 0.78 0.0003

RHR-16 0.96 | 5.65E-08 | 0.94 | 4.43E-07 | 0.49 0.02 0.67 0.002

RHR-18 0.69 0.002 0.64 0.004 - - 0.74 0.001

RHR-21 0.91 | 4.72E-06 | 0.81 | 0.0002 | 0.98 | 8.62E-10 | 0.40 0.045

RHR-22 0.41 0.04 0.40 0.04 0.20 0.19 0.42 0.04

RHR-24 0.39 0.046 0.10 0.37 0.87 | 2.63E-05 | 0.81 0.0002

+ : 18 2
Sample ID K Si0; 0-°0O 0H
R? p R2 p R? p R? p
RHR-01 0.19 0.20 0.16 0.25 0.29 0.10 0.15 0.27
RHR-02 - - 0.04 0.58 0.81 | 0.0002 - -

RHR-04 0.59 0.007 0.48 0.02 0.01 0.82 0.13 0.29

RHR-10 0.01 0.79 0.47 0.02 0.44 0.03 0.73 0.0009

RHR-11 0.001 0.92 0.85 | 4.62E-05 | 0.66 0.003 0.31 0.09

RHR-14 0.29 0.10 0.32 0.08 0.78 | 0.0004 0.89 | 1.21E-05

RHR-15 0.80 0.0002 - - 0.67 0.002 0.18 0.21
RHR-16 0.84 | 6.82E-05 | 0.49 0.02 0.53 0.01 0.03 0.64
RHR-18 0.39 0.046 0.42 0.04 - - 0.91 | 4.30E-06

RHR-21 0.68 0.002 0.75 | 0.0006 | 0.02 0.67 0.003 0.87

RHR-22 0.87 | 2.38E-05 | 0.45 0.03 0.47 0.02 0.27 0.12

RHR-24 0.36 0.06 0.70 0.001 0.79 | 0.0002 0.51 0.02
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for each sampling location, with precipitation (winter and spring) and direct
snowmelt recharge (PCAPS) making up only 11% of the selected end-members.
Summer precipitation was not a viable choice for any of the sites, consistent
with stable isotopic data presented in Chapter 3. In addition, U-Space projec-
tions of effluent from the Taos Ski Valley sewage treatment plant did not plot
near any of the stream sites, providing evidence that anthropogenic contamina-
tion is not likely to be responsible for geochemical changes in the surface wa-
ter system. Moderately-evolved, evolved, and very-evolved groundwater end-
members were selected for all but the two highest elevation surface water sites,
with more evolved groundwater end-members being selected for lower elevation
sites. The other two end-members identified for each site were usually soil water

and very immature water (e.g., RHS-10 and PCAPS).

The most common end-member chosen for the very immature water clas-
sification was RHS-10, a diffuse spring that was only sampled once in late June
2013 due to poor accessability. Although it was classified as immature water due
to its overall geochemistry, RHS-10 does have elevated silica concentrations com-
pared with the rest of the end-members in that group; however, its isotopic com-
position is very similar to snowmelt. It would appear that this spring may not
have a long mean residence time based on its geochemical composition; how-
ever, the landowner has stated that the spring is perennial and discharge from
the spring is consistent throughout the year (Roger Pattison, personal commu-
nication). This observation is corroborated by the existence of a V-notch weir
located just below the spring outlet that was installed by the Village of Taos Ski
Valley. Other springs in the watershed do not exhibit much temporal geochem-
ical variability (typically <10% variation from the mean for a given solute). If
RHS-10 behaves similarly to the other springs it could indicate that its flowpath
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residence time is being underpredicted by its relatively dilute geochemistry. This
would not significantly alter any of the patterns present in the EMMA results,
but would indicate that very rapid overland or subsurface flow is not a signifi-

cant contributor to streamflow.

One pattern that is apparent from Figure 5.4 is the increase in the propor-
tion of the most evolved end-member for most locations after the snowmelt pulse
(late May-Early June 2012). During the snowmelt pulse, groundwater contribu-
tions are small relative to other sources of water, most likely being masked by the
relatively dilute geochemisty of the snowmelt. As the snowmelt pulse subsides,
realtive groundwater contributions continue to increase until the next snowmelt
season. For most sample locations, the least geochemically evolved end-member
(typically very immature water) is the first to decrease its contribution to stream-
flow, followed by the second most geochemically evolved (typically soil water or
moderately evolved groundwater). This suggests there are three main flowpath
categories contributing to streamflow, each having very different residence times.
Conceptually these are likely represented (in order of increasing residence time)
by flow through 1) soil macropores or coarse talus slopes that are prevalent in the
watershed, 2) soil horizons or the soil-bedrock interface, and 3) bedrock fractures
that make up the deeper groundwater flow system. During and immediately af-
ter the snowmelt pulse, flow through soil macropores or coarse talus slopes is
the dominant source of water to streamflow. After the snowmelt pulse subsides,
this source is depleted and most of the streamflow generation results from soil
and deep groundwater sources. As the year progresses, the soil zone becomes in-
creasingly depleted and deep groundwater from bedrock fractures becomes the
dominant source of streamflow. This process is consistent with the 3D concep-
tual model proposed by Frisbee et al. (2011) since fluid fluxes from groundwa-
ter sources are not changing their relative contributions to streamflow. In other
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words, during the transitions from snowmelt season to summer monsoon, and
from summer monsoon to autumn baseflow, the relative contribution from deep

groundwater becomes a larger proportion of streamflow.

