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ABSTRACT

High-speed stereo focused shadowgraphy visualizes fragment projections
resulting from reactive material specimens undergoing high-velocity impacts on
a steel anvil. The diverging light in the conical sections of the stereo shadow-
graph systems intersect at a test section at the impact point and allows for the
depth information of the incident projectile and the resulting fragments to be ex-
tracted. Image segmentation techniques allow for centroids and pixel areas to be
extracted for fragments in each camera view. Two-dimensional Kalman filtering
and assignment algorithms were applied for simultaneous tracking in each cam-
era view for a series of high-speed images. The identification of the same frag-
ments in each camera view was determined via the exploitation of the epipolar
geometry defined from the orientation of the shadowgraph systems. The trian-
gulation of the fragment trajectories from each camera view is used to reconstruct
the three-dimensional trajectory for each fragment. Fragment sizes are estimated
via equivalent spherical diameter assumptions and to each tumbling fragment.
Bivariate histograms describing the result of the fragmentation behavior of the
impact-fragmented RM projectiles are constructed from the simultaneously mea-
sured fragment sizes and three-dimensional velocities.

Keywords: Stereo Shadowgraphy, Kalman Filter, Impact-Fragmentation, 3D re-
construction, Image segmentation
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NOTATION, NOMENCLATURE, AND ABBREVIATIONS

Chemistry

Al Aluminum

Bi2O3 Bismuth(III) oxide

RM Reactive Material

W Tungsten

Other Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

BOS Background Oriented Schlieren

CMOS Complementary Metal Oxide Semiconductor

DIA Dynamic Image Analysis

DIC Digital Image Correlation

PIV Particle Image Velocimetry

PTV Particle Tracking Velocimetry

TMD theoretical maximum density

Variables

A transition matrix

B control matrix

H measurement or observation matrix

I Identity matrix

K Kalman Gain factor

P′ measured image position coordinate in camera 2



Pk−1 a priori state error covariance at time step k-1

Pk a posteriori state error covariance at time step k-1

P measured image position coordinate in camera 1

Q estimate or process noise covariance matrix

Rk measurement noise covariance matrix

u control input

xk a posteriori state estimate at time k

xk−1 a priori state estimate at time step k-1

xmeas measurement vector

zres measurement residual

δApx uncertainty with respect to pixel area

δCs uncertainty with respect to spatial calibration scale

δde uncertainty with respect to equivalent spherical diameter

δdpx uncertainty with respect to equivalent diameter in mm

δp uncertainty with respect to distance in pixels

δrpx reprojection error

∆t time interval between measurements

δt uncertainty with respect to time

δv3D uncertainty with respect to 3D velocity

δxs uncertainty with respect to scale distance

δx3D uncertainty with respect to the x 3D distance

δy3D uncertainty with respect to the y 3D distance

δz3D uncertainty with respect to the z 3D distance

ẋ x velocity in state estimate

ẏ y velocity in state estimate

ϵy refractive angle

∂n change in refractive index



∂x change in the horizontal spatial component

∂y change in the vertical spatial component

∂z change in the depth of the refraction object

σx x measurement error standard deviation

σy y measurement error standard deviation

P̂′ reprojected image position coordinate in camera 2

P̂ reprojected image position coordinate in camera 1

Apx pixel area

Cc Camera Coordinate System

Cs spatial calibration scale

d(∗, ∗) Euclidean distance between two points

D′ diameter of field of view at position of refractive object

de equivalent spherical diameter in mm

dpx equivalent spherical diameter in mm

e′ epipole in opposite camera

hi image height

ho object height

l′ epipolar line in opposite camera

L′ length from refractive object to camera

Li object image

Lo object distance

Ltotal length from lens to camera

OA Optical center of the camera A

OB Optical center of the camera B

Oc Optical center of a camera

Ow Optical center for world coordinate system



Pc Coordinate of a 3D point in the camera coordinate system

Pw Coordinate of a 3D point in the world coordinate system

v3D 3D velocity

Wc World Coordinate System

x1 An x coordinate for the Camera 1 image

x2 An x coordinate for the Camera 1 image

xA 2D vector position point in the camera A

xk x position in state estimate

xs scale distance in mm

y1 An x coordinate for the Camera 1 image

y2 An x coordinate for the Camera 1 image

yk y position in state estimate

C reprojection error cost function

D diameter of lens

e epipole

F Fundamental Matrix

f focal length

k time step

l epipolar line

L length from lens to refractive object

m magnification

n refractive index

p distance in pixels

R rotation matrix

S refractive object

T translation matrix

x x direction in schlieren diagram

y y direction in schlieren diagram



CHAPTER 1

INTRODUCTION

1.1 Reactive Materials and Fragmentation Behavior

Traditional munition cases are made of steel which is fragmented and accel-
erated outward during detonation. Although these steel fragments can deliver
kinetic energy and impulse to a target, there is a desire to increase the energy
delivered to the target. One method to enhance the energy on target is to replace
the steel case with a material that will impact a target and then combust. Reactive
materials (RMs) is a modern term for these sort of combustible materials that can
enhance energy delivery in munition systems.

Reactive materials are consolidated powder specimens that are pressed into
spheres, cubes, or cylinders to be used as projectiles. The projectiles may be com-
prised of a single metal such as aluminum [1, 2] or be a composite consisting
in multiple metals such as bi-metallic composites of aluminum and tungsten[3]
or other composites such as Al:PTFE[4, 5] for example. Most published studies
have focused on single component consolidated powder RM specimens, includ-
ing aluminum spheres [1, 2, 6] and cylinders [7] and zinc cylinders [8].

Fragmentation behavior of reactive materials is an active area of research
to improve combustion and kinetic energy of small fragments [9, 10, 11]. Most
studies explore fragmentation from high velocity impact tests [1, 2, 6, 8]. Many
of these studies are performed via high velocity impacts of RM projectiles on
thin metallic plates [1, 2, 6, 7, 8] or an anvil [7]. RM specimens are frequently
accelerated to high velocities using via gun-launch using either gas guns [6, 7, 8]
or powder guns [1, 2, 4]. During high-velocity impact, strain rates often induce
brittle material behavior in the reactive materials due to dynamic loading [1, 7, 8,
12].

1.2 Schlieren and shadowgraph imaging

Refractive imaging techniques are utilized for visualization of the refraction
of light rays through a medium. Schlieren imaging is a refractive imaging tech-
nique used to visualize the refractive index gradient of a medium [13]. Figure 1.1
is a diagram of a typical focused-schlieren setup in which a collimated light beam
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Light ray curvatures are defined by

∂2x
∂z2 =

1
n

∂n
∂z

(1.1)

in which n is the refractive index, x is a horizontal spatial component, y is a ver-
tical spatial component, and z is the depth of the refraction object in the optical
test section. The integrated form represents the schlieren visualization of the first
derivative of the refractive index

ϵx =
1
n

∫
∂n
∂x

∂z (1.2)

where ϵy is the refractive angle in x direction, pictured in Figure 1.1. Traditional
focused shadowgraph and schlieren imaging utilizes a parabolic lens to collimate
light from a point source which is then refocused with a second parabolic lens to a
focal point. The collimated light beam constitutes the optical test section in which
a schlieren object causes changes in a refractive index field. Schlieren images
visualize refractive index gradients using a knife edge placed at the focal point
such that the light is bent toward the high refractive index or higher density in the
test section. Schlieren images visualize variations in refractive index as variations
of grayscale intensity in the final image.

Figure 1.1: A diagram of the traditional focused-schlieren setup using two lenses
to achieve a collimated light beam.

Shadowgraph imaging is a refractive imaging technique used to visualize
the Laplacian, or the second derivative, of the refractive index field in a medium.
This form of refractive imaging is useful for visualizing sharp disturbances and
changes in the refractive index, such as shockwaves and turbulent structures, and
gas discontinuities in the test section. A typical focused-shadowgraph system is
the same as a schlieren imaging system setup but without the knife-edge. The
parallel light in the test section of a traditional focused-shadowgraph system al-
lows for true projections of for size analysis of objects via spatial calibration of
the optical diagnostics section. The parallel light, however, does preclude three-
dimensional (3D) positional measurement of the the same objects.
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Non-parallel light refractive imaging techniques are desirable for obtaining
3D positions of the objects in the test section. Existing projective refractive imag-
ing techniques include retroreflective shadowgraphy and background oriented
schlieren [14], which are generally better suited to larger scale, far field fluid flow
visualization than focused-shadograph and focused-schlieren techniques. Back-
ground oriented-schlieren (BOS) is a form of schlieren that is ideal for refrac-
tive imaging at significantly larger scales compared to the previously mentioned
shadowgraph and schlieren techniques. BOS utilizes image processing, includ-
ing background subtraction and image correlation techniques, to visualize refrac-
tive disturbances via their distortion to a background pattern. Three-dimensional
reconstruction of shockwaves has been successfully performed via background-
oriented schlieren imaging [15]. Although BOS allows the reconstruction of three-
dimensional position, the limited pixel resolution of high-speed cameras and im-
age processing needs of BOS makes it insufficient for the fragment measurements
desired here.

Retro-reflective shadowgraphy differs from focused-shadowgraphy in that it
does not utilize a collimated light beam. Instead it has a light source aligned with
the optical axis of camera placed a distance from a retroreflective screen, taking
advantage of the diverging light rays of the light source to project shadows of the
refractive objects between the light source and the screen. The same setup can be
achieved with a single parabolic lens, where the light source and camera are each
positioned at twice the lens focal length. This single lens setup is shown in Fig-
ure 1.2 and allows better illumination efficiency that typical retroreflective shad-
owgraphy. The reconstruction of turbulent gases using stereo focused-schlieren
(dual-lens) and retro-reflective shadowgraph imaging has been successfully im-
plemented [16], which motivates the work of applying a stereo-shadowgraph
(single-lens) imaging technique for determining the 3D positions of fragments
with a narrower field of view.

Figure 1.2: A diagram of the single-lens shadowgraph setup with diverging and
converging light sections.
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1.3 Digital Image Processing

Images are captured on the high-speed CMOS (Complementary Metal Oxide
Semiconductor) camera sensor in the shadowgraph imaging system. The num-
ber of photons that impact the sensor yields the pixel intensity. Color images are
created using a Bayer filter pattern over an image sensor [17]. Images taken by
color cameras are constructed from three color planes, or multiple pixel intensity
matrices. A Bayer filter is an arrangement of individual pixel color filters over a
grid of photosensors that construct the CMOS sensor. Each color filter registers a
pixel intensity count that only allows a small range of light bandwidths to pass
through, in either red, green, and blue light frequencies. Color images must in-
terpolate each color plane and combine them to construct a desired color image
due to the arrangement of color filter mosaic. The exposure of an image is set by
the exposure time, or the time that a camera sensor is active. In the case of high
speed cameras, this is usually an electronic equivalent to the mechanical shutter
of traditional cameras. Proper image exposure is applied in high-speed imaging
techniques to mitigate motion blur of objects.

Digital images are matrices filled with intensity values associated with each
pixel in the camera sensor. The intensity values are quantized (or digitized) by
the camera in the sampling process. Digital image processing techniques are uti-
lized to obtain quantititative and qualitative features within the image and act
on matrices of pixel intensities. Threshold-based image segmentation techniques
may use global thresholds or varying thresholds based on windows of nearby
pixels or statistical methods to apply thresholds when binarizing a grayscale im-
age [18]. Binarized images can label clusters of pixel regions with unique mor-
phological parameters, including pixel area, centroids, bounding boxes, etc [18].
Applying spatial calibration techniques of measuring the pixel width of an object
of a known size within the optical diagnostics section allows for size analysis of
other objects travelling within the same test section.

1.4 Computer Vision and Three-Dimensional Reconstruction

To obtain depth information of objects, an optical system requires diverging
light rays and multiple cameras. Reconstruction of shapes requires several cam-
eras, or camera views, to achieve tomographic reconstruction or via structure
from motion [19]. Stereo calibration of two cameras would allow for epipolar ge-
ometry as well as extrinsic and intrinsic properties that define the camera setup in
relation to the objects being imaged. Transformations between the camera coordi-
nate system Cc and the world coordinate system Wc are defined via the projective
geometry described by the extrinsic parameters of the translation T of the optical
center from the origin of the world coordinates and the rotation R of the image
plane [20]. They define the location and orientation of the camera with respect to
the world frame. This gives a position of the focal plane in the world coordinate
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system. For a point P in 3D space, the camera coordinate system is represented
by

Pc = R(Pw − T), (1.3)
where the external world coordinate system defines the point Pw, and is defined
by a rotation matrix

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (1.4)

and the translation matrix

T = Ow − Oc =

T1
T2
T3

 (1.5)

which are determined from the stereo calibration process [20].
The intrinsic parameters are necessary for performing the transformation be-

tween the camera coordinate system Cc and pixel coordinates in the image frame
and include the the focal length f , the principle point, pixel sizes [20]. The epipo-
lar geometry defined by the stereo calibrated cameras is described by the epipoles
e and e′ as well as the epipolar lines l and l′, which all lie in the same plane, the
epipolar plane [19]. These can be visualized in the image planes associated with
each camera, as shown in Figure 1.3. The epipoles are points of projection of cam-
era center into the plane of the opposite camera. The epipolar lines are lines in an
image plane corresponding to points in the other plane aligned with the optical
center [19].

(a) (b)

Figure 1.3: Reprojection error minimization is based on the distances of measured
and estimated reprojected points in (a) camera view 1 and (b) camera view 2.

The epipolar geometry shows the relationship of points in one image and
their respective epipolar lines from the points in the other camera using the equa-
tion

l′ = FP (1.6)
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where F is the fundamental matrix determined from the stereo calibration pro-
cess, l′ is the epipolar line in one camera, and P is the a point representing an
image point in the other camera view [19] with a zero value in the third coordi-
nate place. The fundamental matrix F is a 3×3 matrix which maps corresponding
points between stereo images and is determined via the eight-point algorithm.
The eight-point algorithm is a computer vision algorithm used to perform stereo
calibration based on a set of correspondences, or uniquely identifiable points be-
tween two images [21]. The multiplication of the point and the fundamental
matrix result in a vector often extrapolated to a line.

The triangulation of an object’s three-dimensonal position is performed by
minimizing the projected error while satisfying

P̂′FP̂ = 0 (1.7)

as described by Hartley and Zisserman [19] by minimzing the respective dis-
tances of the measured positions and estimated positions as shown in Figure 1.3.
The reprojection error is the calculated via the geometric error error cost function

C(X) = d(P, P̂)2 + d(P′, P̂′
)2 (1.8)

in which d(∗, ∗) is the Euclidean distance operation applied to the measured im-
age position coordinates P and P′ with the reprojected image position coordi-
nates P̂ and P̂′, as described by Hartley and Zisserman [19] and shown in 1.3. It
is minimized by providing numerous paired images of unique orientations of a
calibration target such that a sufficient number of correspondences can be made.

1.5 Velocimetry Techniques

Comparisons of the existing velocimetry techniques influenced the approach
to tracking fragments in this work. Particle Tracking Velocimetry (PTV) tech-
niques differ from Particle Image Velocimetry (PIV) techniques in that the for-
mer is focused on measuring fragment velocities via tracking individual, discrete
particles in motion [22]. The latter is focused on estimating the displacement of
clusters of particles from correlated displaced windows in pairs of images [22]. A
typical methodology for measuring residual velocities of fragments for reactive
materials penetrating through thin impact plates is via high-speed video [7, 8].
Efforts to apply in-situ optical diagnostics to perform fragmentation studies for
explosive casings [23] and other high velocity impacts in non-RM related studies
are active areas of research. Guildenbecher et al. [23] performed 3D optical diag-
nostics on warhead casings of a known thickness to aid sizing and utilized stereo
digital image correlation (DIC) techniques for performing tracking of fragments.
Shadowgraph and Kalman-Filter based PTV efforts have been performed [3, 4, 5]
for the explosive launch of RMs.
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PTV techniques favor relatively larger particle sizes than those observed in
PIV; hence the applicability of each favors discrete particles or bulk particle move-
ments of tracer particles, respectively. A typical PIV setup requires a laser sheet
and a camera capable of capturing pairs of images with a desired time interval
between pulses to perform post-processing techniques and track bulk displace-
ments of particles illuminated by the laser sheet intersecting the flow field. Simi-
lar PTV techniques have been performed with a laser sheet as well [24, 25]. Other
forms of PIV, including volumetric PIV, requires at least three cameras to measure
3D velocity fields of particles.

1.6 Kalman Filtering

Kalman filtering has been previously applied to track individual objects [26]
and for multiple object tracking methods [27, 28]. Linear Kalman filters are used
in this work for their simplicity in execution but also because the alternative par-
ticle filters, or extended Kalman filters are more appropriate for estimating or pre-
dicting non-linear behavior [26]. The Kalman filter generates optimal estimates
for state variables of a system by iteratively comparing estimates to measure-
ments with the assumption of Gaussian noise for each object state [26, 29]. Tra-
jectories and velocities of individual fragments can be estimated by iteratively
comparing estimates of positions of the fragment from an equation of motion
to the observed centroids of fragment projections from the digital image process.
Multiple object tracking methods and velocimetry methods have applied Kalman
Filters to perform the tracking of individual fragments [26, 27, 30, 31]. Assign-
ment algorithms, explored by Kuhn and Munkres[32, 33], have also been applied
to the process of multiple object tracking by assigning the each observed object
in sequential time increments to their nearest existing trajectories following the
object [30].

In the case of tracking in image space, multivariate Gaussian assumptions
are used to describe that an object exists at a location represented as a mean and
an associated variance around its 2D position in the form of a multivariate Gaus-
sian. To estimate the location of fragments in the 2D case (image plane) and 3D
case (world coordinate system W), the following system of equations describes
each object’s position, velocity, and acceleration:

xk = xk−1 + ẋk−1∆t + 1
2 ẍk−1∆t2

yk = yk−1 + ẏk−1∆t + 1
2 ÿk−1∆t2

zk = zk−1 + żk−1∆t + 1
2 z̈k−1∆t2

(1.9)

ẋk = ẋk−1 + ẍk−1∆t
ẏk = ẏk−1 + ÿk−1∆t
żk = żk−1 + z̈k−1∆t

(1.10)
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ẍk = ẍk−1
ÿk = ÿk−1
z̈k = z̈k−1

(1.11)

The system of equations in the 2D velocity case is then defined in matrix
form:

xk =


xk
yk
ẋk
ẏk

 (1.12)

The same 2D velocity case can be represented by:

xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




xk−1
yk−1
ẋk−1
ẏk−1

+


1
2(∆t)2 0

0 1
2(∆t)2

∆t 0
0 ∆t

 [
ẍk−1
ÿk−1

]
(1.13)

in terms of the transition A and control B matrices:

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (1.14)

B =


1
2(∆t)2 0

0 1
2(∆t)2

∆t 0
0 ∆t

 (1.15)

The control input

ak−1 =

[
ẍk−1
ÿk−1

]
(1.16)

which is used as an acceleration controlling parameter in Kalman filter [26].
The governing multivariate mean state prediction equation

xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 xk−1 +


1
2(∆t)2 0

0 1
2(∆t)2

∆t 0
0 ∆t

 ak−1 (1.17)

can then be simplified to
xk = Axk−1 + Bak−1 (1.18)
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in terms of the introduced matrices. For the process of predicting the covariance
update equation, it follows the form of

Pk = APk−1AT + Q (1.19)

which is a function of an assumed value for Pk−1 as well as the process noise
matrix Q is defined as

Q =


∆t4

4 0 ∆t3

2 0
0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0
0 ∆t3

2 0 ∆t2

 σ2
a (1.20)

using a discrete noise model and dependent on time intervals between measure-
ments and the random noise variance due to acceleration [26]. It is also assumed
that the spatial direction measurements of x and y are uncorrelated [26].

The state mean update equation

xk = xk−1 + Kzres (1.21)

corrects the predicted state using the Kalman gain factor K and the measurement
residual zres. The measurement residual

zres = xmeas − Hxk (1.22)

is used to determine how to calculate the state correction based on the difference
of the measured position xmeas and the predicted state. The observation matrix
H

H =

[
1 0 0 0
0 1 0 0

]
(1.23)

represents the observed quantities, including the measured coordinates in the
image. The Kalman Gain factor

K = Pk−1HT(S)−1 (1.24)

is the correction factor in terms of the covariance, observation matrix, and the
innovation covariance matrix

Sk = (HPHT + Rk) (1.25)

. The measurement noise covariance matrix

Rk =

[
σ2

x 0
0 σ2

y

]
(1.26)
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is defined such that the assumed constant measurement uncertainty values asso-
ciated in each of the directions are uncorrelated and independent [26]. The state
mean update covariance equation

Pk = (I − KH)Pk−1 (1.27)

uses an identity matrix I with the same dimensions as the previous state mean
covariance.

The Kalman gain factor always weighs the correction such that 0 ≤ K ≤ 1
[26]. The Kalman gain serves as a correction factor for estimations, such that, for
increasing K, the correction weighs in favor of the current measurement value as
opposed than the predicted value. This process iterates through each time step,
updating the predicted trajectory based on the previous position and corrected
by measurement of the current measured position of the object. An alternative
way to describe the Kalman gain factor is

K =
Estimate Uncertainty

Estimate Uncertainty + Measurement Uncertainty
=

Pk+1,k

Pk+1,k + Rk
(1.28)

which shows that when the measurement uncertainty is small relative to the es-
timate uncertainty, the Kalman gain is high, or close to 1, and applies a large
correction [26]. The Kalman gain is small when the measurement uncertainty
is relatively large compared to the estimate uncertainty which is observed with
slow convergence after many time steps [26]. The design of the Kalman filter en-
sures that with each iteration the estimate uncertainty decreases since 0 ≤ K ≤ 1
when applied to the state covariance matrix.

Uncertainty covariances are defined as the uncertainties in the state variables
for a each fragment and initially assumed to be on the order of ones of pixels and
pixels per frame for the position and velocity estimate uncertainties, respectively.
The general form for a 2D state prediction covariance is a function of an assumed
estimate uncertainty values associated in each of the directions for position and
velocities are uncorrelated and independent [26]:

Pk =


Px Pxẋ Pxẍ Pxy Pxẏ Pxÿ
Pẋx Pẋ Pẋẍ Pẋy Pẋẏ Pẋÿ
Pẍx Pẍẋ Pẍ Pẍy Pẍẏ Pẍÿ
Pyx Pyẋ Pyẍ Py Pyẏ Pyÿ
Pẏx Pẏẋ Pẏẍ Pẏy Pẏ Pẏÿ
Pÿx Pÿẋ Pÿẍ Pÿy Pÿẏ Pÿ

 (1.29)

1.7 Assignment algorithms

An assignment algorithm is one that attempts to solve the assignment prob-
lem or transportation problem, which is traditionally the issue of assigning a
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worker to at most one job for the overall minimum cost [32, 33]. Assignment
algorithms operate on cost matrices that divide ”workers” and ”tasks” into rows
and columns, and each element of the matrix is a cost associated with assigning
a worker to a particular task [33]. Here in the cost matrix for fragment tracking,
rows represent existing trajectories and columns are detected fragments, which
are analogous to workers and tasks, respectively. Euclidean distances between
measurements and predictions serve as the cost associated with each combina-
tion of existing trajectories and detected fragment positions.

Assignment algorithms also ensure that each task has a unique worker and
no worker performs more than one task. Row reduction is performed by updat-
ing a new matrix such that the smallest value in each row is subtracted to ensure
that each row has at least one zero [32, 33]. Column reduction follows the same
procedure for each column [32, 33]. A process of ”covering” zeroes in the matrix
with lines (rows or columns) with a form of temporary marking indicated with
stars and primes on potential assignments is performed [32, 33]. This ensures
that all zeros in the matrix are now covered with a minimal number of rows and
columns[32, 33]. Subtraction of the smallest element in the matrix from every
unstarred or unprimed matrix cost element is applied followed by the addition
of it to every element at the intersection of two covered lines (rows or columns)
[33]. The above process is repeated until the minimum number lines covering
each zero is equal to the number of workers or tasks assigned, where the position
of the assigned zeros correspond to the positions of the original cost matrix to
determined the minimum cost assignment matrix [33].

1.8 Optical Size Estimation

Size estimation of fragments using an optical diagnostics requires a consid-
eration of geometric optics and image processing applied to fragment projections
for successfully tracked fragments. The geometric optics associated with the use
of schlieren lenses obeys the thin lens equation

1
f
=

1
Li

+
1
Lo

(1.30)

such that the focal point lies a focal length distance f from the lens center [34]
and Lo and Li are the distances of the objects and the image respectively. The non
parallel light in the light cones from the lenses result of magnification

M =
hi

ho
=

Li

Lo
(1.31)

of the objects depending on their distances from the center of the lens [34] where
ho and hi are the heights of the object and image respectively. When considering
the size of the objects optically, a consideration of the image plane, focal plane,
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and the calibration plane are essential. The image plane is the plane in which
the image is formed and is typically the sensor of a camera. The focal plane is
the plane where objects would appear in focus since the converging rays from a
convex lens lie on the same plane at a distance f . It is perpendicular to the optical
axis passing through the focal point. The calibration plane is the plane in which
the calibration target lies in the test section.

Grady and Kipp applied 2D projection methodology for in-situ sizing method-
ology directly to fragment sizes while using an equivalent spherical diameter as-
sumption [35, 36]

de =

√
4Apx

π
(1.32)

where Apx is the pixel area of an object in the image.

This assumption is also applied generally in dynamic image analysis (DIA)
[37] used to quantitatively estimate the size of sands and small grains in geologi-
cal studies. DIA studies typically average the observed equivalent diameters, but
also employ other sizing and shape factors, including minimum Feret diameter-
based sizing [37].

A general size estimation approach that considers the tumbling of fragments
is desirable, especially since other works performing in-situ optical sizing[23] rely
on determining the normal to the flat face of fragments to estimate sizes or single
area projection measurements [35, 36]. The size estimation approach inspired
by the DIA in computerized particle size analyzers, which operate on observing
numerous projections of fragments and particles via a high-frame rate camera, is
taken in this body of work.

1.9 Research Objectives

The objective of this thesis is to develop methodologies for performing in-
situ optical diagnostics for tracking RM fragments resulting from ballistic im-
pacts. This thesis will explore shadowgraph imaging techniques, digital im-
age processing and dynamic image analysis, stereo camera epipolar geometry,
Kalman-Filtering applications, velocimetry techniques, and in-situ fragment size
analysis. The goal of this work is to develop, apply, and validate stereo single-lens
shadowgraph systems to visualize, track, and determine trajectories, velocities,
and sizes of tumbling RM fragments in-situ.
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CHAPTER 2

EXPERIMENTAL METHODS

2.1 Experimental Setup

A test series of impact experiments was conducted at the Naval Surface War-
fare Center Indian Head Division. A two-camera stereo shadowgraph system
was implemented and 18 individual tests were performed. The ballistic impact
experimental setup consisted of a .50 inch (12.7 mm) caliber gun firing RM sam-
ples at a steel plate. The RM projectiles consisted of Cylindrical RM samples of
Al, Al/W composites, and Al/Bi2O3 composites. The Al samples analyzed in
this work are listed in Table 2.1, which summarises the dimensions and proper-
ties of the RM specimens pressed by the Naval Surface Warfare Center Indian
Head Division. Eight of the tests were performed for 3D reconstruction of trajec-
tories and 3D velocity measurement.

The cylindrical RM projectiles were held in 3D printed sabots made from
ASA filament for gun-launch and were aerodynamically removed via a sabot
stripper before the projectile reaches the steel plate. An external TTL signal is
sent from a break screen located at the muzzle and via Standford Research Sys-
tems DG535 digital delay generator when the projectile exited the barrel. The
DG535 then provided TTL signals to trigger the cameras and laser illumination
source.

Table 2.1: A comparison of RM specimens used as projectiles for the impact frag-
mentation tests.

Shot # Pellet Material Mass (g) Height (cm) Density (g/cc) % TMD
9 Aluminum 0.488 0.594 2.593 96
10 Aluminum 0.502 0.612 2.590 96
11 Aluminum 0.473 0.587 2.545 94
13 Aluminum 0.485 0.589 2.598 96
14 Aluminum 0.476 0.577 2.607 97

The aluminum (Al) specimens were composed of Valiment H-60 aluminum
with a 60 micron particle size and pressed to 206.8 MPa to 275.8 MPa (30,000 to
40,000 psi). The aluminum-tungsten (Al/W) specimens were composed of 25%
Al and 75% W by weight, using H-2 aluminum with a 2 micron particle size and
tungsten with a 44 micron particle size, pressed between 206.8 MPa to 275.8 MPa
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. The Al/Bi2O3 specimens were composed of 25% Al and 75% Bi2O3 by weight,
using H-2 aluminum with a 2 micron particle size and also pressed between 206.8
MPa to 275.8 MPa.

The optical diagnostics setup is shown in Figure 2.1. The shadowgraphy
technique here is used, though not directly for the purpose of refractive imaging,
for the purpose of extracting the desired fragment area projections since the tech-
nique is useful for visualizing sharp disturbances in the optical test section. The
back-illumination of the fragments and objects that travel through the optical test
section will provide projections of the fragment areas which is necessary for de-
termining their sizes. The projected shadows of the fragments can be more easily
extracted from the digital image process than that of direct high-speed video of
the ballistic impact event. The converging light section is desirable for the ex-
traction of the 3D depth information of the objects as well, which is necessary for
reconstructing the 3D trajectories of the fragments and incident projectile.

The setup consists of a two intersecting single lens shadowgraph systems, as
shown in Figure 2.1. Each individual shadowgraph system utilizes a point-like
light source that is refocused by a large lens to a camera placed at the focal point.
Each individual shadowgraph system is angled such that each is observing a dif-
ferent orientation of the test section. The test section is placed in the converging-
light side of the lenses. The stereo shadowgraph setup utilizes the angle between
the individual shadowgraph systems and the non-parallel light of single-lenses
to meet conditions to perform 3D reconstruction of fragment trajectories. For the
estimation of object sizes, the plane the objects are in must be considered as dis-
cussed in Section 1.2. A dual-lens parallel light stereo setup would not be capable
of 3D reconstruction of fragment trajectories because no depth information can
be extracted from parallel light. Effectively, only 2D velocity information could
be constructed from 2D trajectories in each 2D plane of each camera; however,
fragment sizes could be estimated without a need to know what plane the objects
are in.

Figure 2.1: A diagram of the stereo single-lens shadowgraph setup.
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Two intersecting shadowgraph imaging systems were set up at the impact
point of the projectile on the steel plate, as shown Figure 2.2. This camera posi-
tion allows imaging of the projectile before the impact of the plate and the sub-
sequent fragmentation behavior of the RM samples. Phantom v2012 and v1212
color cameras were used to image the experiments. Each was placed on the op-
tical rail screwed onto the stereo shadowgraph support scaffolding constructed
from 80/20 aluminum T-slot structural framing. The cameras are oriented and
elevated appropriately on the support scaffolding to image the same test section
i.e. the impact point on the steel plate.

Figure 2.2: An annotated stereo shadowgraph Setup for performing optical diag-
nostics of ballistic impact plate experiments.

The stereo shadowgraph support scaffolding was constructed from 80/20
Aluminum T-slot structural framing in two separate isolated frames. The first
frame used two ”poles” of 7.6 cm x 7.6 cm (3 in x 3 in) of hollow Quad rail with
lengths of 1.2 m and 1.8 m (4 and 6 feet) whereas the second frame used 1.8 m
and 2.4 m (6 and 8 feet) respectively. Supports for the quad rails holding optical
rails consist of, on either side of the frame, a single Four Slot Rail 7.6 cm x 7.6
cm (1 in x 1 in) screwed onto an inline/perpendicular pivot connected to a sleeve
bearing carriage or mount flange bearing with hand brakes. This support setup
allows the optical rails to be elevated and oriented as appropriate for the stereo
shadowgraph setup to be centered on the desired test section. Each 1.5 m (5 ft)
long 45 mm Square Hollow 4-Slot rail act as a beam to support two 750 mm long
THOR LABS dovetail rails for mounting all the cameras and optics.
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For the dual lens setup, the length from the first camera to the parabolic lens
was approximately 59.1 cm (23.3 in) for both the horizontal and diagonal systems.
The distance between the cameras vertically was 57.8 cm (22.8 in), measured from
the ends of the center of the camera lenses. The distance from the centers of the
schlieren lenses was approximately 1.23 m (4.04 ft) for the horizontal system and
1.38 m (4.54 ft) for the diagonal system. The distance from the second schlieren
lens to the light source was 0.67 m (2.19 ft) for both the horizontal and diagonal
systems. The angle was approximately 24-25 ◦ oriented between the shadow-
graph systems.

For the single lens setup, the distance between the camera lens to the schlieren
lens was 1.41 m (4.63 ft) for the horizontal setup and the 1.49 m (4.49 ft) for the
diagonal system. The distance from the light source to the second schlieren lens
was 1.28 m (4.2 ft) for the both horizonal system and diagonal system. The dis-
tance from the lenses on the light-source structural frames to the impact point of
the test section was approximately 0.44 m (1.44 ft) for both systems. The angle
was approximately 24-24.5 ◦ oriented between the shadowgraph systems.

The cameras recorded at 50,000 frames per second (fps), which resulted in
two different image sizes because of the cameras used. The v2012 recorded at a
frame size of 592x640 and the v1212 recorded at 432x384 pixels. The light source,
a SI-LUX 640 nm spoiled coherence laser, provided a 20 ns pulse width. The pulse
width is the effective exposure time for each image which mitigated the effects
of motion blur of fragments to allow for accurate projected areas of fragments.
The use of the shadowgraph technique takes advantage of focusing the laser to
maximize the intensity of imaging through the combustion environment, aiding
in the ease of back-illumination of the desired fragments and their projected area
extraction.

The effective camera resolution is determined by removing the interpolation
of the color cameras created in the Bayer filter process. The Phantom camera
Bayer filter has a ”gbrg” pattern. The Phantom camera CMOS sensor thus only
imaged on the red filtered pixels while using a red laser for illumination. The
red laser light reduces the effective resolution to a quarter of the original reso-
lution, from 432x384 to 216x192 and 592x640 to 296x320 for each camera view,
respectively.

The lenses attached to the cameras were 80-200 mm lenses. The schlieren
lenses used for the shadowgraph setups were 127 mm in diameter each, with
700 mm focal lengths. 50mm square absorptive neutral density filters were used
to reduce the intensity of the light to aid the visualization of the shadowgraph
images during testing. 640 nm bandpass filters (50 mm diameter, OD 4.0) were
used to isolate the light reaching the camera to only that in the laser wavelength
such that the much of the direct light from the RM combustion is filtered from the
imaging process. Lexan was placed around the steel plate to protect the optics
from the fragments produced after impact while still being optically clear for the
shadowgraph imaging.

When applying the shadowgraph technique to extract the fragment area pro-
jections, the refractive properties may not be desirable since the visualization of
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the product gas clouds may partially obscure the fragment areas. A minimization
of the sensitivity of the shadowgraph technique is therefore desirable to mitigate
the occlusion of fragment area projections in the product gas clouds. The sen-
sitivity of the shadowgraph technique employed, i.e. the minimum resolvable
refraction angle, is a function of the optical geometry of the system. The shadow-
graph sensitivity is influenced by the distance L from the focusing parabolic lens
from the refractive object S and the distance Ltotal from the focusing parabolic
lens to the camera, as shown in Figure 2.3. The refracting object in non-parallel
light forms of shadowgraphy will typically have the highest sensitivity halfway
between the camera and the parabolic lens used to focus the light. The sensitivity
cannot be minimized by decreasing the length of the system since it is restricted
to the focal length by the focusing parabolic lens. Alternatively, decreasing the
ratio of the distance from the refractive object S to the camera L′ and the distance
of the parabolic lens from the camera Ltotal would reduce the shadowgraph sen-
sitivity; however, this would also undesirably reduce the field of view D to D′ for
imaging the ballistic impact event, as shown in Figure 2.3.

Figure 2.3: An annotated shadowgraph setup with a refractive object in the con-
verging light test section.

2.2 Stereo Camera Calibration

The stereo camera calibration process consists of taking on the order of 20
image pairs of a calibration target simultaneously in each camera field of view,
as shown in Figure 2.4. The calibration target used was an asymmetrical checker-
board with a grid resolution of 12.7 mm (0.5 inches).
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(a)

(b)

Figure 2.4: (a) A calibration target placed within the test section of the stereo
shadowgraph optical setup and (b) Side-by-side views of same checkerboard in
each camera’s field of view with right image zero-padded with the detected and
reprojected points.

The calibration target is rotated and translated slightly with each image pair
to capture a variety of unique orientations of the calibration target. An 8-point
algorithm via MATLAB’s Stereo Camera Calibrator application is applied to the
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pairs of stereo calibration images. The algorithm seeks to relate the vertices of the
checkerboard from one image representing the first camera view with another
simultaneous image taken from the other camera view for several paired images.
Using MATLAB’s Stereo Camera Calibrator application, the internal and external
parameters are estimated for the camera system, the latter of which is visualized
in Figure 2.5.

MATLAB calculates the position of the target from each pair, and the final
output is the relative position of the two cameras and their fields of view. Addi-
tionally, the application allows for the minimization of the reprojection error for
the estimated fundamental matrix via the removal of poor image pairs such that
the errors are subpixel for each stereo calibration performed for this test series.
The average reprojection error is less than 0.4 pixels, as shown in Figure 2.5b.
The two cameras had different resolutions, each image must be zero-padded to
the same size for the MATLAB reconstruction algorithms, shown in Figure 2.4.
Zero padding was performed such that the black pixels were appended to the
right and bottom of the original image. Zero padding symmetrically such that
the original image is centered in the padded image and using these images in the
stereo calibration process did not change the average reprojection error or the es-
timated extrinsic stereo camera parameters, shown in Figure 2.5. For the sake of
simplicity, zero padding to the right and the bottom of the image was preferable
to avoid consideration of position offsets in further analysis of the digital images.
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(a)

(b)

Figure 2.5: The mean reprojection error bar chart for a stereo calibrated shad-
owgraph setup using 9 successful image pairs, generated by MATLAB’s Stereo
Camera Calibrator application.
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2.3 Digital Image Processing

The goal of digital image processing is to uniquely identify fragments for the
purpose of tracking positions and determining fragment sizes. After acquiring
and saving the high-speed video of a ballistic-impact test the images to be used
in the digital image processing process are exported from the camera software.
The Bayer pattern is disabled by ensuring the ”Color Interpolation” option is set
to ”OFF” in the Phantom Camera Control (PCC) software. The PCC software
exports the images as a digital negative file with a .DNG file extension, which are
then converted into .tiff images in MATLAB.

One of the challenges of fragment detection is the separation of fragments
from within fine particle clouds and product gases as a result of the combustion
of the RM specimen upon impact. The use of MATLAB’s adapthresh allows for
greater local separation of fragments from the backgrounds that otherwise could
not be extract by Otsu’s method, since Otsu’s method assumes relatively invari-
ant background intensity changes and effectively a pure bimodal pixel intensity
histogram for a given image [18]. Figure 2.6 shows the modified background
image resulting from adapthresh to find appropriate threshold values at different
regions in the background of the observed image series .

Figure 2.6: An image of the effective background for improved isolation of frag-
ments from a background with significantly varying illumination due to product
gas clouds and fine particle clouds.

Using Otsu’s method via MATLAB’s graythresh and imbinarize functions to
determine a global intensity threshold, the image is binarized to separate frag-
ment regions from the background with noisy light intensities. Otsu’s method
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determines the threshold to maximize the between-class variance, as shown in
Figure 2.7a, to optimally separate the fragments in the foreground from the back-
ground of the image [18]. Otsu’s method effectively determines the threshold
that separates the bimodal pixel intensity histogram for an image to optimally
binarize the image. Figure 2.7 describes the use of Otsu’s method and observed
frequency of pixel intensities for an image of the entire field of view.