The other trend consistent with the 3D conceptual model is the increasing
contributions from more evolved groundwater with increasing scale. Figure 5.5
shows the relative contributions from the most evolved end-members for three
locations along the main stem of the Rio Hondo ranging from 2234 to 2867 m.
The highest elevation site (RHR-10) shows moderately evolved groundwater as
the most evolved end-member, with contributions averaging 32% for all sam-
ples. Groundwater contributions to RHR-15 are slightly higher, averaging 38%,
but there is a change to a more evolved groundwater component. The lowest el-
evation site (RHR-01) also shows evolved groundwater as the most mature end-
member, with average groundwater contributions increasing to 50%. Not only
is the groundwater evolving as it moves through the mountain block, but the
stream integrates more of these deep flowpaths as it travels from the headwaters
to the basin outlet. This deep groundwater signal is masked during the snowmelt
season, as the smallest relative contribution of deep groundwater was observed
during the peak of snowmelt (Figure 5.5), as expected. Structured subsurface con-
tributions to the stream appear to be well developed at location RHR-18, where
the catchment has grown to 8.3 km? (see Figure 5.4). This is on the same order of
basin size that Wolock et al. (1997) observed that stream chemistry did not change
significantly with increasing scale. Here in the Rio Hondo watershed, however,
my data suggests that structured trends in groundwater contributions begin to

appear at that small scale.
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Figure 5.5: Relative contribution of most evolved groundwater end-member and
average daily streamflow measured at USGS gauging station (08267500). Lower
elevation sites show more evolved groundwater contributions as well as a greater
proportion of more mature waters.
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5.4 Conclusions

Geochemical and isotopic separations of streamflow using EMMA show
that a large proportion surface water in the Rio Hondo is derived from subsur-
face flow paths, and these contributions remain important even during the peak
of the snowmelt season. The positive correlation between upstream contributing
area and stream solute concentrations presented in Chapter 3 can be explained
by increasingly more evolved deep groundwater discharing to surface water and
an increase in the relative contribution from these deep groundwater sources as
basin drainage area increases. The geochemical patterns observed in the Rio
Hondo are similar to those reported by Frisbee et al. (2011) for the Saguache
Creek watershed and suggest that flowpaths in the watershed are best explained
by the 3D conceptual model. This also indicates that the 3D conceptual model is
transferrable to at least one other high-elevation watershed with different geol-

ogy, climate, drainage area, and human impacts.

One substantial difference between the patterns observed in the Rio Hondo
and Saguache Creek watersheds is the development of ordered deep groundwa-
ter contributions at the scale of square kilometers in the Rio Hondo instead of
hundreds of square kilometers as in Saguache. This is likely due to the steep to-
pography of the Rio Hondo which would allow for deeper, more localized flow-
paths to develop (T6th, 1963; Gleeson & Manning, 2008; Harding, 2012). To-
pography is likely a first-order control on the hydrologic system while geology,
climate, and human development are not. Although not explored in the study,
the bedrock effective hydraulic conductivity is likely another first order control

on the scale and quantity of deep groundwater discharged to streamflow.
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Increasing average surface temperatures are expected to reduce snowpack
as well as cause earlier and more intense snowmelt, resulting in decreased in-
filtration of spring precipitation and evolved snowmelt that has been shown to
be a large contributor to waters within the basin (Chapter 3). Shorter residence
time waters are more likely to respond rapidly to changes in climate, while this
same signal may not propogate to long residence time flowpaths for some time.
This would result in a greater relative contribution from longer residence time
flowpaths (i.e., deep groundwater) as short residence time reserviors (i.e., sur-
face runoff and the soil zone) become depleted due to decreased recharge (and
potentially increased ET). Baseflow may be sustained at or near current levels
throughout the summer when it is needed most, as deep groundwater appears
to be the major contributor to streamflow later in the year. This is important for
the Rio Hondo watershed since about 90% of the water used in the area is sur-
face water (DBS&A, 2008). Flows would not be sustained indefinitely, but may
provide enough time for adaptive management strategies to be implemented.
This deep groundwater component of streamflow has now been identified in two
high-elevation mountain watersheds having very different drainage areas, geol-
ogy, and topography, and indicates observed geochemical patterns are process

based and not unique to a single system.
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CHAPTER 6

SYNTHESIS AND CONCLUSIONS

This thesis has sought to provide a greater understanding of how stream-
flow is generated in a fractured crystalline bedrock watershed at the basin scale.
Multiple methods, including isotopic, geochemical, age dating, and streamflow
separation techniques were used to test the transferability of a conceptual model
developed by Frisbee et al. (2011) for a watershed having different geology, scale,
topography, climate, and human impact. This chapter seeks to synthesize results
from the previous chapters to provide a holistic view of basin scale watershed
processes. In addition, lessons learned from this project and recommendations

for future work are also provided.

Stable isotopic results for 180 and ?H indicate that nealy all waters in the
Rio Hondo are sourced from winter and spring precipitation, despite only about
one-third of annual precipitation falling during that period. This is consistent
with results from other stable isotopic studies conducted in the southwestern U.S.
that show importance of seasonality on groundwater recharge (Cunningham et
al., 1998; Winograd et al., 1998; Blasch & Bryson, 2007). Streamflow separations
using End-Member Mixing Analysis (EMMA) also indicate that summer precip-
itation is not a significant direct contributor to surface water, as it was only se-
lected as an end-member for one sampling location (RHR-16) and even then it

was not a very good fit. Since isotopic values are stable for nearly all sampling
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locations, waters must be stored in the subsurface below the rooting depth where
they are not subject to evapotranspiration processes or mixing with summer pre-
cipitation before they are discharged to the stream. This suggests a minimum
residence time of six months for waters in the Rio Hondo during the later part of

the year, as the snowpack in the watershed has largely melted out by mid-June.

The importance of snowpack to streamflow generation has important cli-
mate change implications since increasing global surface temperatures will likely
result in less winter precipitation falling as snow and earlier onset of spring melt-
ing (Leung & Wigmosta, 1999; Cayan et al., 2001; Barnett et al., 2005). A reduction
in snowpack and earlier onset of spring melting means that the snowmelt pulse
in surface water will be routed through the system in a shorter period of time,
and baseflow will dominate through the year. While total annual flows may not
change, available water throughout summer may be reduced in the near future if
residence times in the mountain block are short. Since approximately 90% of the
water used in the area is surface water (DBS&A, 2008), this will likely have neg-
ative impacts to agricultural communities in the area as well as Taos Ski Valley,

which uses winter surface flows for snow-making operations.

Although the peak and timing of runoff is likely to be affected by climate
change, and has potential implications for damage associated with flooding, agri-
culture in the area primarily relies on streamflow during peak flow recessions
and baseflow. Data presented in Chapter 3 indicate groundwater, surface water,
and spring water all evolve along similar geochemical pathways, and that so-
lute concentrations increase with basin drainage area. Evaporative concentration
of surface waters was discounted due to no evidence of isotopic fractionation of

streamflow. Nearly all of the selected end-members from the EMMA analysis
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were subsurface sources (i.e., direct contributions of precipitation to streamflow
are minimal), and usually a mixture of geochemically immature and mature wa-
ters. Furthermore, streamflow separations showed increasingly evolved ground-
water end-members and/or increased relative contributions of the most evolved
end-member with increasing basin drainage area. All of these observations are
predicted by the 3D conceptual model developed by Frisbee et al. (2011) and
by my hypothesis of increasing deep groundwater contributions with increasing

basin drainage area.

While the trends in solute concentration and basin drainage area are simi-
lar for Saguache Creek and the Rio Hondo, they do occur at drastically different
scales. Structured groundwater contributions to Saguache Creek began at around
350 km? (Frisbee et al., 2011), whereas they appear to develop in the Rio Hondo
at approximately 5 to 8 km?. Curiously, this nearly the same scale that Wolock
et al. (1997) found stream chemistry to stabilze in the Neversink River water-
shed, which is described as a narrow valley with steep slopes, similar to the Rio
Hondo watershed. This may represent some critical basin area required to gen-

erate groundwater flow paths, or may just be coincidental.

Since groundwater appears to be the dominant source of streamflow in the
watershed after the snowmelt pulse, there should be some additional buffering
capacity against climate change if the residence time of these waters is sufficiently
long. The age dating results presented in Chapter 4 indicate that residence times
in the mountain block range from modern to possibly thousands of years old.
There also appears to be correlation of chlorofluorocarbon (CFC) age and tritium
concentration with elevation, with younger waters near the headwaters and older

waters near the mountain front. This trend is predicted by the 3D conceptual
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model and is also consistent with my hypothesis of increasing deep groundwater

contributions with increasing basin drainage area.

Mixing between young and old waters is suggested from chlorofluoro-
carbon dating results and tritium concentrations. This is supported by EMMA
results that consistently show an immature subsurface end-member along with
more mature groundwater end-members. While groundwater end-members may
be assumed to have little mixing with modern waters if a well is sufficiently deep
and properly completed, the same is not true for springs which may intercept a
portion of modern soil water at the discharge point. This complicates *C dat-
ing of springs due to the highly non-linear mixing relationship between young
and old waters that biases the mixture young. Therefore, 1*C ages collected from
springs may be a minimum age. This may also be an explanation for why nearly
all of the ages collected from the valley floor wells and springs are modern. In-
filtration of irrigation waters may have mixed with older waters to such a degree
that the radiogenic and tracer clocks were effectively reset. More detailed age-
dating and numerical modeling is required to determine the degree of buffering
potential the Rio Hondo watershed has against climate change, but these prelim-

inary results indicate there is potential for it.