(a) (b)

Figure 2.7: (a) Normalized Frequency and (b) Between Class Variance

The image segmentation [18, 38] is performed to identify and extract the
pixel area, and centroids via MATLAB’s regionprops function. The application
of a global pixel intensity threshold to binarize the image separates fragment re-
gions from the background. Clusters of connected pixels in the morphological
image are automatically labelled to identify unique fragments and obtain a pixel
area or pixel count. Centroids of these fragments are extracted for each uniquely
identified binarized fragment, as shown in Figure 2.8. Further detail on estimat-
ing fragment size in terms of pixel area and the associated pixel area error is
described in Section 2.4.
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Figure 2.8: Centroids of fragments denoted by small red crosses.

2.4 Fragment Size Estimation

From the digital image process described in Section 2.3, MATLAB’s region-
props function is used to determine centroids of fragments and extract the bound-
ing boxes of the fragments. Bounding boxes, as shown in Figure 2.9, are con-
stituted of the smallest rectangle that encapsulates each fragment area. In or-
der to obtain a more precise fragment area with associated error bounds, addi-
tional digital image processing is performed using Otsu’s between-class variance
thresholding. While regionprops could be used to extract areas of fragments in
the binarized image directly, bounding boxes are extracted for the fragments in-
stead to more easily determine the uncertainty of area measurements via Otsu’s
method.
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Figure 2.9: Bounding boxes obtained boundaries of fragment areas from the frag-
ment detection process.

The optimal pixel intensity threshold is associated with the peak between-
class variance, shown in red in Figure 2.10. However, there is often a short range
of values that results in the same between-class variance, shown in red in Figure
2.11, which is the range that correlates the the same pixel intensity threshold as-
sociated with the same between-class variance curve shown in 2.10. Similar to
the procedure applied by Watson[24], the size of each fragment is found by itera-
tively thresholding the region of interest, in this case a bounding box, and using
the peak in the pixel area gradient to determine the range of possible pixel area
values for a single frame. Figure 2.11 shows the area of a fragment for varying
pixel intensity threshold values as well as the gradient of the area, demonstrating
that the range of optimal threshold values does not necessarily correlate to jumps
in pixel area gradient unlike what is observed by Watson to determine optimal
fragment contours [24]. The local minimum in gradient observed in Figure 2.11
does not necessarily correlate to consistency in extracting fragment projected ar-
eas. The gradient of pixel area for extracted fragment projected areas could vary
significantly and local maxima and minima for several fragment area measure-
ments, including for different fragments entirely, did not necessarily lie in the
threshold range obtained.
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Figure 2.10: The Between-Class Variance of the extracted image associated with
the bounding box of a fragment.

Figure 2.11: The pixel area and gradient of pixel area of the extracted image asso-
ciated with the bounding box of a fragment.

The result of Otsu’s method applied to a grayscale image of the boundary
box containing a given fragment, visualized in Figure 2.12a, is the binary image
from which MATLAB’s regionprops isolates the largest fragment and determines
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the pixel area in Figure 2.12b. The exact boundary can be extracted via MATLAB’s
bwboundaries as shown in Figure 2.13. The threshold range of maximum values
of between-class variance for the bounding box image corresponds to the thresh-
old range of pixel areas to determine the pixel area error bounds surrounding
the pixel area determined via Otsu’s method directly using Matlab’s graythresh,
imbinarize, and regionprops.

(a) (b)

Figure 2.12: (a) Grayscale image of extracted boundary box of fragment and the
(b) resulting binary image of the extracted boundary box of the same fragment.
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Figure 2.13: Obtained boundaries of fragment areas from fragment detection pro-
cess.

The 2D projection methodology described by Grady and Kipp [35, 36] in
their studies of high-velocity impact-fragmentation of bulk metals using high-
speed x-ray imaging can be applied generally to in-situ optical diagnostics for
obtaining fragment sizes. An equivalent spherical particle assumption is used
here for each fragment tracked. Size estimates are performed by taking the ex-
isting tracked fragments and measuring the pixel area, or counting of the num-
ber of pixels, of a fragment region and converting to an equivalent diameter in
pixel space, then applying a pixel-to-width conversion using a spatial calibration
measured in the region image before tests. The equivalent spherical particle as-
sumptions has been applied in high-rate dynamic loading seen in hypervelocity
impacts [24]to obtain estimates of the particle sizes.

Consideration of the magnification of objects due to the lens in the shad-
owgraph system is accounted for as a scaling that considers the distance of the
object from the camera and the distance of the calibration plane from the cam-
era. This is determined by using the triangulation process described in Section
2.6 and applying Matlab’s norm function to calculate the normalized distance of
the fragment triangulated in 3D space to Camera 1, defined as the camera from
which the camera-to-world coordinate transformation is performed via the stereo
calibration process.
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2.5 2D Kalman Filtering

The goal of the application of Kalman filtering over a sequence of images
is to automate the process of tracking multiple fragments for a given test. A
linear Kalman filter model is selected as an appropriate algorithm for tracking
fragments and obtaining velocity measurements because the in-flight fragments
are assumed to be non-maneuvering objects [26] with a four-dimensional state
vector:

xk =
[
xk yk ẋk ẏk

]T (2.1)

The state vector for fragments in a 2D image is dependent on the positions
(xk and yk) and velocities (ẋk and ẏk) in each direction of the image space. The
following diagram 2.14 is a summary of the Kalman Filtering process described
in Section 1.6. This process uses a known prior state to make a prediction of a
future state that is then corrected after a comparison of the prediction and a mea-
surement. The corrected prediction is the output and now serves as the ”prior”
state in a feedback loop iterating on time step k as shown in 2.14. The intial state
is assumed to have the initial measured centroid position for the first occurrance
of a detected fragment.

The Kalman filter is implemented following the procedure described by [26,
27, 29], which begins with calculation of the predicted mean xk and covariance
matrix Pk of the state variables. The transition matrix A represents the system
dynamics for the x and y directions in the 2D image plane with respect to time
interval ∆t. The Kalman filter then calculates the innovation covariance matrix
Sk and the Kalman gain factor K where the observation matrix H represents the
observed quantities, the xk and yk positions in the image space at time step k.
The Kalman filter will then calculate the a posteriori mean: xk and covariance
matrix Pk by taking account the Kalman gain as a correction factor. The initialized
a priori covariance matrix Pk which is initially assumed to have a value of 1
pixel. The process noise matrix Q has an assumed initial random acceleration
uncertainty that is assumed to be on the order of 1 pixel per unit time (frame)
squared in terms of the image space.

For automating the process of tracking multiple fragments in each frame, an
assignment algorithm [32, 33] is utilized to assign fragment detections from the
digital image process to existing fragment trajectories generated by the Kalman
filter, or create new ones. An assignment algorithm operates on cost matrices
generated for each frame. The cost matrix for a given frame represents the differ-
ence or Euclidean distance between the estimated position and the measured po-
sitions of newly detected fragments. A cost matrix is generated by first defining
a matrix of the estimated position coordinates for each fragment and the mea-
sured position coordinates of fragments in the image at the a priori time step.
The Euclidean distance between all possible pairwise coordinates is placed into a
pairwise distance matrix and made into a square matrix using MATLAB’s square-
form function.
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xk = Axk−1 + Bak−1

Pk = APk−1A⊤ + Q

Prediction

k → k+ 1

Sk = HPk−1H + Rk

K = Pk−1HTS−1
k

xk = xk−1 + K(xmeas − xk−1)

Pk = Pk−1 − K(HPk)

Correction

xmeas

measurement
xk

Pk

output

xk−1

Pk−1

prior state

Figure 2.14: A diagram summarizing the Kalman Filter feedback loop that takes a
prior state, makes a prediction for a future state, uses a measured state to compare
with the prediction to apply a correction, outputs the corrected state which is
used in future predictions.

An existing Matlab implementation of the generalized Munkres-based opti-
mal assignment algorithm [39] is applied before applying the Kalman gain cor-
rection step in the Kalman filtering process. An individual fragment is tracked
manually to obtain order of magnitude velocity information in the horizontal
direction in the 2D image plane to inform the general initial conditions for auto-
matically tracking multiple fragments. Position estimates for new fragments are
initialized to be the unassigned fragment centroids. An assignment algorithm
[32, 33] is also utilized to allow for the assignment of fragment detections from the
digital image process to existing fragment trajectories generated by the Kalman
filter, or create new ones.
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(a)

(b)

(c)

Figure 2.15: An example of position and velocities with respect to time (frames)
for a single representative fragment.

An example of a tracked fragment with an estimated position from the Kalman
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filtering process that matches well with the measured centroid positions is shown
in Figure 2.15a. Without assuming a non-zero velocity to initialize Kalman filters
for newly detected fragments in the field of view, velocity corrections are large
and occur in the early time of tracking an individual fragment, as shown in Fig-
ure 2.15b. Figure 2.15c demonstrates that the uncertainty associated with the po-
sitions are large in the early time of the tracking process but converge to a small
uncertainty rapidly. For the case of the fragment described in Figure 2.15a, there
is a final position uncertainty of approximately 2.2%.

2.6 Fragment matching and 3D reconstruction via triangulation

Identifying the same fragment in both cameras is needed to reconstruct the
3D trajectory from the individual trajectories of the fragment in each camera. The
process utilizes the epipolar geometry defined from the stereo calibration process.
As described in Section 1.4, an epipole is a point of projection from the center of a
camera into the epipolar plane connecting the epipole of the other camera in the
stereo calibrated camera pair [19]. Epipolar lines are lines in an image plane in
one camera view that corresponds to a point in the plane in-line with the optical
center of the other camera.

According to epipolar geometry, a point x has a corresponding epipolar line
l′ that can be constructed via

l′ = FP (2.2)

in which the fundamental matrix F is the mapping between the two cameras. This
is because in one camera, an object in 3D space may appear to be only a point,
reflected in the singular point x in Figure 2.16 for the on Camera A’s image when
aligned with the optical center of the camera. However, along the ray between
the optical center of Camera A and the point x and its projection into 3 space,
the object represented as an epipole in Camera may correspond to many depths
from Camera A but when observed by Camera B may correspond to many points
on the image, represented by the green line in Figure 2.16. This is because the
optical centers of each camera, epipoles, and epipolar lines all lie in the same
plane, denoted in blue as the epipolar plane in Figure 2.16 .
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Figure 2.16: A diagram of the epipolar geometry defined by the stereo shadow-
graph setup.

As seen in Figure 2.17, fragments are labelled in order to identify the same
fragment with the track that describes its 2D trajectory in each image plane. The
centroids, denoted with colored crosses that highlight tracked fragments in one
camera view correspond to the same colored epipolar lines drawn in the other
which overlap with the centroids of tracked fragments denoted with green circles
in the other camera. If a line intersects multiple possible tracked fragments, each
case is examined at different frames i.e. 20 frames apart and the line should in-
tersect with a unique track in either camera due to differences in velocities of the
fragments. Additionally, size can be used as another form of uniqueness when
fragment matching.
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(a) (b)

Figure 2.17: (a) Color coded centroids of fragments and epipolar lines associated
with the corresponding centroids in (b) with fragments observed in the camera
with reduced resolution

As described in Section 1.4, the triangulation of a point in 3D space is deter-
mined after finding two corresponding points in each stereo calibrated camera
view. The triangulation process works by attempting to minimize the projected
error as discussed in Section 1.4. This was performed by the MATLAB Stereo
Calibration application and after determining the fundamental matrix F from the
process, as described in Section 2.2, then using MATLAB’s triangulate function.

2.7 3D Velocity Estimation

3D velocity estimation is performed by implementing a 3D Kalman filtering
technique in 3D space using the reconstructed trajectory of each fragment. The
choice to implement a simple 3D Kalman filter is made to aid in the process of
determining the velocity associated with the reconstructed 3D velocities, without
simply fitting a line in 3D space. The 3D Kalman filter is useful for smoothing out
the noise associated with the reconstruction but also quantifying the uncertainty
of the 3D trajectory and associated velocity estimated using the feedback loop of
system state predictions and corrections. This Kalman filter uncertainty will be
compared with the velocity uncertainty estimated via the propagated uncertainty
of the 3D distances and time measurements in Section 2.8.

3D Kalman filtering utilizes the same governing equations for state predic-
tion and state correction discussed in section 1.6 but uses matrices extended to
account for the third spatial dimension. The 3D Kalman filter utilizes a transition
matrix:
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A =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2.3)

which describes a constant velocity projectile motion assumption for the tracked
object for the duration observed. An acceleration model is not applied in this
Kalman Filter model of fragment motion since the fragment is only observed for
a short distance while in frame and significant velocity changes are not observed.

The observation matrix:

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.4)

describes that three spatial positions are measured when applying the Kalman
Filter process to the 3D trajectory. This matrix reflects that only position mea-
surements are made directly and does not include direct velocity measurements
at each discrete step in the Kalman filter for each fragment.

The 3D noise measurement matrix:

R =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 (2.5)

assumes uncorrelated and independent uncertainties associated with each spatial
direction. The process noise matrix:

Q =



∆t4

4 0 0 ∆t3

2 0 0
0 ∆t4

4 0 0 ∆t3

2 0
0 0 ∆t4

4 0 0 ∆t3

2
∆t3

2 0 0 ∆t2 0 0
0 ∆t3

2 0 0 ∆t2 0
0 0 ∆t3

2 0 0 ∆t2


(2.6)

also assumes uncorrelated and independent uncertainties with dependencies on
time duration between discrete time steps.

A unique 3D Kalman filter is applied to each reconstructed trajectory using
initial conditions of assuming the first predicted position is the first measured po-
sition. The assumed initial velocity that describes the motion of the fragment in
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3D space is the mean of velocities estimated from the spatial gradient of the mea-
sured reconstructed points divided by the temporal difference of 20 microsec-
onds between measurements in 2D space. Similar to the Kalman filter process
observed in the two dimensional case, the uncertainty of the spatial positions in
the 3D space converges to 2.2 % as seen in Figure 2.18b. The uncertainty for each
triangulated point is determined by comparing the range of 3D positions in each
direction obtained by calculating the triangulated point using each coordinate
pair combination of image positions in the first stereo camera

(x1 ± δrpx, y1)
(x1, y1 ± δrpx)

(x1 ± δrpx, y1 ± δrpx)
(2.7)

and positions in the second stereo camera

(x2 ± δrpx, y2)
(x2, y2 ± δrpx)

(x2 ± δrpx, y2 ± δrpx)
(2.8)

in terms of the reprojection error δrpx.
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(a)

(b)

Figure 2.18: (a) The Kalman gain correction factor and (b) the uncertainty asso-
ciated with each spatial direction demonstrating a convergence to a minimum
value for a particular fragment.

The 3D Kalman filter applied to the triangulated trajectories starts with a
balanced Kalman gain factor of 0.5 that quickly converges to values approach-
ing zero, demonstrated in Figure 2.18a, for each respective coordinate direction.
This convergence is reflected in the uncertainty in Kalman filtered position esti-
mates for each coordinate direction, as shown in Figure 2.18b.The convergence
of fragment Kalman filter state equation for the same fragment was observed to
be within 10% after 10 sequential frames, displayed in Figure 2.18b. After 44
sequential frames of being tracked, the minimum value was approximately 2%,
also displayed in Figure 2.18b. For the duration that a given fragment is tracked,
measured trajectory (reconstructed from 2D Kalman filters) and the trajectory es-
timated via the 3D Kalman filter were within a 1% relative difference as shown
in Figure 2.19.
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Figure 2.19: The percent difference between the measured trajectory and the tra-
jectory estimated via the 3D Kalman filter process.

2.8 Uncertainty propagation

Potential sources of uncertainty in the measurements are associated with the
spatial calibration scale, timing jitter in the laser pulse, temporal resolution of the
high-speed cameras, the magnification in the non-parallel light section, as well
as the pixel area. The uncertainty propagation of measurements are performed
under linear error assumptions and independent uncertainties for the measured
quantities. The following uncertainties in physical measurements follow the rules
for uncertainty propagation described by Taylor [40]. The spatial calibration scale
uncertainty is defined by the generalized uncertainty equation

δCs =

√
(

∂Cs

∂xs
δxs)2 + (

∂Cs

∂p
δp)2 (2.9)

such that Cs in the calibration scale in mm/px, Cs , xs is the scale distance in mm,
p is the distance in pixels, and δ is the uncertainty associated with the respective
variable. The generalized uncertainty equation simplifies to:

δCs

Cs
=

√
(

δxs

xs
)2 + (

δp
p
)2 (2.10)

where the discretization uncertainty δp is found by assuming the pixels on the
imaging sensor represent linear scale graduations, similar to that of a ruler. As
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such, the uncertainty is taken as half the graduation spacing, which is half a pixel.
The fractional uncertainty of δp

p is the controlling parameter for the spatial cali-
bration uncertainty since it is much larger than the fractional uncertainty with the
respect to the measurement uncertainty when measuring the calibration object,
either via caliper as shown in the following section 2.9 or via calibration target
grid tolerance. After performing spatial calibration to determine the size of ob-
jects, the observed calibration scales, or resolutions, for the two cameras with
respect to the calibration plane were 0.20 ± 0.03 mm/px and 0.36 ± 0.03 mm/px
respectively.

The fractional uncertainty of the equivalent diameter in mm is represented
by:

δde

de
=

√
(

1
2

δApx

Apx
)2 + (

δCs

Cs
)2 (2.11)

such that the spatial calibration scale Cs uncertainty is accounted for. The deriva-
tion of this general uncertainty equation is described in Appendix B. When ac-
counting for the size estimation uncertainty of fragments or other objects, the
controlling parameter is the fractional uncertainty δApx

Apx
because the method in

which the pixel area is counted is dependent on the between-class variance peak
and the varying background intensity in which a fragment may be travelling
through including through fine particle clouds, product gas clouds, and other
changes to background illumination. Additionally, the uncertainties with respect
to the calibration scale are between 1-2%. The fractional uncertainties with re-
spect to equivalent diameter for the smallest fragments was approximately 16%
(0.1mm) for smaller fragments and 18% (0.5mm) for larger fragments, as shown
in Table 2.2. The controlling parameter for both small and large fragments was
the uncertainty due to the calibration scales; however, for the smaller fragments,
the uncertainty in pixel area did have a non-negligible contribution to the overall
equivalent diameter uncertainty.

The fractional uncertainty of magnification of object sizes in the shadow-
graph system is given by:

δho

ho
=

√
(

δLi

Li
)2 + (

δLo

Lo
)2 + (

δhi

hi
)2 (2.12)

such that ho and Lo are the object size and distances and hi and Li are the im-
age size and distances respectively. The distance uncertainties are essentially the
triangulation uncertainties of the object from Camera 1 as well as the calibration
plane to Camera 1. The uncertainty for each triangulated point is determined by
comparing the range of 3D positions in each direction obtained by calculating the
triangulated point using each coordinate pair combination of image positions in
the first stereo camera via equations 2.7 and 2.8, in terms of the reprojection error
δrpx, as described in Section 2.7.
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Table 2.2: Limits for uncertainty of equivalent diameter with respect to pixel area
uncertainty for the smallest and largest fragments observed.

Area Apx (px) δApx (px) eq. diam. de (mm) δde (mm)

5 ±1 .55 ±0.1 (18%)
177 ±10 3.1 ±0.5 (16 %)

Generally, the uncertainty in the out of plane direction (z coordinates) was
larger than the uncertainties in x and y coordinates in 3D space. The largest deter-
mined fractional uncertainties for δx

x , δy
y , and δz

z were 1%,1%, and 3%, respectively.
This would suggest that δLi and δLo were approximately 3.5%. The controlling
parameter was therefore δhi, since it is the equivalent diameter uncertainty which
ranged between 16% (0.1mm) for smaller fragments and 18% (0.5mm) for larger
fragments.

The fractional 3D velocity uncertainty is given by

δv3D

v3D
=

√
(

δx3D

x3D
)2 + (

δy3D

y3D
)2 + (

δz3D

z3D
)2 + (

δt
t
)2 (2.13)

which is dependent on the uncertainty of each distance component from the 3D
reconstruction. The uncertainty of each position component is determined from
the 3D Kalman filter process discussed in Section 2.7. This includes the measure-
ment uncertainty from the triangulation process for each triangulated point using
each coordinate pair combination between the two cameras in terms of the repro-
jection error δrpx. The jitter time of the SI-LUX 640 nm spoiled coherent laser
was reported to be less than 5 ns, which is four orders of magnitude less than
the interframe time of the recorded images. The triangulation uncertainties with
respect to the 3D spatial coordinates were therefore controlling parameters of the
uncertainties of the 3D velocities.

The larger velocities have a larger uncertainty than smaller velocities since
the distances x3D, y3D, and z3D measured are smaller than the trajectories of
longer trajectories associated with slower fragments. This is observed despite
the distances being significantly larger than their respective uncertainties, which
were determined using equations 2.7 and 2.8, in terms of the reprojection error
δrpx, as described in Section 2.7. Using this method to determine the uncertainty
in velocities, the fastest fragments had a fractional uncertainty in velocity of 2%
(7 m/s) and the slower fragments had a fractional uncertainty of 1% (0.2 m/s), as
shown in Table 2.3. When comparing this uncertainty to the uncertainty obtained
from the 3D Kalman filter, for the system converging to position uncertainties
of approximately 1-2% for each spatial direction, the 3D Kalman filtered veloc-
ity was approximately 2.5%, especially for fragments tracked over many frames
such as in the case seen in Figure 2.18b.
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Table 2.3: Limits for uncertainty of 3D velocities for the slowest and fastest frag-
ments.

x3D (m) δx3D (m) y3D (m) δy3D (m) z3D (m) δz3D (m)

0.019 ±1e − 4 0.023 ±1e − 4 0.011 ±2e − 4
0.012 ±1e − 4 0.01 ±1e − 4 0.006 ±2e − 4

t (s) δt (s) v3D (m/s) δv3D (m/s)

1.85e-3 ±5e − 9 17 ±0.2(1%)
5e-5 ±5e − 9 334 ±7(2%)

2.9 Experimental Validation

Experimental validation was performed using a stereo-calibrated shadow-
graph system to demonstrate that object sizes and dimensions can be determined
from their projections in each camera view and are comparable to other measure-
ment methods. The validation setup is shown in Figure 2.20 in which a pair of
Phantom V711 cameras in stereo shadowgraph systems are stereo calibrated in
the same plane between two optical tables such that each shadowgraph system
intersects with an approximate 30 ◦ angle between them.
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Figure 2.20: An experimental validation setup constituted by LEDs, lenses, and
Phantom V711 cameras to implement stereo shadowgraphy.

The test section between the two optical tables is shown in Figure 2.21a in
which a series of pinheads stuck into a piece of foam was placed in the test sec-
tion, visualized in 2.21b. This stereo shadowgraph setup is intended for quantify-
ing the ball end pin diameters optically, via the equivalent spherical assumption
and extracted pixel areas, and comparing the resulting diameter with measure-
ments performed via caliper.
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(a) (b)

Figure 2.21: Test section with pinhead setup.

A combination of two sizes of ball end pins and varying distances from each
camera are placed in the test section to demonstrate that the methodology pre-
sented in this work is appropriate. The varying distances of the objects from the
camera are visualized using MATLAB’s viscircles in Figure 2.22. The pixel areas of
the ball end pins are extracted followed by a calculation of the equivalent spher-
ical diameter, a spatial calibration conversion from pixels to millimeters, and an
account for the object size from the magnification due to the lens and distance of
the objects from the camera as well as the distance of the calibration plane from
the camera, as done for all ballistic tests. The distance measurements were per-
formed optically by determining the normalized distance of the 3D position for
each ball end pin from the camera sensor. This position was triangulated using
the centroid of each circle observed in each stereo camera.
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Figure 2.22: Ball end pins with their diameters denoted by yellow circles and
annotated with their respective distances from one of the cameras.

A tabulated summary of the diameter of the pin heads is shown in Table
2.4 such that the associated uncertainties of the measurements optically are de-
termined from the fragment size uncertainty propagation equations discussed in
Section 2.8.

Table 2.4: Comparison of diameters dimensions of Ball End pins measured via
caliper and optically.

Caliper Optically Measured Size
blue pin 1 2.49 ± 0.01 mm 2.5 ± 0.2 mm
blue pin 2 2.45 ± 0.01 mm 2.6 ± 0.2 mm
blue pin 3 2.48 ± 0.01 mm 2.5 ± 0.2 mm
blue pin 4 2.45 ± 0.01 mm 2.5 ± 0.2 mm
purple pin 1 4.06 ± 0.01 mm 4.2 ± 0.2 mm
purple pin 2 4.10 ± 0.01 mm 4.1 ± 0.2 mm
purple pin 3 4.04 ± 0.01 mm 4.1 ± 0.2 mm
purple pin 4 4.06 ± 0.01 mm 4.2 ± 0.2 mm

Table 2.4 shows that with consideration of the uncertainties of the measure-
ments, the methods produce equivalent diameter measurements. Following the
validation of ball end pin sizes to mimic the fragment size estimation process, a
validation of reconstruction of triangulated points using objects with known di-
mensions in 3D space is performed using a block and a stereo shadowgraph sys-
tem. Table 2.5 show that the methods, via measuring tape and optically, produce
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Table 2.5: Comparison of triangulated distances of Ball End pins and distances
measured via caliper of the same block.

Measuring Tape Optically Measured Distance
blue pin 1 1.143 ± 0.003 m 1.144 ± 0.002 m
blue pin 2 1.147 ± 0.003 m 1.148 ± 0.002 m
blue pin 3 1.151 ± 0.003 m 1.152 ± 0.002 m
blue pin 4 1.156 ± 0.003 m 1.156 ± 0.002 m
purple pin 1 1.132 ± 0.004 m 1.132 ± 0.002 m
purple pin 2 1.135 ± 0.004 m 1.136 ± 0.002 m
purple pin 3 1.139 ± 0.004 m 1.138 ± 0.002 m
purple pin 4 1.142 ± 0.004 m 1.141 ± 0.002 m

equivalent distance measurements of the ball end pins from the camera. The un-
certainty in the measurement of the distance via measuring tape was larger that
the optical method in this case since the measurement required placement of the
measuring tape atop the ball end pins. The physical size of the ball end pins was
on the order of tenths of a centimeter, with the conservative uncertainty being
approximately the diameter of the ball end pins.

(a) (b)

Figure 2.23: A block placed in a stereo-calibrated shadowgraph system serves as
a validation object for 3D reconstruction.

A separate test to quantitatively validate the position reconstruction and dis-
tance measurements optically by placing a block in the test section of a stereo
shadowgraph system, shown in Figure 2.23a. A stereo calibration is applied to
construct the extrinsic properties of the stereo shadowgraph setup associated
with the block dimension reconstruction validation test is observed in Figure
2.23b. The goal of this validation test is to measurement of the dimensions of
a block with known length, width, and height optically and compare with the di-
mensions measured via caliper. The block has shadowgraph projections in each
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camera view and it is oriented such that the 3 unique dimensions of the block are
visible. The unique vertices are identified to be the same corner of the block, as
shown in Figure 2.24a and 2.24b, and is triangulated in 3D space with respect to
one of the cameras.

(a) (b)

Figure 2.24: Unique vertices of block are identified and denoted with correspond-
ing colored points to indicate the same vertex seen in each camera view.
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Figure 2.25: The reconstruction of the block dimensions with red, green, and blue
lines corresponding to the length, width, and thickness dimensions of the block.

Connecting the points in 3D space allow for the reconstruction of the dimen-
sions of the block optically as shown in Figure 2.25. A tabulated summary of
the dimensions of the block is shown in Table 2.6 such that the associated un-
certainties of the measurements optically are determined from the triangulation
sensitivity for each reconstructed point. The table shows that with consideration
of the uncertainties of the measurements, the methods produce equivalent mea-
surements of lengths. Generally, the uncertainty in the out of plane direction (z
coordinates) was larger than the uncertainties in x and y coordinates. The mea-
sured dimensions for the block all show similar uncertainties because the block
was oriented at an arbitrary angle accounting for all of these differences.

Table 2.6: Comparison of triangulated dimensions of block and dimensions mea-
sured via caliper of the same block.

Dimension Caliper Triangulated
length 50.84 ± 0.01 mm 50.7 ± 0.3 mm
width 38.03 ± 0.01 mm 37.5 ± 0.4 mm
thickness 15.69 ± 0.01 mm 15.8 ± 0.2 mm
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 3D trajectory reconstruction and velocity estimation

For several ballistic impact-fragmentation tests, numerous large fragments
were observed rebounding off the steel anvil through fine particle clouds. From
the automated tracking procedure, fragments were tracked for each stereo cam-
era, as shown in Figure 3.1 with colored 2D trajectories for each camera. Figure
3.1 shows that for some example frames 200 microseconds apart, the velocities
assigned to the fragment 2D trajectories correspond to the 3D velocities obtained
from the 3D Kalman filters. Generally, the majority of observed fragments trav-
elled slowly at velocities below 50 m/s, with only a few fragments travelling
faster with yellow or green color tracks, as noted by the color bar in Figure 3.1.
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Figure 3.1: 4 non-sequential frames of tracked fragments in the high-fidelity cam-
era 200 microseconds apart.

From the automated tracking algorithm, the 3D Kalman filtering process was
applied to each reconstructed trajectory, as shown in Figure 3.2 for a single par-
ticle track. The smooth Kalman filtered trajectory is denoted in blue whereas the
positions from the stereo reconstruction is denoted in green. The percent errors
between the Kalman filtered trajectory and reconstructed trajectory in the posi-
tion for this trajectory was approximately within 2%.
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Figure 3.2: Comparison of measured and estimated 3D trajectory for a represen-
tative fragment.

For a series of impact tests, Figure 3.3 shows 3D reconstructions for many
fragments travelling away from the point of contact and the 3D path of the in-
cident projectile denoted with black data points. The fragment trajectories are
colored corresponding to the color bar mapping their individual velocities. The
number of reconstructed fragment trajectories varied such that each test shown
in Figure 3.3 (a-e) had 43, 43, 37, 32, and 20 reconstructions, respectively. The
range in velocities of the same fragments was from 17 to 334 m/s. Generally, the
fragments with large angles from the x-axis had a tendency to travel at larger ve-
locities. The back-projected trajectories of the fragments approximately showed
an origin near the impact point of the plate coinciding with the trajectory of the
incident projectile.
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Figure 3.3: Reconstructions for multiple impact tests and their associated veloci-
ties.

The impact-fragmentation tests performed had a wide variation of observed
fragmentation behavior due to the variations in powder loads for launching the
projectiles, unintended induced angles of attack, as well as the occasional pre-
impact fragmentation from inside the barrel or after exiting the sabot stripper.
The impact fragmentation resulted in large fragments as well as fine particle
clouds. The overlap of fragment projections, especially in the early time of track-
ing fragments also mitigated the number of successful reconstructions. The suc-
cessful reconstructions were observed to have been the largest fragments in the
shared optical test section region. The mismatched image resolutions for the cam-
eras effectively reduced the amount of successful reconstructions. From individ-
ual cameras, the smallest fragment size successfully 3D reconstructed had a pixel
area of 2-5 pixels. The reliability of this small size tracking was significantly lim-
ited by the different camera resolutions which were also effectively reduced due
to the Bayer filter and monochromatic illumination.

Generally, incident projectiles with apparent unintended induced angles of
attack resulted in fragments with a tendency to have large velocity z components.
Fragments with significant angles from the x-axis travelled within the field of
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view for a significantly shorter time than fragments with smaller angles, limiting
the ability to reconstruct their trajectories due to limited visibility.

Uncertainty propagation for the reported 3D velocities was performed by
accounting for the spatial uncertainties in the trajectory reconstruction process.
The propagation of the reprojection error in either camera had a mean value of
δrpx = 0.34 px which is applied to each coordinate pair combination between the
two cameras to determine the error associated with the triangulation process for
each triangulated point, as described by equations 2.7 and 2.8 in Section 2.7. The
largest determined fractional uncertainties for δx3D

x3D
, δy3D

y3D
, and δz3D

z3D
were 1%,1%,

and 2%, respectively. The jitter time of the SI-LUX 640 nm spoiled coherence
laser was reported to be less than 5 ns. The uncertainty of the velocity obtained
from the 3D Kalman filter process and the uncertainty propagation of the spatial
coordinates and time was thus approximately 1-2% for the velocity field shown
in Figure 3.3, as discussed in Section 2.8.

3.2 Fragment Size Estimation and Bivariate Histograms

Figure 3.4: Boundaries highlighting the measured areas of the 5 largest fragments
indicated in green.

The non-parallel light of the shadowgraph systems affects the projected size
of the objects as they pass through the test section due to the magnification of the
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objects. The fragment projection sizes are determined by finding the magnified
size with respect to the calibration plane. A similar triangle geometry is assumed
using the distance from the camera to the objects and the distance of the camera
to the calibration plane to account for magnification. The depth of the objects, or
distance from the primary camera, are visualized in Figure 3.5.

Figure 3.5: Distance of the incident projectile and the fragments shown in figure
3.4 from the camera as a function of time.

For each fragment, the uncertainty in the pixel area is determined by finding
the range of maximum between-class variance values associated with the range
of threshold values in Otsu’s method. This range of thresholds is used to observe
the range in pixel area possible using Otsu’s method of binarization to obtain the
pixel area error δApx.

The area for each fragment is determined over the sequence of frames they
are tracked through. Measured fragment pixel areas are presented in Figure 3.6
where the uncertainty is shown as the light colored region around solid line mea-
surements. When plotted as a function of frame number, it is observed that par-
ticles have an oscillating pixel area. This is attributed to the particles having a
non-spherical shape and rotating about multiple axes. For a sequence of images,
the equivalent spherical assumption is utilized then averaged over the time that
a representative fragment is tracked simultaneously in each camera. The conver-
sion from pixel area to equivalent spherical diameter for a representative frag-
ment, and the associated time-averaged equivalent spherical diameter, is shown
in Figure 3.7. Motion blur did not affect particle sizes since for the largest frag-
ment velocities observed, the distance travelled would have been approximately
on the order of microns. This distance is significantly smaller the resolution of
the cameras while using the 20 ns pulse width of laser illumination.
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Figure 3.6: The pixel area and associated uncertainty with time for 2D projections
of 5 representative tracked fragments.

Examples of multiple fragment equivalent spherical diameters with respect
to time are visualized for 5 fragments tumbling at different rates in Figure 3.8. The
difference in the size of peaks and valleys of the observed oscillatory behavior
reflect the rate of tumbling on different axes.

(a) (b)

Figure 3.7: (a) Pixel area for a fragment and (b) equivalent diameter for a repre-
sentative fragment with respect to frame number.
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(a) (b)

(c) (d)

(e)

Figure 3.8: The equivalent spherical diameters of the same fragments in Figure
3.4 tracked simultaneously in each camera

For the same impact fragmentation tests shown in Figure 3.3, bivariate his-
tograms describe the frequency of reconstructed fragment trajectories with re-
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spect to the fragment velocities and the mean equivalent spherical diameter. Si-
multaneously tracked fragments and their respective sizes and velocities are vi-
sualized in bivariate histograms in Figure 3.9. For the data in Figure 3.9, the mean
estimated equivalent spherical diameter sizes ranged from approximately 0.5 to
3.1 mm in size. The majority of fragments across multiple impact-fragmentation
tests had a size between 0.5 and 1.5 mm. The majority of fragments travelled at
velocities between 17 to 100 m/s. While the fragments larger than 1.5 mm tended
to travel at speeds between 17 to 50 m/s and the smaller fragments between 0.5
to 1.5 mm in size travelled between the full range of observed velocities (17 to
340 m/s).

Table 3.1 summarizes the mass and velocities of the ballistically launched
cylindrical aluminum projectiles, and their respective momentum and kinetic en-
ergy. For comparison, after impact the images were analyzed to measure the
resulting mass, momentum, and kinetic energy of the fragments. The mass for
each fragment

m = ρ
π

6
d3

e (3.1)

is comprised of the uniform density ρ assumption and the spherical volume cal-
culation in terms of the equivalent spherical diameter de. Momentum for each
fragment is calculated using

p = mv3D = (ρ
π

6
d3

e )v3D (3.2)

in terms of mass and the 3D velocity of the fragment, v3D. The kinetic energy for
each fragment is calculated by

T =
1
2

mv2
3D =

1
2
(ρ

π

6
d3

e )v
2
3D (3.3)

with the same assumptions. The 2D fragment projections are used to calculate
a total mass of the three-dimensionally tracked fragments after impact, which is
calculated by summing the masses of each fragment. Similarly, the total momen-
tum of the three-dimensionally tracked fragments is calculated by summing the
momentum of each fragment and likewise for total kinetic energy.

A mass ratio is calculated from the division of the total mass of the tracked
fragments by the known mass of the projectile. Similarly, the momentum ratio is
calculated from the division of the total momentum of the tracked fragments by
the momentum of the incident projectile. The kinetic energy ratio is calculated
from the total kinetic energy of the tracked fragments by the kinetic energy of the
incident projectile. Table 3.2 summarizes the optically recovered mass, momen-
tum, and kinetic energy ratios for fragments for each impact test compared to the
incident projectile’s properties in Table 3.1. The total mass of the fragments with
successfully reconstructed trajectories was compared to the mass of the incident
projectile in reported mass ratios, ranging from 21% to 45%. After comparing
the estimated mass from 2D projections of all detected fragments in one camera,
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the mass ratio was approximately 95% of the incident projectile’s mass. The mis-
matched resolutions of the cameras significantly affected the number of success-
ful reconstructions and the ability to resolve smaller matching fragments in both
cameras simultaneously. The ratio of the total momentum of the fragments with
successfully reconstructed trajectories to the momentum of the incident projectile
ranged from 1.3% to 8.2%. The ratio of the total kinetic energy of the fragments
with successfully reconstructed trajectories to the kinetic energy of the incident
projectile ranged from 0.08% to 2.1%.

The resolution played a contributing factor in the ability to resolve the same
fragments in each camera, which significantly impact the number of reconstructed
fragment trajectories and the associated mass ratios, which were much smaller
than the mass ratio of 95% of fragments tracked in a single camera. Similarly,
the reported momentum and kinetic energy ratios are dependent on the masses
of fragments with successfully reconstructed fragment trajectories and therefore
the ratios reported in Table 3.2 are smaller than expected since the mass ratios
reflects the reduced number of successful trajectories.

Table 3.1: A summary of the properties for each incident projectile.

Test # Mass (g) Density (g/cmˆ3) Velocity (m/s) Momentum (kg m /s) Kinetic Energy (J)

1 0.488 2.604 640 0.31 98.7
2 0.502 2.590 690 0.35 119
3 0.472 2.545 630 0.30 93.7
4 0.485 2.598 630 0.30 96.0
5 0.476 2.607 603 0.29 86.5

Table 3.2: A summary of the ratios of the fragment mass, momentum, and ki-
netic energy for fragments with successfully reconstructed 3D trajectories to the
incident projectile.

Test # Mass Ratio Momentum Ratio Kinetic Energy Ratio

1 21% 1.4% 0.12%
2 45% 8.2% 2.1%
3 25% 1.3% 0.08%
4 41% 3.3% 0.36%
5 29% 2.4% 0.3%
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(a) (b)

(c) (d)

(e)

Figure 3.9: Bivariate histograms of the series of impact fragmentation tests.
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CHAPTER 4

CONCLUSION

4.1 Conclusion

The methodology for simultaneous in-situ trajectory, velocity, and size esti-
mates have been successfully developed for fragments resulting from ballistically-
launched impacts of reactive material specimens over multiple tests. This work
utilized stereo shadowgraph imaging to obtain 3D information of in-flight frag-
ments after steel plate impacts. Digital image processing techniques, including
image segmentation, were applied to high-speed shadowgraph images to obtain
the location and projected area of fragments. Kalman filter-based tracking was
implemented for each camera view and 3D trajectories were reconstructed from
the triangulation of fragments, uniquely identified using the epipolar geometry
of the stereo shadowgraph setup. Velocities of fragments were determined us-
ing 3D Kalman filters applied to the reconstructions. Successfully tracked frag-
ments allowed for the measurement of the fragment sizes at each time step and
visualization of the fragments rotating on multiple axes. After comparing the un-
certainty of the velocity measurements via the 3D Kalman filters with the uncer-
tainty propagation calculations, the former approached the latter fractional un-
certainties, serving as a comparison tool that suggested the 3D velocities could be
obtained solely from the trajectory reconstruction. For the simplicity in perform-
ing the uncertainty propagation calculations, estimation of the velocities directly
from the reconstructed trajectory is preferred.