The EMMA results are strong support for my hypotheses that 1) deep
groundwater contributions are a significant source of streamflow generation in
the Rio Hondo watershed, and 2) the relative contribution and/or geochemical
evolution of this deep groundwater increases with watershed drainage-area, with
significant contributions defined as being greater than or equal to 10% of the aver-
age annual flow. Deep groundwater contributions averaged about 30 to 50% in all

surface-water samples after deep groundwater was selected as an end-member,
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a much greater proportion than the arbitrary 10% selected for hypothesis testing.
In addition, lower elevation samples showed greater average contributions from
deep groundwater, as well as more evolved groundwater end-members, support-

ing my second hypothesis.

Overall, the predictions made by the 3D conceptual model are observed in
the isotopic, geochemical, age-dating, and streamflow separation results. Surface-
water solute concentrations continue to increase with increasing basin drainage
area and cannot be explained by evaporative concentration or wastewater treat-
ment plant effluent discharge. Groundwater, surface-water, and spring-water
appear to follow a similar geochemical evolutionary pathway, and waters ap-
pear to become progressively older moving towards to the mountain front. Fi-
nally, numerical streamflow separations using EMMA specifically select ground-
water end-members for nearly all sampling locations. Therefore, the conceptual
model developed by Frisbee et al. (2011) appears to be transferrable to at least one
other high-elevation mountain watershed with different geology, climate, scale,
topography, and human impacts. This indicates that groundwater flow within
mountain blocks may be much more important than previously thought, as it is
the dominant contributor to streamflow and may have residence times orders of

magnitude longer than currently believed.

Longer mean residence time of waters in high-elevation mountain basins
may provide an additional buffering capacity against climate change. Although
annual total precipitation may not change for a given geographic area, predicted
increases in temperature are likely to reduce the fraction of precipitation that falls
as snow. Data presented in Chapter 3 has shown that nearly all waters in the Rio

Hondo watershed are sourced from late season snow and spring precipitation,
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so a reduction in snowpack will likely have a large impact on recharge rates into
the mountain block. However, with mean residence times possibly on the or-
der of hundreds of years, this climate change signal may not propogate through
the system for some time, potentially buffering the Rio Hondo against climate
change temporarily. Discharge of groundwater to surface water is also depen-
dent on sufficient hydraulic gradients which are able to travel much more quickly
through the system than solutes or tracers. The steep topography of the Rio
Hondo and highly fractured allow for gravity drainage of the fractured mountain
block. Computer models would be helpful in determining if sufficiently long res-
idence times give mountain watersheds an additional buffering capacity against

climate change.

Future work that could improve on the quality of interpretations from
this study would be installation of in-stream piezometers in the Rio Hondo, de-
tailed stream gauging of the Rio Hondo and its tributaries, and greater sampling
density along the Rio Hondo. Instream piezometers would allow for the mea-
surement of vertical hydraulic gradients as well as provide another geochemical
sampling point in much greater spatial proximity to the stream than the wells
and springs currently sampled. Installation of stainless steel piezometers using
a pneumatic hammer is recommended, as manual installion of CPVC piezome-
ters using a sheath and rod type assembly failed due to the extremely rocky na-
ture of the streambed. Stream gauging would also be helpful, as we would ex-
pect streamflows to increase from the headwaters to the mountain front as a re-
sult of the increasing groundwater contributions. Greater sampling density may
also provide evidence of diffuse or concentrated groundwater inputs along the

stream:.
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Numerical modeling of the watershed would also be useful in exploring
the controls deep groundwater flow has on streamflow generation within the
mountain block. Reproduction of groundwater flowpaths though the mountain
block using realistic values of permeability and recharge rates would support our
conceptual model. The apparent importance of deep groundwater has implica-
tions for modeling mountain watersheds. Harding (2012) has demonstrated that
topographic divides and groundwater divides are rarely coincident, and there-
fore extension of model boundaries beyond the basin in question is desireable.
However, this results in increased computational costs, as well as increased data

requirements.

Understanding how high-elevation watersheds operate at larger scales is
important for better predicting how they will respond to future climate change.
Using a mountain-centered approach, rather than a valley-centered or hillslope-
centered approach will likely provide more information about the hydrologic
flow systems of high-elevation mountain watersheds operative at the watershed
scale. In some watersheds, significant contributions from old, deep groundwater
may provide some additional buffering capacity against future climate change,

at least for a limited time.
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APPENDIX C

SUMMARY OF GEOCHEMICAL ANALYTES AND
ANALYTICAL METHODS
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APPENDIX D

STABLE ISOTOPIC RESULTS
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Sample ID Sample Date 680 (%0) 62H (%o)