Some limitations of the optical diagnostics methodology explored in this
work are significant differences in resolution between the two mismatched cam-
eras used in the stereo calibration process as well as due to the color camera Bayer
filter on resolution; however, this body of work suggests that mismatched cam-
eras can still perform in-situ optical diagnostics despite limiting the minimum
size of fragments tracked simultaneously in each camera. The difference in res-
olutions between the two cameras also contributed to the reduced number of
successful 3D trajectory reconstructions.

The stereo shadowgraph system implemented in this work was successful
in the goal of obtaining fragment area projections as well as depth information of
fragments. The benefits of this intersecting configuration of single-lens focused
shadowgraph systems includes the simplicity of the experimental setup and ad-
justments. The challenges of this system is the limitation of the field of view and
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the size of overall optical test section comprised from the intersecting converging
light cones, both restricted by the size of the lenses utilized. Additionally, the oc-
clusion of fragments was a source of impediment for tracking despite using two
single-lens focused-shadowgraph orientations.

The unique measurements performed in this work includes the area mea-
surement and the resolution of fragments rotating on multiple axes. This was
achieved using the combination of the tracking algorithms and the precise area
extraction via image segmentation techniques. Mean equivalent spherical diam-
eters of fragments were determined with the consideration of the depth of objects
in the test section, the magnification, and the tumbling of area projections.

Simultaneous velocities and fragment sizes for fragments are visualized in
bivariate histograms to represent the result of the fragmentation behavior of RM
samples undergoing high-velocity impacts. They provided insight into the most
frequent size and velocities represented by fragments observed for an individual
high velocity impact. The bivariate histograms were also useful for comparing
the range of observed fragment sizes and velocities, from test to test, with varying
incident projectile velocities.

4.2 Future Work

In future work, the optical diagnostic techniques can be applied to other
studies of fragmentation behavior including explosive casings, warheads, bal-
listics of other compositions, etc. Additionally, future work includes the appli-
cation of the PTV techniques discussed in this work using other shadowgraph
techniques, including projective shadowgraphy in stereo, for larger scale field
tests of fragmentation behavior. When applying tracking techniques to larger
fields of view, future work could also apply an acceleration model of motion and
quantify the force of drag on fragments, or use non-linear Kalman Filtering tech-
niques. Comparisons of Kalman filter-based tracking to DIC techniques should
also be explored.

Future work should consider applying different geometric assumptions when
performing size analysis of fragments such as other polygonal geometries. The
continuous measurement of fragment projection pixel area akin to a computer-
ized particle size analyzer approach allows for observed oscillations in area that
could be used in conjunction with other shape factors and geometric assumptions
for size estimation of fragments. Improvements to the tracked size estimation ap-
proach could include the reconstruction of the 3D volume via a convex hull or a
true shape from the rotation for fragments. The next steps for obtaining bivari-
ate histograms from the size and velocity measurements of fragments as a result
of high velocity impacts could include the true shape of fragments from the ob-
served rotations.
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APPENDIX A

MATLAB CODE

A.1 Automated Fragment Detection

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % AutoFragDetection.m
3 % A code for detecting and extracting fragment positions to ...

input into
4 % Kalman filter−based tracking codes.
5

6

7 %% clear everything
8 clc
9 clear all

10 close all
11

12 %% load preset variables from Fragment Detection Preview Codes
13 % filePath = 'D:\Sean\Documents\20210903 THOR Testing\shot 4\';
14 % cd(filePath)
15 % load('savedVariablesShot4 2000to50v2.mat');
16

17 %% load camera images
18 currentFolder = pwd;
19 % pathname = 'D:\Sean\Documents\20210903 THOR Testing\shot ...

4\Test1\20210903 THOR Shot4 Phantom v711';
20 pathname = strcat(currentFolder,...
21 '\input files\stereo sample files\test 11 25736\actual');
22 cd(pathname);
23 Cam = dir('*tiff'); % list of all tif images
24

25 %% initialize or override variables to begin automated detection ...
of frag

26 startFrame = 45; % user defined input of when to start process
27 finalFrame = 100; % user defined input of when to end process
28 Nfiles = finalFrame − startFrame + 1; % number of files
29 maximumSize = 200; % the maximum pixel area to observe
30 minimumSize = 5; % the minimum pixel area to observe
31 X = cell(1,Nfiles); %detection X coordinate indices
32 Y = cell(1,Nfiles); %detection Y coordinate indices
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33 xoffset = 0; % controls the window of where to accept detections ...
of frag

34

35 %% detect fragments in images
36 for i = startFrame: finalFrame
37 %% read in images
38 I1 = imread(Cam(i).name); % first image in processing sequence
39 % background = imread(Cam(1).name); % background image
40 % subtracted = (background − I1); % perform image ...

subtraction if desired
41 %
42 %% if desired, can use Otsu's method (threshold based image ...

segment.)
43 % level = graythresh(I1); %
44 % bw = ¬imbinarize(I1, level);
45 % figure, imshow(bw,[])
46 %% image segmentation/binarization
47 bw = segmentImage2(I1); % perform image segmentation
48 labeled = bwlabel(bw); % labels regions
49

50

51 % preview images if desired
52 % figure, imshow(bw, [])
53 % title('cam 1 bw')
54 % figure, imshow(labeled, [])
55 % title('cam 1 label')
56

57 %% look at all detected regions and extract properties
58 % all detected regions, or particles
59 properties = regionprops(labeled, 'all');
60 fragmentAreas = [properties.Area]; % save pixel areas of regions
61 desiredSizes = (fragmentAreas ≤ maximumSize) & ...

(fragmentAreas ≥ minimumSize); % desired sizes of fragments
62 desired indices = find(desiredSizes); % labels of desired ...

fragments
63

64 %% isolate desired detected regions
65 if ¬isempty(desired indices)
66 % isolate desired labels on labeled image
67 desiredFragmentImage = ismember(labeled, desired indices);
68 % Label each regions for future measurements
69 labeledDesiredImage = bwlabel(desiredFragmentImage);
70 % figure, imshow(labeledDesiredImage)
71 % title('labeledDesiredImage')
72

73 %% obtain properties of isolated regions
74 properties2 = regionprops(labeledDesiredImage, 'all');
75

76 % sort set number of particles by area, largest to ...
smallest if
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77 % desired
78 get particles = [properties2.Area];
79 % [get particles, j] = sort(get particles, 'descend');
80 % largeToSmall = sort(properties2, 'descend');
81

82 % save centroids and other properties in variables
83 centroids2 = [properties2.Centroid];
84 equivDiam2 = [properties2.EquivDiameter];
85 boundBox = [properties2.BoundingBox];
86 numberOfBoxes = length(equivDiam2);
87 boxes = reshape(boundBox,[],numberOfBoxes);
88 x cent = centroids2(1:2:end−1);
89 y cent = centroids2(2:2:end);
90 imshow(I1,[])
91 if i == startFrame
92 h = drawcircle('Color','g','FaceAlpha',0.0);
93 x0 = h.Center(1);
94 y0 = h.Center(2);
95 r = h.Radius;
96 else
97 h = ...

drawcircle('Center',[x0,y0],'Radius',r,'Color','g', ...
'FaceAlpha',0.0);

98 end
99 hold on

100

101 for n = 1:length(x cent)
102 if (x cent(n)−x0)ˆ2 + (y cent(n)−y0)ˆ2 ≤ rˆ2
103 xCent(n) = x cent(n);
104 yCent(n) = y cent(n);
105 end
106 end
107

108 %save centroids into cells
109 x centroid{i − startFrame + 1} = xCent;
110 y centroid{i − startFrame + 1} = yCent;
111 equivalentDiameter{i − startFrame + 1} = equivDiam2;
112

113

114

115 % plot centroids
116 for k = 1 : length(xCent)
117 % if x cent(k) > xoffset % show only centroids of ...

past offset
118 plot(xCent(k), yCent(k), 'r+');
119 % end
120 end
121 drawnow();
122 end
123 end
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124

125 %% save detections into a directory of user's choice
126 detectionsDirectory = strcat(currentFolder,...
127 '\saved files');
128 mkdir(detectionsDirectory)
129 cd(detectionsDirectory)
130 save('detections stereo test11 size5to100.mat', 'x centroid', ...

'y centroid')
131

132

133

134 %% image segmentation functions
135

136 % image segmentation of color images: flood fill−based
137 function [BW,maskedImage] = segmentImage(RGB)
138 %segmentImage Segment image using auto−generated code from ...

imageSegmenter app
139 % [BW,MASKEDIMAGE] = segmentImage(RGB) segments image RGB using
140 % auto−generated code from the imageSegmenter app. The final ...

segmentation
141 % is returned in BW, and a masked image is returned in MASKEDIMAGE.
142

143 % Auto−generated by imageSegmenter app on 21−Mar−2022
144 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145

146

147 % Convert RGB image into L*a*b* color space.
148 X = RGB;
149

150 % Auto clustering
151 s = rng;
152 rng('default');
153 L = imsegkmeans(single(X),2,'NumAttempts',2);
154 rng(s);
155 BW = L == 2;
156

157 % Flood fill
158 row = 170;
159 column = 542;
160 tolerance = 5.000000e−03;
161 normX = sum((X − X(row,column,:)).ˆ2,3);
162 normX = mat2gray(normX);
163 addedRegion = grayconnected(normX, row, column, tolerance);
164 BW = BW | addedRegion;
165

166 % Create masked image.
167 maskedImage = RGB;
168 maskedImage(repmat(¬BW,[1 1 3])) = 0;
169 end
170
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171 % image segmentation of grayscale images: adaptive thresholding
172 function [BW,maskedImage] = segmentImage2(X)
173 %segmentImage Segment image using auto−generated code from ...

imageSegmenter app
174 % [BW,MASKEDIMAGE] = segmentImage(X) segments image X using ...

auto−generated
175 % code from the imageSegmenter app. The final segmentation is ...

returned in
176 % BW, and a masked image is returned in MASKEDIMAGE.
177

178 % Auto−generated by imageSegmenter app on 26−Mar−2022
179 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
180

181

182 % Adjust data to span data range.
183 X = imadjust(X);
184

185 % Threshold image − adaptive threshold
186 BW = imbinarize(X, 'adaptive', 'Sensitivity', 1.0, ...

'ForegroundPolarity', 'bright');
187

188 % Invert mask
189 BW = imcomplement(BW);
190

191 % Create masked image.
192 maskedImage = X;
193 maskedImage(¬BW) = 0;
194 end

A.2 Multi Fragment Kalman Filter (constant velocity)

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % KalmanTracking.m
3 % A code for detecting and extracting fragment positions to ...

input into
4 % Kalman filter−based tracking codes.
5 %% clear everything
6 clc
7 clear all
8 close all
9 %%

10 % References
11 % Buehren, Markus (2020). Functions for the rectangular assignment
12 % problem version 1.5.0.0. assignmentoptimal source code
13 % ...

https://www.mathworks.com/matlabcentral/fileexchange/6543−functions−for−the−rectangular−assignment−problem,
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14 % MATLAB Central File Exchange. Retrieved October 28, 2020.
15

16 %% user defined initial conditions
17 % startFrame = 40; % THOR
18 % finalFrame = 60; % THOR
19

20 % IndianHead data
21 startFrame = 45; % user defined input of when to start process
22 finalFrame = 100; % user defined input of when to end process
23 range1 = finalFrame − startFrame + 1; %restrict number of frames ...

of interest
24 num particles = 100; %number of particles
25 updateInitialize = range1; %startFrame − 37 + 1;
26

27 t = 1; % time increment in frames
28 %THOR: 1
29 max dist = 4; % THOR: 25
30 min dist = 0; % THOR: 0
31 initial vel = 3;
32 std dev x = 1; % error in x position measurement 100
33 std dev y = 1; % error in y position measurement 100
34 accel = 0; % initialize acceleration in pixels/frameˆ2
35 std dev accel = 1; % error in acceleration 100
36

37 poi = 1; %particle of interest
38

39 enablePreview = 1; % Y = 1, N = 2
40 %% load detection mat file and image files
41 currentFolder = pwd;
42 filePath = strcat(currentFolder,...
43 '\saved files');
44 cd(filePath);
45 load('detections stereo test11 size5to100.mat')
46

47 pathname = strcat(currentFolder,...
48 '\input files\stereo sample files\test 11 25736\actual');
49 cd(pathname);
50 images = dir('*tiff'); % list of all tif images
51

52 %% add the contents of subfolders with necessary files to run
53 filePath = strcat(currentFolder,...
54 '\Important Non−SGDL Codes');
55 addpath filePath
56

57 %% initialize the coefficent matrices
58 A = [1 t; 0 1];
59 B = [tˆ2/2; t];
60 C = [1 0];
61 %% assumed initial conditions (user defined)
62 % initialize x and y positions and measurements
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63 num meas = length(x centroid{updateInitialize}); %initize number ...
of measurements

64 state xpos = x centroid{updateInitialize}; % first x estimate = ...
x position measurement

65 state ypos = y centroid{updateInitialize}; % first y estimate = ...
y position measurement

66 state xvel = zeros(1, num meas);
67 state yvel = zeros(1, num meas);
68

69

70

71 for n = 1:num meas
72 state xvel(n) = initial vel;
73 state yvel(n) = 0;
74 end
75

76 state x = [state xpos; state xvel]; % estimate of x direction states
77 state y = [state ypos; state yvel]; % estimate of y direction states
78 size(state xpos)
79 size(state xvel)
80

81 preset = 9000; %pick large enough size to prevent tracks from ...
starting at same origin

82 est posX = nan(preset);
83 est posY = nan(preset);
84 est velX = nan(preset);
85 est velY = nan(preset);
86

87

88 % initialize error in estimates of x and y positions
89 var a = std dev accel ˆ 2; % variance of acceleration
90 dep1 = (tˆ2/2)ˆ2; % dependencies in time
91 dep2 = t*(tˆ2/2);
92 dep3 = tˆ2;
93 E predX = [dep1 dep2; dep2 dep3] * var a;
94 E predY = [dep1 dep2; dep2 dep3] * var a;
95

96 %intialize error measurement covariance matrices
97 E measX = std dev x ˆ 2; % error in x position measurement
98 E measY = std dev y ˆ 2; % error in y position measurement
99 strk trks = zeros(1,2000); %counter of how many strikes a track ...

has gotten
100

101 %% Kalman filter−based tracking
102 disp('tracking...')
103 tic
104 for image = 1:range1
105 %Update state estimation prediction (Kalman step 1)
106 %testA = (A .* state x(1,:))
107 %testB = (accel * B)
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108 for n = 1:length(state x)
109 state x(:, n) = (A * state x(:,n)) + (accel * B);
110 state y(:, n) = (A * state y(:,n)) + (accel * B);
111 end
112

113 % generate the cost matrix
114 measured position = [x centroid{image}; y centroid{image}]';
115 estimated position = [state x(1,1:num meas); ...

state y(1,1:num meas)]';
116 pair wise = [estimated position; measured position];
117 vec sum = sum(power(pair wise.', 2),1);
118 term1 = vec sum.' + vec sum;
119 term2 = 2 * pair wise * pair wise.';
120 eulerian distance = sqrt(term1 − term2);
121 cost matrix = eulerian distance(1:num meas,num meas+1:end);
122

123 %predict next covariance (step 2)
124 E predX = A * E predX * A' + E predX;
125 E predY = A * E predY * A' + E predY;
126

127 % Calculate the Kalman Gain factor (step 3)
128 Kx = E predX * C' * inv(C * E predX * C' + E measX);
129 Ky = E predY * C' * inv(C * E predY * C' + E measY);
130

131 % Buehren, Markus (2020). Functions for the rectangular ...
assignment

132 % problem version 1.5.0.0.
133 % ...

https://www.mathworks.com/matlabcentral/fileexchange/6543−functions−for−the−rectangular−assignment−problem,
134 % MATLAB Central File Exchange. Retrieved October 28, 2020.
135 munkres = assignmentoptimal(cost matrix);
136

137 % check whether assigment is reasonable given user defined ...
distance

138 check = zeros(1,num meas);
139 cost = zeros(1, num meas);
140 for n = 1:num meas
141 selection = munkres(n);
142 if selection ̸= 0
143 cost(n) = cost matrix(n, selection);
144 check(n) = cost(n) < max dist && cost(n) > min dist;
145 end
146 end
147

148 %apply the assignment to the step of updating the state ...
estimates

149 munkres = times(munkres', check);
150 for n = 1:length(munkres)
151 if munkres(n) > 0 && munkres(n) ≤ num particles
152 selection = munkres(n);
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153 % Kalman step 4
154 Z x = x centroid{image}(selection);
155 Z y = y centroid{image}(selection);
156 updateX = (Z x − C * state x(:,n));
157 updateY = (Z y − C * state y(:,n));
158

159 test = updateX * Kx;
160 state x(:, n) = state x(:, n) + updateX * Kx;
161 state y(:, n) = state y(:, n) + updateY * Ky;
162 updateX = (Z x − C * state x(:,n));
163 updateY = (Z y − C * state y(:,n));
164 end
165 end
166

167 %save the estimated positions and velocities
168 est posX(image,1:num meas) = state x(1,1:num meas);
169 est posY(image,1:num meas) = state y(1,1:num meas);
170 est velX(image,1:num meas) = state x(2,1:num meas);
171 est velY(image,1:num meas) = state y(2,1:num meas);
172

173 % kalman step 5: update error covariance estimation for x ...
and y

174 I = [1 0; 0 1]; %identity matrix
175 E predX = (I − Kx * C) * E predX; %updated predicted error ...

covariance for x direction
176 E predY = (I − Ky * C) * E predY; %updated predicted error ...

covariance for y direction
177

178 % update new particle paths
179 label particles = 1:size(measured position, 1); %label ...

existing particles
180 non members = ¬ismember(label particles,munkres); %check for ...

nomembers
181 non members meas = measured position(non members,:)'; %find ...

non−existing members
182

183 if ¬isempty(non members meas) % if non−existing members ...
exist, add them

184 L = length(non members meas);
185 state x(1, num meas + 1: num meas + L) = ...

non members meas(1,:);
186 state y(1, num meas + 1: num meas + L) = ...

non members meas(2,:);
187 num meas = num meas + L;
188 end
189 end
190 toc
191 disp('tracking ended...')
192 %% save to mat file
193 %store kalman filtered estimates into a .mat file
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194 disp('saving data...')
195 tic
196 filePath = strcat(currentFolder,...
197 '\saved files');
198 cd(filePath);
199 save('kalman test11 v1.mat', 'images', 'est posX', 'est posY', ...

'x centroid', 'y centroid', 'num meas', 'range1','est velX', ...
'est velY')

200 toc
201 disp('data saved!')
202

203 %% preview particle paths
204 if enablePreview == 1
205 disp('plotting preview of tracks...')
206 tic
207 plot particle paths(images, est posX, est posY, x centroid, ...

y centroid, num meas, range1 , currentFolder, startFrame);
208 toc
209 end
210 %% functions
211 %plot path of particles: a preview
212 function plot particle paths(files, pos1, pos2, meas1, meas2, ...

num, time range, currentFolder, startFrame)
213 pathname = strcat(currentFolder,...
214 '\input files\stereo sample files\test 11 25736\actual');
215 cd(pathname);
216 files = dir('*tiff'); % list of all tif images
217

218 %file path = ['C:\Users\Sean\Desktop\RM master\RM Data\RM ...
Open Material W−AL ...
THOR\Test 1 cyl W87.5 Al12.5 Process\OG Images\'];

219 %pic name prefix = 'Test 1 cyl W87.5 Al12.5 RP2';
220 poi = 1;
221 %save video of frames
222 video = VideoWriter('test11 25736.avi');
223 video.FrameRate = 1;
224 open(video);
225

226 for image = 1: time range
227

228 input = imread(files(image + startFrame − 1).name);
229 imshow(input, []);
230 hold on;
231 for trail = 1:num
232 trail pos x = pos1(1:image,trail);
233 trail pos y = pos2(1:image,trail);
234 if trail == poi
235 %plot(trail pos x, ...

trail pos y,'−','color','b','linewidth',1) ...
%show estimated path
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236 else
237 plot(trail pos x, ...

trail pos y,'−','color','r','linewidth',1) ...
%show estimated path

238 end
239 end
240 drawnow;
241 hold off
242 end
243

244 end

A.3 Display Tracking

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % DisplayFilteredTracks.m
3 % A code for isolating and displaying non−erroneous filtered tracks
4 % determined from the 2D Kalman filter−based tracking code.
5 %% clear everything
6 clc
7 close all
8 clear all
9 %% user defined variables

10 startFrame = 45; % user defined input of when to start process
11 finalFrame = 100; % user defined input of when to end process
12 updateInitialize = 1; % offset from startFrame if needed
13 Nfiles = finalFrame − startFrame + 1; % number of files
14 final = Nfiles;
15 enableColor = 2; % Y = 1, N = 2
16 %% load in saved tracks from user defined directories
17 currentFolder = pwd;
18 filePath = strcat(currentFolder,...
19 '\saved files');
20 cd(filePath);
21 load('kalman test11 v1.mat')
22 %% read in images from user defined directories
23 pathname = strcat(currentFolder,...
24 '\input files\stereo sample files\test 11 25736\actual');
25 cd(pathname);
26 files = dir('*tiff'); % list of all tif images
27 %files = dir('*tif');
28 input = (imread(files(1).name));
29

30

31 %% assumed size of circles to encapsulate tracked fragments
32 fragment area = 5;
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33 equiv diam = sqrt(4*fragment area/pi); %m
34 [row, col] = size(input);
35 [xgrid, ygrid] = meshgrid(1:size(input ,2), 1:size(input ,1));
36 th = 0:pi/50:2*pi;
37 r = 2 * equiv diam;
38

39

40 %% rewrite variables
41 files = images;
42 pos1 = est posX;
43 pos2 = est posY;
44 meas1 = x centroid;
45 meas2 = y centroid;
46 num = num meas;
47 time range = range1;
48 velx = est velX;
49 vely = est velY;
50

51

52 %% setup font, label, color map properties
53 labelShiftX = 0;
54 textFontSize = 7;
55 c = parula;
56 colormap(c);
57 A = colormap(c);
58

59

60 %% filter erroneous vectors
61 for image = 1 + updateInitialize:final
62 % filter the trails and get the desired velocities
63 filtered trails = [];
64 desired velocities = [];
65 n = 1;
66 for trail = 1:num
67 trail pos x = pos1(1:image,trail);
68 trail pos y = pos2(1:image,trail);
69

70 if image > 1 && ¬isnan(vely(image, trail)) && ¬...
isnan(vely(image−1, trail))

71 ∆ vely = vely(image, trail) − vely(image−1, trail);
72 end
73 vel2D = sqrt(velx(image, trail) ˆ 2 + vely(image, trail) ...

ˆ 2);
74 % this line below filters bad tracks
75 if velx(image, trail) > 0 && abs(vely(image, trail)) < ...

4 && abs(velx(image, trail)) ̸= 5 && velx(image, ...
trail) < 3%

76 increment = (pos1(1,trail)) − (pos1(image,trail));
77
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78 if (image == final) %& (abs(increment) < 2 | | ...
isnan(increment)) % && (pos1(image,trail) > 160) ...
&& pos2(image, trail) > 100%

79 filtered trails(n) = trail;
80 n = n + 1;
81 end
82 end
83 end
84

85 for k = 1:n−1
86 desired velocities(k) = sqrt(abs(velx(range1, ...

filtered trails(k)))ˆ2 + abs(vely(range1, ...
filtered trails(k))) ˆ 2);

87 end
88 end
89 %% filter some tracks by
90 % filtered trails(17:19) = [];
91 % d1 = [36,38,10,41,11];
92 % filtered trails(d1) = [];
93

94 %% check velocities
95 % find and sort non−zero velocities
96 des vel index = find(desired velocities);
97 des vel = desired velocities(des vel index);
98 sort vel = sort(des vel);
99

100 %% define color range
101 minVel = sort vel(1);
102 maxVel = sort vel(end);
103 % endOffset = 1;
104 % while isnan(maxVel)
105 % maxVel = sort vel(end − endOffset);
106 % endOffset = endOffset + 1;
107 % end
108 %% apply calibration and determine min and max values for color var
109 % the following is an example of a THOR test calibration
110 diameterSphere = 58.32/1000; % mm to m
111 calibration = diameterSphere/178; % mm/px
112

113 maxValue = maxVel * (calibration)/ 2.5e−5; % m/px); %px;
114 minValue = minVel * (calibration)/ 2.5e−5;
115

116 a = minValue:((maxValue − minValue)/255):maxValue;
117 a px = minVel:((maxVel − minVel)/255):maxVel;
118

119

120 %% generate colors for tracks and color bars
121 RGB = [];
122 for trail = 1:length(des vel)
123 for j = 1:length(a px)
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124 absolute(j,trail) = abs(a px(j) − abs(des vel(trail)));
125 end
126 [val, idx] = min(absolute(:, trail));
127 if idx > 256
128 idx = 256;
129 end
130 RGB(trail, :, :, :) = A(idx, :);
131 end
132

133 fig = figure;
134 ax1 = axes(fig);
135 %% display tracking of particles with colors
136 for image = 1:final
137

138 [input, map] = imread(files(image + startFrame−1).name);
139 input = mat2gray(input);
140 imshow(input, []);
141 n = 1;
142 hold on;
143 for trail = 1:length(des vel)
144 trail pos x = pos1(1:image,filtered trails(trail));
145 trail pos y = pos2(1:image,filtered trails(trail));
146 tail x = 1.0 * pos1(image,filtered trails(trail));
147 tail y = 1.0 * pos2(image,filtered trails(trail));
148 xunit = r * cos(th) + tail x;
149 yunit = r * sin(th) + tail y;
150 if enableColor == 1
151 plot(trail pos x, ...

trail pos y,'−','color',RGB(trail,:,:,:),'linewidth',2) ...
%show estimated path

152 % plot(xunit, yunit, RGB(trail,:,:,:));
153 else
154 plot(trail pos x, ...

trail pos y,'−','color','g','linewidth',2) %show ...
estimated path

155 % plot(xunit, yunit, 'g');
156 end
157

158 % text(trail pos x, trail pos y, num2str(trail), ...
'FontSize', textFontSize, 'FontWeight', 'Bold', 'color', ...
'white');

159 value = (pos1(1,trail)) − (pos1(image,trail));
160

161 if (image == final) % && (pos1(image,trail) < 370) && ...
(abs(value) > 0 | | isnan(value)) && (trail < 500)

162 %text(pos1(image:image,trail) + labelShiftX, ...
pos2(image:image,trail), num2str(trail), ...
'FontSize', textFontSize, 'FontWeight', 'Bold', ...
'color', 'r');; %show measured centroid

163 filtered trails(n) = trail;
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164 trail pos xref = pos1(1:image,filtered trails(trail));
165 trail pos yref = pos2(1:image,filtered trails(trail));
166 n = n + 1;
167 end
168

169 end
170 drawnow;
171 pause(0.5)
172

173 %write frames into directory
174 str i = num2str(image,'%03.f');
175 frame = strcat('frame burning centerCam2',str i, '.tif');
176 iptsetpref('ImshowBorder','tight');
177 imwrite(getframe(gcf).cdata, frame, 'Compression', 'none')
178

179 end
180

181 %% setup color bar
182 if enableColor == 1
183 ax2=axes(fig,...
184 'Position',[ax1.Position(1)+ax1.Position(3) + ...

.5,ax1.Position(2),0.0,0.4]);
185 axis off
186 set(ax2,'color','none');
187

188 % hcb = colorbar(ax2,'Position',...
189 % [ax1.Position(1)+ax1.Position(3)+0.025,0.15,0.05,0.7],...
190 % 'AxisLocation','in');
191 ax2=axes(fig,...
192 'Position',[ax1.Position(1)+ax1.Position(3) + ...

.5,ax1.Position(2),0.0,0.4]);
193 axis off
194 set(ax2,'color','none');
195

196 cmap = parula;
197 cmap1 = colormap(cmap);
198 hcb = colorbar(ax2, 'Position', [.9 0.1 0.03 .8]);
199

200 ax2.CLim = [minValue,maxValue];
201 colorTitleHandle = get(hcb,'Title');
202 titleString = '\color{white} velocity (m/s)';
203 set(colorTitleHandle ,'String',titleString)
204 colormap(ax1, 'gray');
205

206 % hcb.Layout.Tile = 'east';
207 hcb.Visible = 'on';
208 hcb.TickLabelInterpreter = 'tex';
209 hcb.FontSize = 12;
210 hcb.Ticks = linspace(minValue, maxValue, 5);
211 tickRange = linspace(minValue, maxValue, 5);
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212 white = [1,1,1];
213 tickLabelsCheck = hcb.TickLabels;
214 % ticksRound = [];
215 for ii = 1:numel(hcb.TickLabels)
216 ticksRound(ii) = tickRange(ii);
217 ticksRound(ii) = round(ticksRound(ii),3,'significant');
218 hcb.TickLabels{ii} = [sprintf('\\color[rgb]{%f,%f,%f} ', ...

white), num2str(ticksRound(ii))];
219 end
220

221 %% save/write out color bar
222 str i = num2str(image,'%03.f');
223 frame = strcat('frame burning centerCam2',str i, '.tif');
224 iptsetpref('ImshowBorder','tight');
225 imwrite(getframe(gcf).cdata, frame, 'Compression', 'none')
226 end
227

228 %% save files
229 save('filtered IHshot11 25736V2.mat','des vel', ...

'filtered trails', 'images', 'est posX', 'est posY', ...
'x centroid', 'y centroid', 'num meas', 'range1','est velX', ...
'est velY','RGB')

A.4 Fragment Matching

1 % FINALIZED CODE
2

3

4 % Fragment Matching with Playback
5 % Check by plotting the epipolar lines in one camera view by ...

multiplying
6 % the fundamental matrix by a position in another camera view. ...

Playback the
7 % tracks from Kalman Filter. Uses the principle that only one ...

fragment
8 % 'centroid' in theory should interesect with both epipolar ...

lines (one
9 % early and one late)

10

11 clc
12 close all
13 clear all
14

15 %% Constants
16 fragment area = 10;
17 equiv diam = sqrt(4*fragment area/pi); %m
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18 th = 0:pi/50:2*pi;
19 r = 2 * equiv diam;
20 %% Desired time frame
21 % start frame = 143;
22 % final frame = 164;
23 start frame = 161;
24 final frame = 181; %169
25

26

27 start frame = 159;
28 final frame = 179; %169
29

30 Nfiles = final frame − start frame + 2; % number of files
31 final = Nfiles;
32

33 start frame2 = start frame + 1;
34 final frame2 = start frame + 1;
35

36 initial = 159;
37

38 %% read in images and variables
39 pathname1 = 'D:\Sean\Documents\IndianHeadAnalysis\Test ...

10\25736 test10\Test1\test10 25736\Cam1';
40 pathname1 = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\25736 RGB test8 RGB v2';
41 pathname1 = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\test14\2\Test1\test14 25736 RGB';
42 cd(pathname1);
43 Cam1 = dir('*tif'); % list of all tif images
44

45 for j = 1:length(Cam1)
46 fileNames1{j} = strcat(Cam1(j).folder,'\', Cam1(j).name);
47 end
48 % testImageFileName = imageFileNames1{1};
49 % imshow(testImageFileName);
50 % gca
51

52 pathname2 = 'D:\Sean\Documents\IndianHeadAnalysis\Test ...
10\22905 test10\Test1\test10 22905\Cam2';

53 pathname2 = 'C:\Users\Sean\Desktop\Work In ...
Progress\IndianHead\22905 RGB test8 RGB v2';

54 pathname2 = 'C:\Users\Sean\Desktop\Work In ...
Progress\IndianHead\test14\Test1\test14 22905 RGB';

55 cd(pathname2);
56 Cam2 = dir('*tif'); % list of all tif images
57

58 for j = 1:length(Cam2)
59 fileNames2{j} = strcat(Cam2(j).folder,'\', Cam2(j).name);
60 end
61 %% Get tracks (Kalman Filtered Positions)
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62

63 % filePath = ...
'C:\Users\Sean\Desktop\IndianHead\22905 RGB test8 RGB v2';

64 % cd(filePath)
65

66

67 % first camera
68 filePath = 'D:\Sean\Documents\IndianHeadAnalysis\Test ...

10\25736 test10\Test1\test10 25736\Cam1';
69 filePath = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\25736 RGB test8 RGB v2';
70 filePath = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\test14\Test1\test14 25736 RGB\trackedCam2Frames';
71 cd(filePath)
72 %Structure = load('filtered test10 25736.mat', 'est posX', ...

'est posY', 'filtered trailsV2', 'des vel','RGB2');
73 %Structure = ...

load('valid pathsV3 test8 cam1 burning center cam2 backup.mat', ...
'est posX', 'est posY', 'filtered trailsV2', 'des vel','RGB2');

74 Structure = load('valid pathsV3 test14 cam2.mat', 'est posX', ...
'est posY', 'filtered trailsV2');

75

76 est posX frag = Structure.est posX;
77 est posY frag = Structure.est posY;
78 trails = Structure.filtered trailsV2;
79 % Svel = Structure.des vel;
80 % rgb = Structure.RGB2;
81 pos1 = est posX frag;
82 pos2 = est posY frag;
83

84 %second camera
85 filePath ='D:\Sean\Documents\IndianHeadAnalysis\Test ...

10\22905 test10\Test1\test10 22905\Cam2';
86 filePath = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\22905 RGB test8 RGB v2';
87 filePath = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\test14\Test1\test14 22905 RGB\trackedCam2Frames';
88 filePath = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\test14\Test1\test14 22905 RGB'
89 cd(filePath)
90 %Structure2 = load('filtered test10 22905.mat', 'est posX', ...

'est posY', 'filtered trailsV2');
91 %Structure2 = ...

load('valid pathsV3 test8 cam1 burning center cam1 v12.mat', ...
'est posX', 'est posY', 'filtered trailsV2', 'des vel');

92 Structure2 = load('valid pathsV3 test14 cam1.mat', 'est posX', ...
'est posY', 'filtered trailsV2', 'des vel');

93

94 est posX frag2 = Structure2.est posX;
95 est posY frag2 = Structure2.est posY;
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96 trails2 = Structure2.filtered trailsV2;
97 % vel2 = Structure2.des vel;
98 % rgb2 = Structure2.RGB2;
99 %% load stereo parameters

100

101 % save path = 'D:\Sean\Documents\IndianHeadAnalysis\Test 10\';
102 % cd(save path)
103 % load('params cal2.mat')
104 pathname = 'C:\Users\Sean\Desktop\Work In ...

Progress\IndianHead\25736 Cal1';
105 cd(pathname)
106

107 saveFolder = 'D:\Sean\Documents\IndianHeadAnalysis';
108 cd(saveFolder)
109

110 load('params cal4.mat')
111

112 % Get fundamental matrix
113 F = stereoParams.FundamentalMatrix;
114

115 %%
116

117

118 %% User Control
119 user cont = input('Start tracking fragment? 1=Y, 2=N: ');
120 if user cont == 1
121 while user cont == 1
122

123 % TODO: plot images
124 % plot tracks of interest (1 in 1 camera, all in ...

another?)
125 % Add number associated with track (check video code)
126 % Enter specific values of image number?
127 % Get early and late positions for each track
128

129 %% Plot all fragment numbers
130 textFontSize = 8;
131 color label = 1;
132 cd(pathname1);
133 figure
134 movegui('center');
135 for image = 1:final
136 mainImage = imread(Cam1(image + initial − 1).name);
137 mainImage = mat2gray(mainImage);
138

139 imshow(mainImage);
140 hold on
141 n = 1;
142 for trail = 1:length(trails)
143 trail pos x = pos1(1:image,trails(trail));
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144 trail pos y = pos2(1:image,trails(trail));
145 plot(trail pos x, ...

trail pos y,'−','color','g','linewidth',1); ...
%show estimated path

146 tail x = 1.0 * pos1(image,trails(trail));
147 tail y = 1.0 * pos2(image,trails(trail));
148 xunit = r * cos(th) + tail x;
149 yunit = r * sin(th) + tail y;
150 plot(xunit, yunit, 'g');
151 tailString = num2str(trail);
152 % plot(trail pos x, ...

trail pos y,'−','color','r','linewidth',1) %show ...
estimated path

153 %plot(pos1(image,filtered trailsV2(trail)), ...
pos2(image,filtered trailsV2(trail)), 'or', ...
'MarkerSize', eq diameter{image + 46}(trail))

154

155 if (image == final) % && (pos1(image,trail) < ...
370) && (abs(value) > 0 | | isnan(value)) && ...
(trail < 500)

156 text(tail x, tail y, tailString, 'FontSize', ...
textFontSize, 'FontWeight', 'Bold', ...
'Color', 'white'); %show measured centroid

157 end
158

159 end
160 drawnow;
161 end
162

163 %% Preview
164 disp('Camera A Preview')
165 fprintf(1,'Track # First Image Index Last ...

Image Index\n');
166 for trail = 1:length(trails)
167 savedTracks = pos1(:,trails(trail));
168 A = savedTracks;
169 B = ¬isnan(savedTracks);
170

171 % indices
172 IndicesLast = arrayfun(@(x) find(B(:, x), 1, ...

'last'), 1:size(A, 2));
173 IndicesFirst = arrayfun(@(x) find(B(:, x), 1, ...

'first'), 1:size(A, 2));
174 fprintf(1,'#%2d %17.1f %17.1f \n',trail, ...

IndicesFirst, IndicesLast);
175 end
176

177 disp('Camera B Preview')
178 fprintf(1,'Track # First Image Index Last ...

Image Index\n');
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179 for trail = 1:length(trails)
180 savedTracks = pos1(:,trails(trail));
181 A = savedTracks;
182 B = ¬isnan(savedTracks);
183

184 % indices
185 IndicesLast = arrayfun(@(x) find(B(:, x), 1, ...

'last'), 1:size(A, 2));
186 IndicesFirst = arrayfun(@(x) find(B(:, x), 1, ...

'first'), 1:size(A, 2));
187 fprintf(1,'#%2d %20.1f %25.1f \n',trail, ...

IndicesFirst, IndicesLast);
188 end
189

190

191 %% Select and show desired fragment at early frame (SHOW ...
PREVIEW)

192 knownFragment = input('Known fragment number? 1=Y, 2=N: ');
193 if knownFragment == 1
194 desiredFragment = input('Select fragment number: ');
195 trail = desiredFragment;
196 end
197

198 start frame = input('Select start frame: ');
199

200

201

202 %% Plot an image of camera view with query point
203 figure
204 movegui('northwest');
205 firstImageCameraA = fileNames1{initial + start frame};
206 imshow(firstImageCameraA);
207 hold on
208 if knownFragment == 1
209 plot(pos1(start frame,trails(trail)), ...

pos2(start frame,trails(trail)),'go')
210 text(pos1(start frame,trails(trail)), ...

pos2(start frame,trails(trail)), num2str(trail), ...
'FontSize', textFontSize, 'Color', 'white');

211 queryPoints = [pos1(start frame,trails(trail)); ...
pos2(start frame,trails(trail))];

212 else
213 [getQueryX,getQueryY] = ginput;
214 plot(getQueryX,getQueryY,'go');
215 queryPoints = [getQueryX;getQueryY];
216 end
217

218 XL = xlim(gca); % define x axis limits
219 X = linspace(0,XL(2)); % define x axis values
220 hold off
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221

222 %% plot epipolar lines on other camera view
223 cd(pathname2);
224 figure
225 movegui('northeast');
226 start frame2 = start frame + 1;
227

228 firstImageCameraB = fileNames2{initial + start frame2};
229 imshow(firstImageCameraB)
230 drawnow;
231 hold on
232

233

234 %% Get epipolar lines in other camera
235

236 % for i = 1:length(queryPoints)
237 lines = F' * [queryPoints;1];
238 a = lines(1);
239 b = lines(2);
240 c = lines(3);
241 pp = [−a,−c]/b;
242 pv = polyval(pp,X);
243 plot(X,pv,'Color', 'g')
244 % end
245 drawnow;
246

247 %% Select and show desired fragment at early frame (SHOW ...
PREVIEW)

248 % knownFragment = input('Known fragment number? 1=Y, ...
2=N: ');

249 % if knownFragment == 1
250 % desiredFragment = input('Select fragment number: ');
251 % trail = desiredFragment;
252 % end
253

254 update frame = input('Select next frame to check: ');
255

256

257 %% Plot an image of camera view with query point
258 figure
259 movegui('southwest');
260 firstImageCameraA = fileNames1{initial + start frame + ...

update frame};
261 imshow(firstImageCameraA);
262 hold on
263 if knownFragment == 1
264 plot(pos1(start frame + update frame,trails(trail)), ...

pos2(start frame + update frame,trails(trail)),'go')
265 text(pos1(start frame + update frame,trails(trail)), ...

pos2(start frame + update frame,trails(trail)), ...
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num2str(trail), 'FontSize', textFontSize, ...
'Color', 'white');

266 queryPoints = [pos1(start frame + ...
update frame,trails(trail)); pos2(start frame + ...
update frame,trails(trail))];

267 else
268 [getQueryX,getQueryY] = ginput;
269 plot(getQueryX,getQueryY,'go');
270 queryPoints = [getQueryX;getQueryY];
271 end
272

273 XL = xlim(gca); % define x axis limits
274 X = linspace(0,XL(2)); % define x axis values
275 hold off
276

277 %% plot epipolar lines on other camera view
278 cd(pathname2);
279 figure
280 movegui('southeast');
281 % start frame2 = start frame + 1;
282

283 firstImageCameraB = fileNames2{initial + start frame2 + ...
update frame};

284 imshow(firstImageCameraB)
285 drawnow;
286 hold on
287

288

289 %% Get epipolar lines in other camera
290

291 % for i = 1:length(queryPoints)
292 lines = F' * [queryPoints;1];
293 a = lines(1);
294 b = lines(2);
295 c = lines(3);
296 pp = [−a,−c]/b;
297 pv = polyval(pp,X);
298 plot(X,pv,'Color', 'g')
299 % end
300 drawnow;
301

302 %
303 % % %% check with back projection
304 % % line = F' * p;
305 % % match track number?
306 %
307 user cont = input('Retry or continue? 1=Y, 2=N: ');
308 end
309 end
310
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311 disp('Done!')