Ditch 9/14/12 -13.11 -91.09
EFF 3/15/13 -15.41 -86.24
EFF 10/5/12 -14.07 -90.91
EFF 9/14/12 -13.02 -91.41
EFF 8/17/12 -14.88 -91.07
EFF 7/17/12 -14.56 -93.64
EFF 6/28/12 -14.87 -92.79
EFF 6/1/12 -13.85 -95.16
EFF 5/15/12 -13.79 -92.16
EFF 5/15/12 -13.79 -92.16
ISO1 3/16/13 -19.13 -112.63
ISO1 12/18/12 -15.48 -95.05
ISO1 10/5/12 -9.26 -47.01
ISO1 7/17/12 -9.81 -47.51
ISO1 5/31/12 -12.45 -84.40
ISO1 3/23/12 -13.73 -87.20
ISO1 1/8/12 -16.31 -106.20
ISO2 3/16/13 -19.29 -114.51
ISO2 12/18/12 -13.91 -81.82
ISO2 10/5/12 -9.60 -51.46
ISO2 7/17/12 -8.99 -43.34
ISO2 5/31/12 -12.86 -86.52
ISO2 1/9/12 -15.76 -102.66
ISO3 3/15/13 -19.05 -113.68
ISO3 12/18/12 -15.86 -96.62
ISO3 10/6/12 -8.35 -42.81
ISO3 7/17/12 -7.50 -37.32
ISO3 6/1/12 -12.97 -89.07
ISO3 3/24/12 -14.13 -91.58
ISO4 3/15/13 -19.44 -114.14
ISO4 12/18/12 -16.41 -100.42
ISO4 10/6/12 -7.88 -40.31
ISO4 7/17/12 -7.52 -36.53
ISO4 6/1/12 -11.07 -74.39
ISO4 6/1/12 -11.07 -74.39
ISO4 3/24/12 -13.19 -81.29
ISO4 1/9/12 -16.24 -105.41
ISO5 3/15/13 -19.35 -114.49
ISO5 12/19/12 -15.08 -93.68
ISO5 10/6/12 -7.06 -37.32
ISO5 7/17/12 -6.23 -31.04

160



Sample ID Sample Date 680 (%0) 62H (%o)

ISO5 6/2/12 -11.83 -81.42
ISO5 3/24/12 -13.97 -92.19
ISO5 3/24/12 -13.97 -92.19
ISO5 1/9/12 -13.52 -83.88
ISO6 3/14/13 -18.23 -107.59
ISO6 12/19/12 -16.72 -104.82
ISO6 10/5/12 -6.92 -34.41
ISO6 7/16/12 -7.15 -32.08
ISO6 6/2/12 -10.60 -72.97
ISO6 3/24/12 -14.13 -90.34
ISO6 1/9/12 -13.10 -83.75
PCAPS-1 (15¢m) 6/29/13 -19.15 -123.24
PCAPS-1 (18cm) 6/29/13 -18.81 -122.46
PCAPS-1 Upper 10/20/12 -15.40 -125.68
PCAPS-1 Lower 10/20/12 -12.42 -85.19
PCAPS-2 (25-42cm) 6/29/13 -18.93 -124.58
PCAPS-2 Upper 10/20/12 -9.34 -76.78
PCAPS-2 Lower 10/20/12 -10.41 -77.83
RHAO01 7/18/12 -14.50 -93.98
RHAO01 6/29/12 -15.05 -92.44
RHAO01 6/2/12 -14.01 -95.59
RHAO01 6/2/12 -14.01 -95.59
RHAO01 5/13/12 -13.89 -93.86
RHRO1 3/14/13 -15.58 -93.43
RHRO1 11/17/12 -14.58 -92.10
RHRO1 11/17/12 -14.15 -92.50
RHRO1 10/6/12 -14.35 -92.62
RHRO1 9/15/12 -13.28 -91.88
RHRO1 8/18/12 -14.52 -91.84
RHRO1 7/18/12 -14.27 -94.36
RHRO1 6/29/12 -14.69 -92.30
RHRO1 6/29/12 -14.55 -93.33
RHRO1 6/1/12 -13.82 -95.72
RHRO1 5/13/12 -13.94 -93.69
RHRO1 3/24/12 -13.86 -93.48
RHRO02 3/14/13 -14.98 -93.32
RHRO02 11/16/12 -14.76 -91.59
RHRO02 10/5/12 -14.05 -93.40
RHRO02 9/15/12 -13.05 -92.78
RHRO02 9/15/12 -12.93 -92.95
RHRO02 8/18/12 -14.29 -91.04
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Sample ID Sample Date 680 (%0) 62H (%o)