A.5 3D reconstruction

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % ReconstructionManual.m
3 % A code for manually assigning the tracked positions of ...

fragments from two
4 % stereo camera views and reconstructing the 3D trajectory.
5 %% clear everything
6 clc
7 close all
8 clear all
9 currentFolder = pwd;

10 currentFolder = 'E:\Fragment Training SGDL';
11 %% user preset
12

13 % add path for mat files (Automatically Tracked)
14 % addpath 'D:\Sean\Documents\IH Analysis October\Test 11\Detections'
15 % currentFolder = pwd;
16 %%
17 % pathname1 = 'V:\IndianHeadMarch2022\Test 11\saveTracksAreduced';
18 pathname1 = strcat(currentFolder,...
19 '\input files\sample manual tracking\saveTracksAreduced');
20

21 % pathname2 = 'V:\IndianHeadMarch2022\Test 11\saveTracksBreduced';
22 pathname2 = strcat(currentFolder,...
23 '\input files\sample manual tracking\saveTracksBreduced');
24

25 isAutomated = 2; % Y = 1, N = 2
26 %% load stereo parameters
27 stereoPath = strcat(currentFolder,...
28 '\saved files');
29 cd(stereoPath)
30 load('stereo cal3 debayer.mat')
31 params = stereoParams;
32 F = stereoParams.FundamentalMatrix;
33 %% read in auto tracked data
34 if isAutomated == 1
35 fragmentStructure1 = load('filtered test11 25736.mat', ...

'est posX', 'est posY', 'filtered trailsV2', ...
'des vel','RGB2');

36 est posX frag1 = fragmentStructure1.est posX;
37 est posY frag1 = fragmentStructure1.est posY;
38 trails1 = fragmentStructure1.filtered trailsV2;
39 vel1 = fragmentStructure1.des vel;
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40

41 fragmentStructure2 = load('filtered test11 22905.mat', ...
'est posX', 'est posY', 'filtered trailsV2', ...
'des vel','RGB2');

42 est posX frag2 = fragmentStructure2.est posX;
43 est posY frag2 = fragmentStructure2.est posY;
44 trails2 = fragmentStructure2.filtered trailsV2;
45 vel2 = fragmentStructure2.des vel;
46 else
47 %% read in manual data
48 cd(pathname1);
49 cd('E:\Fragment Training SGDL\input files\sample manual ...

tracking\saveTracksAreduced')
50 filenames1 = dir('*mat');
51 hold on
52 for kk = 1:numel(filenames1)
53 S1 = load(filenames1(kk).name); % Best to load into an ...

output variable.
54 trail pos x = S1.x centroid;
55 trail pos y = S1.y centroid;
56 est posX frag1{kk} = trail pos x;
57 est posY frag1{kk} = trail pos y;
58 end
59 cd(pathname2);
60 cd('E:\Fragment Training SGDL\input files\sample manual ...

tracking\saveTracksBreduced')
61 filenames2 = dir('*mat');
62 for kk = 1:numel(filenames2)
63 S2 = load(filenames2(kk).name);
64 trail pos x = S2.x centroid;
65 trail pos y = S2.y centroid;
66 est posX frag2{kk} = trail pos x;
67 est posY frag2{kk} = trail pos y;
68 end
69 end
70 %% combine into coordinates for each camera (with matched ...

fragments, manual process)
71

72 posXA = est posX frag1; % cells of x positions of each fragment
73 posYA = est posY frag1; % cells of y positions of each fragment
74

75 posXB = est posX frag2; % cells of x positions of each fragment
76 posYB = est posY frag2; % cells of y positions of each fragment
77

78 posXA = trimTracks1D(posXA);
79 posYA = trimTracks1D(posYA);
80 [IndicesLastA, IndicesFirstA] = indicesExtraction(posXA, ...

filenames1);
81

82 posXB = trimTracks1D(posXB);
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83 posYB = trimTracks1D(posYB);
84 [IndicesLastB, IndicesFirstB] = indicesExtraction(posXB, ...

filenames2);
85

86 %% Fragment Matching
87 [first, last] = matchFrames(1, 1, IndicesLastA, IndicesFirstA, ...

IndicesLastB, IndicesFirstB);
88 camA{1} = [est posX frag1{1}(first:last); ...

est posY frag1{1}(first:last)];
89 camB{1} = [est posX frag2{1}(first:last); ...

est posY frag2{1}(first:last)];
90

91 for i = 1:length(camA{1}) % first:last
92 p1(i,:) = cell2mat(camA{1}(:,i))';
93 p2(i,:) = cell2mat(camB{1}(:,i))';
94 end
95

96 for i = 1:length(p1)
97 p3D 1{i} = triangulate(p1(i,:) , p2(i,:), stereoParams)/1000;
98 end
99

100 %%
101 % 2 A B
102 [first, last] = matchFrames(12, 53, IndicesLastA, ...

IndicesFirstA, IndicesLastB, IndicesFirstB);
103 camA{2} = [est posX frag1{12}(first:last); ...

est posY frag1{12}(first:last)];
104 camB{2} = [est posX frag2{53}(first:last); ...

est posY frag2{53}(first:last)];
105

106 for i = 1:length(camA{2}) % first:last
107 p1 2(i,:) = cell2mat(camA{2}(:,i))';
108 p2 2(i,:) = cell2mat(camB{2}(:,i))';
109 end
110 for i = 1:length(p1 2)
111 p3D 2{i} = triangulate(p1 2(i,:) , p2 2(i,:), ...

stereoParams)/1000;
112 end
113 %%
114 % 3 A B
115 [first, last] = matchFrames(17, 20, IndicesLastA, ...

IndicesFirstA, IndicesLastB, IndicesFirstB);
116 camA{3} = [est posX frag1{17}(first:last); ...

est posY frag1{17}(first:last)];
117 camB{3} = [est posX frag2{20}(first:last); ...

est posY frag2{20}(first:last)];
118

119 for i = 1:length(camA{3}) % first:last
120 p1 3(i,:) = cell2mat(camA{3}(:,i))';
121 p2 3(i,:) = cell2mat(camB{3}(:,i))';
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122 end
123 for i = 1:length(p1 3)
124 p3D 3{i} = triangulate(p1 3(i,:) , p2 3(i,:), ...

stereoParams)/1000;
125 end
126 %%
127 % 4 A B
128 [first, last] = matchFrames(15, 28, IndicesLastA, ...

IndicesFirstA, IndicesLastB, IndicesFirstB);
129 camA{4} = [est posX frag1{15}(first:last); ...

est posY frag1{15}(first:last)];
130 camB{4} = [est posX frag2{28}(first:last); ...

est posY frag2{28}(first:last)];
131

132 for i = 1:length(camA{4}) % first:last
133 p1 4(i,:) = cell2mat(camA{4}(:,i))';
134 p2 4(i,:) = cell2mat(camB{4}(:,i))';
135 end
136 for i = 1:length(p1 4)
137 p3D 4{i} = triangulate(p1 4(i,:) , p2 4(i,:), ...

stereoParams)/1000;
138 end
139 %%
140 % 5 A B
141 [first, last] = matchFrames(16, 27, IndicesLastA, ...

IndicesFirstA, IndicesLastB, IndicesFirstB);
142 camA{5} = [est posX frag1{16}(first:last); ...

est posY frag1{16}(first:last)];
143 camB{5} = [est posX frag2{27}(first:last); ...

est posY frag2{27}(first:last)];
144

145 for i = 1:length(camA{5}) % first:last
146 p1 5(i,:) = cell2mat(camA{5}(:,i))';
147 p2 5(i,:) = cell2mat(camB{5}(:,i))';
148 end
149 for i = 1:length(p1 5)
150 p3D 5{i} = triangulate(p1 5(i,:) , p2 5(i,:), ...

stereoParams)/1000;
151 end
152

153 %%
154 % 9
155 fragNumber = 9;
156 [first, last] = matchFrames(5, 40, IndicesLastA, IndicesFirstA, ...

IndicesLastB, IndicesFirstB);
157 camA{fragNumber} = [est posX frag1{5}(first:last); ...

est posY frag1{5}(first:last)];
158 camB{fragNumber} = [est posX frag2{40}(first:last); ...

est posY frag2{40}(first:last)];
159
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160 for i = 1:length(camA{fragNumber}) % first:last
161 p1 9(i,:) = cell2mat(camA{fragNumber}(:,i))';
162 p2 9(i,:) = cell2mat(camB{fragNumber}(:,i))';
163 end
164

165 for i = 1:length(p1 9)
166 p3D 9{i} = triangulate(p1 9(i,:) , p2 9(i,:), ...

stereoParams)/1000;
167 end
168 %%
169 % 10
170 fragNumber = 10;
171 [first, last] = matchFrames(27, 27, IndicesLastA, ...

IndicesFirstA, IndicesLastB, IndicesFirstB);
172 camA{fragNumber} = [est posX frag1{27}(first:last); ...

est posY frag1{27}(first:last)];
173 camB{fragNumber} = [est posX frag2{27}(first:last); ...

est posY frag2{27}(first:last)];
174

175 for i = 1:length(camA{fragNumber}) % first:last
176 p1 10(i,:) = cell2mat(camA{fragNumber}(:,i))';
177 p2 10(i,:) = cell2mat(camB{fragNumber}(:,i))';
178 end
179

180 for i = 1:length(p1 10)
181 p3D 10{i} = triangulate(p1 10(i,:) , p2 10(i,:), ...

stereoParams)/1000;
182 end
183 %%
184

185 %% save 3D points
186 cd('E:\Fragment Training SGDL\saved files')
187 save('test11 points3D.mat', 'p3D 1', 'p3D 2', 'p3D 3', ...

'p3D 4','p3D 5', 'p3D 9','p3D 10')
188 %% rewrite 3D points into new variables specific to spatial ...

directions
189 for i = 1:length(camA{1}) % first:last
190 point3d frag1{i} = triangulate(cell2mat(camA{1}(:,i))', ...

cell2mat(camB{1}(:,i))', params);
191 point3d frag1{i} = point3d frag1{i} / 1000; % convert from ...

mm to m
192 X1(i) = point3d frag1{i}(1,1);
193 Y1(i) = point3d frag1{i}(1,2);
194 Z1(i) = point3d frag1{i}(1,3);
195 end
196

197 for i = 1:length(camA{2}) % first:last
198 point3d frag2{i} = triangulate(cell2mat(camA{2}(:,i))', ...

cell2mat(camB{2}(:,i))', params);
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199 point3d frag2{i} = point3d frag2{i} / 1000; % convert from ...
mm to m

200 X2(i) = point3d frag2{i}(1,1);
201 Y2(i) = point3d frag2{i}(1,2);
202 Z2(i) = point3d frag2{i}(1,3);
203 end
204

205 for i = 1:length(camA{3}) % first:last
206 point3d frag3{i} = triangulate(cell2mat(camA{3}(:,i))', ...

cell2mat(camB{3}(:,i))', params);
207 point3d frag3{i} = point3d frag3{i} / 1000; % convert from ...

mm to m
208 X3(i) = point3d frag3{i}(1,1);
209 Y3(i) = point3d frag3{i}(1,2);
210 Z3(i) = point3d frag3{i}(1,3);
211 end
212

213 for i = 1:length(camA{4}) % first:last
214 point3d frag4{i} = triangulate(cell2mat(camA{4}(:,i))', ...

cell2mat(camB{4}(:,i))', params);
215 point3d frag4{i} = point3d frag4{i} / 1000; % convert from ...

mm to m
216 X4(i) = point3d frag4{i}(1,1);
217 Y4(i) = point3d frag4{i}(1,2);
218 Z4(i) = point3d frag4{i}(1,3);
219 end
220

221 for i = 1:length(camA{5}) % first:last
222 point3d frag5{i} = triangulate(cell2mat(camA{5}(:,i))', ...

cell2mat(camB{5}(:,i))', params);
223 point3d frag5{i} = point3d frag5{i} / 1000; % convert from ...

mm to m
224 X5(i) = point3d frag5{i}(1,1);
225 Y5(i) = point3d frag5{i}(1,2);
226 Z5(i) = point3d frag5{i}(1,3);
227 end
228

229 for i = 1:length(camA{6}) % first:last
230 point3d frag6{i} = triangulate(cell2mat(camA{6}(:,i))', ...

cell2mat(camB{6}(:,i))', params);
231 point3d frag6{i} = point3d frag6{i} / 1000; % convert from ...

mm to m
232 X6(i) = point3d frag6{i}(1,1);
233 Y6(i) = point3d frag6{i}(1,2);
234 Z6(i) = point3d frag6{i}(1,3);
235 end
236

237 for i = 1:length(camA{7}) % first:last
238 point3d frag7{i} = triangulate(cell2mat(camA{7}(:,i))', ...

cell2mat(camB{7}(:,i))', params);
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239 point3d frag7{i} = point3d frag7{i} / 1000; % convert from ...
mm to m

240 X7(i) = point3d frag7{i}(1,1);
241 Y7(i) = point3d frag7{i}(1,2);
242 Z7(i) = point3d frag7{i}(1,3);
243 end
244

245 for i = 1:length(camA{8}) % first:last
246 point3d frag8{i} = triangulate(cell2mat(camA{8}(:,i))', ...

cell2mat(camB{8}(:,i))', params);
247 point3d frag8{i} = point3d frag8{i} / 1000; % convert from ...

mm to m
248 X8(i) = point3d frag8{i}(1,1);
249 Y8(i) = point3d frag8{i}(1,2);
250 Z8(i) = point3d frag8{i}(1,3);
251 end
252

253 for i = 1:length(camA{9}) % first:last
254 point3d frag9{i} = triangulate(cell2mat(camA{9}(:,i))', ...

cell2mat(camB{9}(:,i))', params);
255 point3d frag9{i} = point3d frag9{i} / 1000; % convert from ...

mm to m
256 X9(i) = point3d frag9{i}(1,1);
257 Y9(i) = point3d frag9{i}(1,2);
258 Z9(i) = point3d frag9{i}(1,3);
259 end
260

261 for i = 1:length(camA{10}) % first:last
262 point3d frag10{i} = triangulate(cell2mat(camA{10}(:,i))', ...

cell2mat(camB{10}(:,i))', params);
263 point3d frag10{i} = point3d frag10{i} / 1000; % convert from ...

mm to m
264 X10(i) = point3d frag10{i}(1,1);
265 Y10(i) = point3d frag10{i}(1,2);
266 Z10(i) = point3d frag10{i}(1,3);
267 end
268

269

270 %% offset to reorient impact point to origin
271 plateX = −0.075;
272 plateY = −0.03757 − 0.0035;
273 plateZ = 1.053 − 0.005;
274

275 %% load and prepare velocity variable
276 velocities = ...

[629.389816635431,121.635484788761,30.4024211995876,56.6372606021560,52.0247953976734,160.164743421205,166.888886370199,160.925226902338,27.2581554216795,30.6991870405354];
277 save('saved velocities.m', 'velocities')
278 velocities = velocities(2:end);
279 % velocities = velocities([1:4, 9:end]);
280
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281

282 %% setup colors and color bar according to velocity range
283 minValue = 0; % min(velocities);
284 maxValue = max(velocities);
285 a = minValue:((maxValue − minValue)/255):maxValue;
286 fig = figure;
287 ax1 = axes(fig);
288 c = parula;
289 colormap(c);
290 A = colormap(c);
291 % generate colors for tracks
292 RGB = [];
293 vel3D = velocities;
294 for trail = 1:length(vel3D)
295 for j = 1:length(a)
296 absolute(j,trail) = abs(a(j) − abs(vel3D(trail)));
297 end
298 [val, idx] = min(absolute(:, trail));
299

300 if idx > 256
301 idx = 256;
302 end
303 RGB(trail, :, :, :) = A(idx, :);
304 end
305 %% plot 3D reconstructed paths
306 size mark = 200; % size of markers in 3D scatter plots
307 nonzeroX = find(X1);
308 nonzeroY = find(Y1);
309 nonzeroZ = find(Z1);
310 for i = 1:length(nonzeroX)
311 scatter3(X1(nonzeroX(i))− plateX,Y1(nonzeroY(i))− plateY,...
312 Z1(nonzeroZ(i))− plateZ, size mark, 'filled', ...