RHRO02 7/16/12 -13.80 -93.25
RHRO02 6/29/12 -14.42 -92.25
RHRO02 6/2/12 -13.42 -94.77
RHRO02 5/13/12 -13.70 -93.17
RHRO02 5/13/12 -13.62 -93.17
RHRO02 3/24/12 -13.87 -94.06
RHRO04 3/14/13 -15.69 -92.70
RHRO04 11/16/12 -14.24 -92.20
RHRO04 10/5/12 -14.08 -92.13
RHRO04 10/5/12 -14.08 -92.13
RHRO04 9/15/12 -12.83 -91.99
RHRO04 8/18/12 -14.36 -89.89
RHRO04 7/16/12 -14.20 -92.10
RHRO04 6/29/12 -14.28 -91.51
RHRO04 6/29/12 -13.99 -92.53
RHRO04 6/2/12 -13.55 -94.16
RHRO04 5/13/12 -13.66 -92.87
RHRO04 3/24/12 -13.82 -93.55
RHR10 3/16/13 -16.03 -90.24
RHR10 11/17/12 -14.69 -90.52
RHR10 10/6/12 -14.23 -91.62
RHR10 9/15/12 -13.39 -91.60
RHR10 8/18/12 -14.33 -93.17
RHR10 7/17/12 -14.62 -94.08
RHR10 6/28/12 -14.76 -92.40
RHR10 5/31/12 -13.76 -95.00
RHR10 5/31/12 -13.76 -95.00
RHR10 5/31/12 -13.76 -95.00
RHR10 5/13/12 -14.00 -93.85
RHR10 3/23/12 -14.10 -93.68
RHR11 3/14/13 -16.59 -97.01
RHR11 11/17/12 -15.51 -97.22
RHR11 10/6/12 -15.01 -98.09
RHR11 9/15/12 -14.01 -96.91
RHR11 8/18/12 -14.46 -97.04
RHR11 7/17/12 -15.21 -98.61
RHR11 6/28/12 -15.28 -97.69
RHR11 5/31/12 -14.28 -99.37
RHR11 5/13/12 -14.38 -98.78
RHR11 3/23/12 -14.54 -97.93
RHR11 3/23/12 -14.44 -97.53
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Sample ID Sample Date 680 (%0) 62H (%o)

RHR14 3/14/13 -16.03 -91.98
RHR14 3/14/13 -16.03 -91.98
RHR14 11/17/12 -14.70 -92.99
RHR14 10/6/12 -14.55 -94.52
RHR14 9/15/12 -13.54 -94.24
RHR14 8/18/12 -14.42 -94.51
RHR14 7/18/12 -14.54 -95.24
RHR14 6/29/12 -15.25 -92.96
RHR14 5/31/12 -13.76 -95.75
RHR14 5/13/12 -13.87 -93.82
RHR14 3/24/12 -13.99 -93.29
RHR15 3/14/13 -16.20 -93.42
RHR15 11/17/12 -14.73 -93.81
RHR15 10/6/12 -14.22 -94.18
RHR15 9/15/12 -13.37 -93.60
RHR15 8/18/12 -14.41 -94.12
RHR15 7/18/12 -14.49 -95.15
RHR15 6/29/12 -14.85 -94.52
RHR15 6/1/12 -13.89 -96.38
RHR15 5/13/12 -14.11 -94.96
RHR15 3/24/12 -13.98 -93.84
RHR16 3/14/13 -15.79 -90.48
RHR16 11/17/12 -14.47 -90.34
RHR16 10/6/12 -13.68 -90.51
RHR16 9/15/12 -12.97 -88.47
RHR16 8/18/12 -14.28 -86.74
RHR16 7/18/12 -14.35 -91.81
RHR16 6/29/12 -14.78 -90.45
RHR16 6/1/12 -13.86 -94.26
RHR16 6/1/12 -13.82 -94.21
RHR16 5/13/12 -13.65 -92.00
RHR16 5/13/12 -13.65 -92.00
RHR16 3/24/12 -13.69 -90.40
RHR18 11/16/12 -13.61 -87.84
RHR18 10/6/12 -14.13 -89.38
RHR18 9/14/12 -13.21 -89.77
RHR18 8/17/12 -15.01 -91.54
RHR18 7/17/12 -14.65 -94.36
RHR18 6/28/12 -14.36 -94.06
RHR18 5/31/12 -14.11 -95.89
RHR18 5/13/12 -14.12 -93.89
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Sample ID Sample Date 680 (%0) 62H (%o)

RHR18 3/23/12 -13.84 -92.00
RHR20 7/18/12 -10.73 -71.67
RHR20 6/29/12 -8.53 -63.23
RHR20 6/1/12 -11.78 -84.74
RHR20 3/25/12 -11.77 -79.87
RHR21 3/15/13 -15.95 -92.80
RHR21 11/17/12 -14.49 -92.41
RHR21 10/6/12 -14.26 -92.44
RHR21 9/15/12 -13.35 -91.80
RHR21 8/18/12 -14.35 -92.48
RHR21 7/18/12 -14.60 -93.71
RHR21 6/29/12 -14.87 -91.60
RHR21 6/2/12 -13.91 -95.69
RHR21 5/13/12 -13.88 -93.36
RHR22 10/5/12 -13.75 -85.87
RHR22 9/14/12 -12.05 -81.77
RHR22 8/17/12 -13.49 -86.10
RHR22 7/18/12 -14.41 -89.89
RHR22 6/28/12 -14.78 -91.00
RHR22 6/1/12 -14.08 -95.76
RHR22 6/1/12 -14.08 -95.76
RHR22 5/14/12 -14.46 -95.65
RHR23 6/1/12 -13.93 -96.49
RHR23 5/15/12 -13.77 -93.24
RHR24 11/17/12 -14.83 -91.52
RHR24 10/5/12 -14.21 -93.12
RHR24 9/14/12 -13.20 -92.95
RHR24 8/18/12 -15.00 -92.54
RHR24 7/17/12 -14.83 -94.71
RHR24 6/28/12 -15.15 -92.93
RHR24 6/1/12 -13.97 -96.41
RHR24 5/15/12 -13.99 -95.37
RHROO01 3/23/12 -13.94 -95.39
RHRO02 8/17/12 -15.01 -92.01
RHRO02 7/17/12 -14.80 -94.45
RHROO02 6/28/12 -14.82 -93.76
RHROO02 6/1/12 -13.93 -96.16
RHROO02 5/14/12 -14.27 -93.86
RHROO03 6/28/12 -14.39 -94.51
RHROO03 6/1/12 -13.97 -96.16
RHROO03 6/1/12 -13.97 -96.16
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Sample ID Sample Date 680 (%0) 62H (%o)

RHROO03 5/14/12 -13.67 -92.76
RHRO04 9/14/12 -13.30 -90.55
RHRO04 7/17/12 -14.76 -94.51
RHRO04 6/28/12 -14.42 -94.40
RHRO04 6/1/12 -13.97 -96.39
RHRO04 5/14/12 -14.16 -94.29
RHRO05 10/6/12 -14.40 -93.50
RHROO05 10/6/12 -14.40 -93.50
RHROO05 9/15/12 -13.32 -92.11
RHROO05 8/17/12 -14.98 -90.98
RHRO05 7/17/12 -14.65 -94.08
RHROO05 7/17/12 -14.57 -92.82
RHROO05 6/28/12 -14.55 -93.63
RHROO05 6/1/12 -13.97 -95.42
RHROO05 5/14/12 -14.07 -95.10
RHROO05 5/14/12 -14.07 -95.10
RHRO06 6/1/12 -13.34 -91.12
RHRO06 5/15/12 -13.70 -89.97
RHROO07 3/15/13 -17.04 -100.02
RHS01 3/15/13 -15.72 -91.95
RHS01 11/17/12 -14.83 -91.05
RHS01 10/6/12 -14.34 -92.91
RHS01 9/15/12 -13.38 -92.33
RHS01 8/18/12 -14.35 -93.27
RHS01 7/18/12 -14.74 -94.15
RHS01 6/29/12 -15.02 -92.69
RHS01 6/2/12 -13.72 -94.94
RHS01 6/2/12 -13.72 -94.94
RHS01 5/13/12 -13.95 -93.60
RHS01 3/24/12 -14.12 -94.26
RHS01 3/24/12 -13.91 -94.19
RHS03 7/18/12 -10.48 -72.35
RHS03 6/29/12 -10.15 -73.01
RHS03 6/1/12 -11.42 -82.71
RHS03 5/12/12 -12.31 -83.90
RHS03 3/25/12 -10.52 -72.62
RHS04 3/16/13 -15.40 -85.36
RHS04 11/16/12 -14.36 -86.81
RHS04 10/6/12 -13.47 -88.77
RHS04 9/14/12 -13.13 -90.37
RHS04 8/17/12 -15.15 -91.58
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Sample ID Sample Date 680 (%0) 62H (%o)

RHS04 7/17/12 -14.65 -94.15
RHS04 6/28/12 -14.19 -94.82
RHS04 5/31/12 -14.08 -96.13
RHS04 5/13/12 -13.64 -93.08
RHS04 3/23/12 -13.78 -91.52
RHS05 3/14/13 -15.97 -91.75
RHS05 10/6/12 -14.54 -94.52
RHS05 9/15/12 -13.29 -94.86
RHS05 8/18/12 -14.85 -94.02
RHS05 7/18/12 -14.12 -94.89
RHS05 6/29/12 -14.74 -94.40
RHS05 5/31/12 -13.88 -95.78
RHS05 5/13/12 -14.09 -94.82
RHS05 3/24/12 -14.16 -95.00
RHS06 11/16/12 -14.57 -92.99
RHS06 10/6/12 -14.73 -93.49
RHS06 9/15/12 -13.37 -92.53
RHS06 8/17/12 -15.02 -92.34
RHS06 7/17/12 -14.43 -93.34
RHS06 6/1/12 -13.73 -95.11
RHS06 5/15/12 -14.14 -94.67
RHS07 10/6/12 -14.09 -88.40
RHS07 9/15/12 -12.69 -87.84
RHS07 8/17/12 -14.59 -87.18
RHS07 7/17/12 -14.08 -88.85
RHS08 11/16/12 -14.19 -87.56
RHS08 10/6/12 -14.08 -88.58
RHS08 9/15/12 -13.00 -87.78
RHS08 8/17/12 -14.53 -87.29
RHS08 7/17/12 -14.14 -89.15
RHS09 11/16/12 -14.74 -88.74
RHS09 10/5/12 -14.41 -92.70
RHS09 9/14/12 -13.53 -92.70
RHS09 8/17/12 -14.30 -93.33
RHS10 6/28/13 -15.52 -97.92
RHS10 6/28/13 -15.52 -97.92
RHSNOO01 3/23/12 -15.75 -106.47
RHSNOO02 5/14/12 -14.71 -100.14
RHSNOO03 5/14/12 -13.26 -88.88
RHSNOO04 5/14/12 -13.19 -87.93
RHSNOO05 5/15/12 -13.15 -88.23
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Sample ID Sample Date 680 (%0) 62H (%o)

RHSNOO05 5/15/12 -13.15 -88.23
RHWO02 3/14/13 -15.45 -94.06
RHWO02 10/6/12 -14.51 -96.72
RHWO02 9/15/12 -13.68 -95.56
RHWO02 8/18/12 -14.80 -95.32
RHWO02 7/18/12 -14.78 -96.20
RHWO02 6/28/12 -14.18 -95.84
RHWO02 6/2/12 -13.92 -97.08
RHWO02 6/2/12 -13.92 -97.08
RHWO02 5/14/12 -14.11 -96.02
RHWO2 3/24/12 -14.19 -97.00
RHWO05 3/14/13 -15.48 -91.63
RHWO05 10/5/12 -14.00 -94.78
RHWO05 9/14/12 -12.95 -94.51
RHWO05 8/17/12 -14.45 -93.74
RHWO05 7/17/12 -14.16 -95.52
RHWO05 6/29/12 -14.46 -93.67
RHWO05 6/1/12 -13.38 -96.35
RHWO05 5/15/12 -13.61 -95.03
RHWO05 3/25/12 -13.54 -94.59
RHWO6 3/14/13 -14.91 -94.51
RHWO06 10/6/12 -14.68 -96.16
RHWO6 10/6/12 -14.68 -96.16
RHWO06 9/15/12 -13.42 -95.52
RHWO06 8/18/12 -15.12 -95.06
RHWO06 7/17/12 -14.65 -97.25
RHWO06 6/28/12 -14.89 -96.06
RHWO6 5/31/12 -13.94 -98.28
RHWO06 5/31/12 -13.94 -98.28
RHWO06 5/13/12 -13.86 -96.87
RHWO06 3/24/12 -14.34 -96.22
RHW10 3/15/13 -14.45 -85.61
RHW10 10/6/12 -13.10 -88.96
RHW10 9/15/12 -12.05 -88.58
RHW10 8/18/12 -13.39 -88.28
RHW10 7/18/12 -13.25 -89.53
RHW10 6/29/12 -13.41 -86.67
RHW10 6/2/12 -12.40 -90.48
RHW10 5/13/12 -12.34 -89.47
RHW10 3/24/12 -12.55 -88.65
RHWI11 10/5/12 -13.62 -91.63
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Sample ID Sample Date 680 (%0) 62H (%o)

RHWI11 9/14/12 -12.60 -90.58
RHWI11 8/17/12 -14.11 -90.18
RHW11 7/17/12 -13.96 -91.72
RHW11 6/29/12 -14.08 -90.00
RHWI11 5/15/12 -13.16 -91.77
RHWI11 5/15/12 -13.16 -91.77
RHWI11 3/25/12 -13.34 -90.95
RHW12 3/16/13 -16.26 -92.09
RHW12 9/14/12 -13.65 -95.24
RHW12 8/17/12 -15.38 -94.26
RHW12 7/17/12 -14.59 -96.87
RHW12 6/28/12 -15.07 -94.31
RHW12 6/28/12 -14.17 -95.74
RHW12 5/31/12 -14.05 -97.26
RHW13 3/14/13 -15.78 -94.65
RHW13 3/14/13 -15.78 -94.65
RHW13 9/15/12 -13.59 -96.85
RHW13 8/18/12 -15.04 -96.24
RHW13 7/16/12 -14.90 -97.70
RHW13 6/28/12 -14.79 -96.79
RHW13 6/28/12 -14.58 -96.83
RHW13 6/2/12 -14.10 -98.57
WLO1 10/5/12 -12.67 -80.13
WLO01 9/14/12 -11.55 -78.86
WLO01 8/17/12 -12.87 -80.17
WLO01 7/18/12 -13.56 -84.55
WLO01 6/28/12 -14.29 -88.99
WLO01 6/1/12 -13.96 -95.51
WLO01 5/14/12 -13.74 -91.83
WLO02 10/5/12 -13.73 -85.95
WL02 9/14/12 -12.21 -82.39
WL02 8/17/12 -14.26 -84.93
WL02 7/18/12 -14.61 -91.55
WL02 6/28/12 -15.03 -93.06
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APPENDIX E

GEOCHEMICAL PLOTS
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APPENDIXF

RESULTS FROM END-MEMBER MIXING ANALYSIS
STREAMFLOW SEPARATIONS
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Figure F.1: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-01.
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Figure F.2: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-02.
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Figure E.3: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-04.
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Figure F.4: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-010.
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Figure F.5: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-11.
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Figure F.6: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-14.
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Figure E.7: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-15.
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Figure F.8: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-16.
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Figure F.9: U-space projection showing mixing sub-space and time series of rela-
tive contributions from selected end-members for RHR-18.
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Figure F.10: U-space projection showing mixing sub-space and time series of rel-
ative contributions from selected end-members for RHR-21.
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Figure F.11: U-space projection showing mixing sub-space and time series of rel-
ative contributions from selected end-members for RHR-22.
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Figure F.12: U-space projection showing mixing sub-space and time series of rel-
ative contributions from selected end-members for RHR-24.
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APPENDIX G

AGE DATING RESULTS SUMMARY
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