'MarkerEdgeColor',...
313 'black', 'MarkerFaceColor', 'black')
314 hold on
315 xlabel('x (m)')
316 ylabel('y (m)')
317 zlabel('z (m)')
318

319 end
320

321 size mark = 100;
322 hold on
323 nonzeroX = find(X2);
324 nonzeroY = find(Y2);
325 nonzeroZ = find(Z2);
326 for i = 1:length(nonzeroX)
327 scatter3(X2(nonzeroX(i))− plateX,Y2(nonzeroY(i))− ...

plateY,Z2(nonzeroZ(i))− plateZ,size mark, 'filled', ...
'MarkerEdgeColor', RGB(1, :, :, :), 'MarkerFaceColor', ...
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RGB(1, :, :, :))
328 hold on
329 xlabel('x (m)')
330 ylabel('y (m)')
331 zlabel('z (m)')
332 end
333

334 hold on
335 nonzeroX = find(X3);
336 nonzeroY = find(Y3);
337 nonzeroZ = find(Z3);
338 for i = 1:length(nonzeroX)
339 scatter3(X3(nonzeroX(i))− plateX,Y3(nonzeroY(i))− ...

plateY,Z3(nonzeroZ(i))− plateZ, size mark, 'filled', ...
'MarkerEdgeColor', RGB(2, :, :, :), 'MarkerFaceColor', ...
RGB(2, :, :, :))

340 hold on
341 xlabel('x (m)')
342 ylabel('y (m)')
343 zlabel('z (m)')
344 end
345 hold on
346 nonzeroX = find(X4);
347 nonzeroY = find(Y4);
348 nonzeroZ = find(Z4);
349 for i = 1:length(nonzeroX)
350 scatter3(X4(nonzeroX(i))− plateX,Y4(nonzeroY(i))− ...

plateY,Z4(nonzeroZ(i))− plateZ, size mark, 'filled', ...
'MarkerEdgeColor', RGB(3, :, :, :), 'MarkerFaceColor', ...
RGB(3, :, :, :))

351 hold on
352 xlabel('x (m)')
353 ylabel('y (m)')
354 zlabel('z (m)')
355 end
356

357 hold on
358 nonzeroX = find(X9);
359 nonzeroY = find(Y9);
360 nonzeroZ = find(Z9);
361 for i = 1:length(nonzeroX)
362 scatter3(X9(nonzeroX(i)) − plateX,Y9(nonzeroY(i)) − ...

plateY,Z9(nonzeroZ(i)) − plateZ, size mark, 'filled', ...
'MarkerEdgeColor', RGB(8−4, :, :, :), ...
'MarkerFaceColor',RGB(8 −4, :, :, :))

363 hold on
364 xlabel('x (m)')
365 ylabel('y (m)')
366 zlabel('z (m)')
367 end
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368

369 hold on
370 nonzeroX = find(X10);
371 nonzeroY = find(Y10);
372 nonzeroZ = find(Z10);
373 for i = 1:length(nonzeroX)
374 scatter3(X10(nonzeroX(i)) − plateX,Y10(nonzeroY(i)) − ...

plateY,Z10(nonzeroZ(i)) − plateZ, size mark, 'filled', ...
'MarkerEdgeColor', RGB(9−4, :, :, :), 'MarkerFaceColor', ...
RGB(9−4, :, :, :))

375 hold on
376 xlabel('x (m)')
377 ylabel('y (m)')
378 zlabel('z (m)')
379 end
380

381 %% define axes stemming from origin
382 hold on
383 hold all
384 q = quiver3(0,0,−max(zlim),0,0,2*max(zlim),'k','LineWidth',3);
385 q.ShowArrowHead = 'off';
386 q = quiver3(0,−max(ylim),0,0,2*max(ylim),0,'k','LineWidth',3);
387 q.ShowArrowHead = 'off';
388 q = quiver3(0,0,0,max(xlim),0,0,'k','LineWidth',3);
389 q.ShowArrowHead = 'off';
390 text(0,0,max(zlim),'Z','Color','k','FontSize',25)
391 text(0,max(ylim),0,'Y','Color','k','FontSize',25)
392 text(max(xlim),0,0,'X','Color','k','FontSize',25)
393

394 hold on
395 xlabel('x (m)')
396 ylabel('y (m)')
397 zlabel('z (m)')
398

399 ax = gca;
400 ax.FontSize = 60;
401 legend('incident projectile')
402 view(45,15)
403

404 %% color bar
405 fig2 = figure
406 ax2=axes(fig2,...
407 'Position',[ax1.Position(1)+ax1.Position(3) + ...

.5,ax1.Position(2),0.0,0.4]);
408 axis off
409 set(ax2,'color','none');
410

411 cmap = parula;
412 cmap1 = colormap(cmap);
413 hcb = colorbar(ax2, 'Position', [.9 0.1 0.03 .8]);
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414

415 ax2.CLim = [minValue,maxValue];
416 colorTitleHandle = get(hcb,'Title');
417 titleString = '\color{black} velocity (m/s)';
418 set(colorTitleHandle ,'String',titleString)
419 colormap(ax1, 'gray');
420

421 % hcb.Layout.Tile = 'east';
422 hcb.Visible = 'on';
423 hcb.TickLabelInterpreter = 'tex';
424 hcb.FontSize = 12;
425 hcb.Ticks = linspace(minValue, maxValue, 5);
426 tickRange = linspace(minValue, maxValue, 5);
427 black = [0,0,0];
428 tickLabelsCheck = hcb.TickLabels;
429 % ticksRound = [];
430 for ii = 1:numel(hcb.TickLabels)
431 ticksRound(ii) = tickRange(ii);
432 ticksRound(ii) = round(ticksRound(ii),3,'significant');
433 hcb.TickLabels{ii} = [sprintf('\\color[rgb]{%f,%f,%f} ', ...

black), num2str(ticksRound(ii))];
434 end
435

436

437 %% check plot with error bounds
438 figure
439 dif = 1;
440 for i = 1:length(p1)
441 [Xdist, Ydist1, Zdist ] = sensitivity2(p1(i,:) , p2(i,:), ...

stereoParams, dif);
442 hold on
443 end
444 ax = gca;
445 ax.FontSize = 16;
446

447 %% FUNCTIONS
448 % distance 3D
449 function dist3d = dist(x1,y1,z1,x2,y2,z2)
450 term1 = x1 − x2;
451 term2 = y1 − y2;
452 term3 = z1 − z2;
453 dist3d = sqrt(term1ˆ2 + term2ˆ2 + term3ˆ2);
454 end
455

456 % triangulation sensitivity
457 function [p1 xdist, p1 ydist, p2 xdist, p2 ydist ] = ...

sensitivity(p1, p2, stereoParams, dif)
458

459

460 p1 xplus = p1 + [dif 0];
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461 p1 xminus = p1 + [−dif 0];
462 p1 yplus = p1 + [0 dif];
463 p1 yminus = p1 + [0 −dif];
464

465 p2 xplus = p2 + [dif 0];
466 p2 xminus = p2 + [−dif 0];
467 p2 yplus = p2 + [0 dif];
468 p2 yminus = p2 + [0 −dif];
469

470

471 p3D = triangulate(p1, p2, stereoParams)/1000;
472 p3D 1 = triangulate(p1 xplus, p2, stereoParams)/1000;
473 p3D 2 = triangulate(p1 xminus, p2, stereoParams)/1000;
474 p3D 3 = triangulate(p1 yplus, p2, stereoParams)/1000;
475 p3D 4 = triangulate(p1 yminus, p2, stereoParams)/1000;
476

477 p3D 1b = triangulate(p1, p2 xplus, stereoParams)/1000;
478 p3D 2b = triangulate(p1, p2 xminus, stereoParams)/1000;
479 p3D 3b = triangulate(p1, p2 yplus, stereoParams)/1000;
480 p3D 4b = triangulate(p1, p2 yminus, stereoParams)/1000;
481

482 disp('p1 xdist')
483 p1 xdist = pdist([p3D 1 ; p3D 2],'euclidean')
484 disp('p1 ydist')
485 p1 ydist = pdist([p3D 3 ; p3D 2],'euclidean')
486 disp('p2 xdist')
487 p2 xdist = pdist([p3D 1b ; p3D 2b],'euclidean')
488 disp('p2 xdist')
489 p2 ydist = pdist([p3D 3b ; p3D 4b],'euclidean')
490 %
491 % p1 xdist = pdist([p3D 1 ; p3D 2],'euclidean')
492 % p1 ydist = pdist([p3D 1 ; p3D 2],'euclidean')
493 %
494 % p1 xdist = pdist([p3D 1 ; p3D 2],'euclidean')
495 % p1 ydist = pdist([p3D 1 ; p3D 2],'euclidean')
496

497 % figure
498 scatter3(p3D(1), p3D(2), p3D(3), 'MarkerFaceColor', 'k')
499 % hold on
500 scatter3(p3D 1(1),p3D 1(2),p3D 1(3), 'MarkerFaceColor', 'r')
501 scatter3(p3D 2(1),p3D 2(2),p3D 2(3), 'MarkerFaceColor', 'r')
502

503 scatter3(p3D 3(1),p3D 3(2),p3D 3(3), 'MarkerFaceColor', 'g')
504 scatter3(p3D 4(1),p3D 4(2),p3D 4(3), 'MarkerFaceColor', 'g')
505

506 scatter3(p3D 1b(1),p3D 1b(2),p3D 1b(3), 'MarkerFaceColor', 'b')
507 scatter3(p3D 2b(1),p3D 2b(2),p3D 2b(3), 'MarkerFaceColor', 'b')
508

509 scatter3(p3D 3b(1),p3D 3b(2),p3D 3b(3), 'MarkerFaceColor', 'y')
510 scatter3(p3D 4b(1),p3D 4b(2),p3D 4b(3), 'MarkerFaceColor', 'y')
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511 end
512

513 % triangulation sensitivity
514 function [Xdist, Ydist1, Zdist ] = sensitivity2(p1, p2, ...

stereoParams, dif)
515

516 size(p1)
517 % add pixel differences to determine error/sensitivity of ...

triangulation
518 p1 xplus = p1 + [dif 0];
519 p1 xminus = p1 + [−dif 0];
520 p1 yplus = p1 + [0 dif];
521 p1 yminus = p1 + [0 −dif];
522

523 p2 xplus = p2 + [dif 0];
524 p2 xminus = p2 + [−dif 0];
525 p2 yplus = p2 + [0 dif];
526 p2 yminus = p2 + [0 −dif];
527

528 % triangulation of original point
529 p3D = triangulate(p1, p2, stereoParams)/1000;
530 % triangulation of original point with pixel differenecs in ...

each view
531 p3D 1 = triangulate(p1 xplus, p2, stereoParams)/1000;
532 p3D 2 = triangulate(p1 xminus, p2, stereoParams)/1000;
533 p3D 3 = triangulate(p1 yplus, p2, stereoParams)/1000;
534 p3D 4 = triangulate(p1 yminus, p2, stereoParams)/1000;
535

536 p3D 1b = triangulate(p1, p2 xplus, stereoParams)/1000;
537 p3D 2b = triangulate(p1, p2 xminus, stereoParams)/1000;
538 p3D 3b = triangulate(p1, p2 yplus, stereoParams)/1000;
539 p3D 4b = triangulate(p1, p2 yminus, stereoParams)/1000;
540

541 scatter3(p3D(1), p3D(2), p3D(3), 10, 'MarkerFaceColor', 'b')
542 hold on
543

544 % Y distance
545 X = [p3D 3(1) p3D 4(1)];
546 Y = [p3D 3(2) p3D 4(2)];
547 Z = [p3D 3(3) p3D 4(3)];
548 Ydist1 = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
549 plot3(X,Y,Z, 'Color', 'r', 'LineStyle', '−', ...

'DisplayName','T0');
550

551 % Z distance
552 X = [p3D 1b(1) p3D 2b(1)];
553 Y = [p3D 1b(2) p3D 2b(2)];
554 Z = [p3D 1b(3) p3D 2b(3)];
555 Zdist = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
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556 plot3(X,Y,Z, 'Color', 'g', 'LineStyle', '−', ...
'DisplayName','T1');

557

558 % Y distance
559 X = [p3D 3b(1) p3D 4b(1)];
560 Y = [p3D 3b(2) p3D 4b(2)];
561 Z = [p3D 3b(3) p3D 4b(3)];
562 Ydist2 = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
563 plot3(X,Y,Z, 'Color', 'b', 'LineStyle', '−', ...

'DisplayName','T2');
564 if Ydist2 > Ydist1
565 Ydist1 = Ydist2;
566 end
567

568 % X distance
569 X = [p3D 1(1) p3D 2(1)];
570 Y = [p3D 1(2) p3D 2(2)];
571 Z = [(p3D 1(3)+ p3D 2(3))/2 (p3D 1(3) + p3D 2(3))/2];
572 Xdist = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
573 plot3(X,Y,Z, 'Color', 'k', 'LineStyle', '−', ...

'DisplayName','T3');
574 hold on
575 title('Stereo Calibration')
576 xlabel('x (m)')
577 ylabel('y (m)')
578 zlabel('z (m)')
579

580 % legend(h,'T0','T1','T2','T3');
581

582

583 end
584

585 function [pos1] = trimTracks1D(pos1)
586 % for x and y positions, for each fragment, remove empty ...

cells (1 Camera)
587 for n = 1:length(pos1)
588 empties = cellfun('isempty',pos1{n});
589 pos1{n}(empties) = {NaN};
590 end
591 end
592

593 % indices extraction
594 function [IndicesLastA, IndicesFirstA] = indicesExtraction(pos1, ...

filenames1)
595 % obtain start and stop indices for each fragment
596 trails = length(filenames1);
597 for trail = 1:trails
598 savedTracks = pos1{trail};
599 savedTracks = cell2mat(savedTracks);
600 B = ¬isnan(savedTracks);
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601 IndicesLastA{trail} = find(B, 1, 'last');
602 IndicesFirstA{trail} = find(B, 1, 'first');
603 end
604 end
605

606 function [first, last] = matchFrames(fragA, fragB, ...
IndicesLastA, IndicesFirstA, IndicesLastB, IndicesFirstB)

607 FirstA = IndicesFirstA{fragA};
608 FirstB = IndicesFirstB{fragB};
609 LastA = IndicesLastA{fragA};
610 LastB = IndicesLastB{fragB};
611

612 % valid points to assign values
613 if FirstA < FirstB
614 first = FirstB;
615 else
616 first = FirstA;
617 end
618

619 if LastA < LastB
620 last = LastA;
621 else
622 last = LastB;
623 end
624 end

A.6 3D Kalman Filter

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % Kalman3D.m
3 % A code for performing Kalman Filtering of 3D trajectories. ...

Generates
4 % plots of position and velocities vs time.
5 %% clear everything
6 clc
7 close all
8 clear all
9 %% user input for important parameters

10 suppress graphs = 2; % Y = 1, N = 2
11 dt = 20e−6; % change in time step (time associated with frame rate)
12 rp = 1e6;
13 P xyz = 10e3;
14 sigma a = 1e3;
15

16 rp = 1e2;
17 P xyz = 1e2;
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18 sigma a = 1e1;
19 %% Initialize Kalman Filter Matrices
20 % Measurement Matrix
21 H = [1 0 0 0 0 0; ...
22 0 1 0 0 0 0; ...
23 0 0 1 0 0 0];
24

25 % dynamic matrix
26 A = [1 0 0 dt 0 0 ; ...
27 0 1 0 0 dt 0 ; ...
28 0 0 1 0 0 dt; ...
29 0 0 0 1 0 0 ; ...
30 0 0 0 0 1 0; ...
31 0 0 0 0 0 1];
32 % Measurement Noise Covariance Matrix
33

34 R = [rp 0 0; 0 rp 0; 0 0 rp];
35 % Identity Matrix
36 I = eye(6);
37

38 % initial error covariance
39 % P = 100.0*np.eye(9)
40 P = P xyz * I;
41 % P = [100 0 0 0 0 0; ...
42 % 0 100 0 0 0 0; ...
43 % 0 0 100 0 0 0; ...
44 % 0 0 0 10 0 0; ...
45 % 0 0 0 0 10 0; ...
46 % 0 0 0 0 0 10]
47

48 % Process Noise Covariance Matrix
49 c1 = dtˆ4/4; % constant 1
50 c2 = dtˆ3/2; % constant 2
51 c3 = dtˆ2; % constant 3
52

53 Q = [c1 0 0 c2 0 0 ; ...
54 0 c1 0 0 c2 0 ; ...
55 0 0 c1 0 0 c2 ; ...
56 c2 0 0 c3 0 0 ; ...
57 0 c2 0 0 c3 0 ; ...
58 0 0 c2 0 0 c3 ]* sigma aˆ2;
59

60 %% initialize position measurements
61 cd('V:\IndianHeadMarch2022\Test 10\test 10 3D points')
62 load('saved position comp test10.mat')
63 measurements = [];
64

65 %% Preallocation of structure/arrays
66 for j = 1:45
67 struct(j).xt = [];
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68 struct(j).yt = [];
69 struct(j).zt = [];
70 struct(j).dxt = [];
71 struct(j).dyt = [];
72 struct(j).dzt = [];
73

74 struct(j).Zx = [];
75 struct(j).Zy = [];
76 struct(j).Zz = [];
77 struct(j).Px = [];
78 struct(j).Py = [];
79 struct(j).Pz = [];
80 struct(j).Pdx = [];
81 struct(j).Pdy = [];
82 struct(j).Pdz = [];
83

84 struct(j).Kx = [];
85 struct(j).Ky = [];
86 struct(j).Kz = [];
87 struct(j).Kdx = [];
88 struct(j).Kdy = [];
89 struct(j).Kdz = [];
90

91 struct(j).K = {};
92 end
93

94 %% Run Kalman Filter process
95 Ntracks = length(trackX);
96 startTrack = 1;
97 endTrack = Ntracks; % startTrack %
98 fragtrack = 20;
99 for j = startTrack:endTrack %fragtrack: fragtrack

100 % obtain estimates for assumed initial velocities
101 gradientX = gradient(trackX{j});
102 gradientY = gradient(trackY{j});
103 gradientZ = gradient(trackZ{j});
104 velX = gradientX / dt;
105 velY = gradientY / dt;
106 velZ = gradientZ / dt;
107 Nframes = length(trackX{j});
108 x = [trackX{j}(1) trackY{j}(1) trackZ{j}(1), ...

mean(velX(:)),mean(velY(:)), mean(velZ(:))]';
109

110 % rewrite measurements into a new variable
111 for n = 1:Nframes
112 measurements(n,:) = [trackX{j}(n) trackY{j}(n) ...

trackZ{j}(n)];
113 end
114

115 % perform Kalman filtering approach
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116 for n = 1:length(trackX{j})
117 x = A * x;
118 P = A*P*A' + Q;
119 S = H*P*H' + R;
120 K = (P*H') * inv(S);
121 Nframes = length(trackX{j});
122

123 z = measurements(n, :);
124 shapeH = size(H,1);
125 z = reshape(z, [shapeH, 1]);
126

127 y = z − (H*x);
128 x = x + (K*y);
129 P = (I − (K*H)) * P;
130

131 struct(j).xt = [struct(j).xt x(1)];
132 struct(j).yt = [struct(j).yt x(2)];
133 struct(j).zt = [struct(j).zt x(3)];
134 struct(j).dxt = [struct(j).dxt x(4)];
135 struct(j).dyt = [struct(j).dyt x(5)];
136 struct(j).dzt = [struct(j).dzt x(6)];
137

138 struct(j).Zx = [struct(j).Zx z(1)];
139 struct(j).Zy = [struct(j).Zy z(2)];
140 struct(j).Zz = [struct(j).Zz z(3)];
141 struct(j).Px = [struct(j).Px P(1,1)];
142 struct(j).Py = [struct(j).Py P(2,2)];
143 struct(j).Pz = [struct(j).Pz P(3,3)];
144 struct(j).Pdx = [struct(j).Pdx P(4,4)];
145 struct(j).Pdy = [struct(j).Pdy P(5,5)];
146 struct(j).Pdz = [struct(j).Pdz P(6,6)];
147

148

149 struct(j).Kx = [struct(j).Kx K(1,1)];
150 struct(j).Ky = [struct(j).Ky K(2,2)];
151 struct(j).Kz = [struct(j).Kz K(3,3)];
152 struct(j).Kdx = [struct(j).Kdx K(4,1)];
153 struct(j).Kdy = [struct(j).Kdy K(5,2)];
154 struct(j).Kdz = [struct(j).Kdz K(6,3)];
155 struct(j).K = {struct(j).K K};
156 end
157 end
158

159 %% plots vs time
160 for j = startTrack:endTrack % fragtrack: fragtrack
161 Nframes = length(trackX{j});
162 t = 0:dt:((Nframes−1)*dt);
163 figure
164 plot(t, struct(j).dxt)
165 hold on
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166 plot(t, struct(j).dyt)
167 plot(t, struct(j).dzt)
168 xlabel('time step')
169 ylabel('Velocity')
170 title('Velocity v. time step')
171 legend('x velocity', 'y velocity','z velocity')
172 %% x and y positions with time
173 figure
174 plot(t, struct(j).xt)
175 hold on
176 plot(t, struct(j).yt)
177 plot(t, struct(j).zt)
178 xlabel('time step')
179 ylabel('Position')
180 title('Position v. time step')
181 legend('x position', 'y position', 'z position')
182 %% uncertainty associated with x and y positions
183 figure
184 plot(t, struct(j).Px)
185 hold on
186 plot(t, struct(j).Py)
187 plot(t, struct(j).Pz)
188 xlabel('time step')
189 ylabel('Uncertainty')
190 title('Position Uncertainty v. time step')
191 legend('x position', 'y position', 'z position')
192 %% uncertainty with x and y velocities
193 figure
194 plot(t, struct(j).Pdx)
195 hold on
196 plot(t, struct(j).Pdy)
197 plot(t, struct(j).Pdz)
198 xlabel('time step')
199 ylabel('Uncertainty')
200 title('Velocity Uncertainty v. time step')
201 legend('x vel', 'y vel', 'z vel')
202 %% absolute, relative and percent error
203

204 measured = trackX{j};
205 estimated = struct(j).xt;
206 [abs dy, relerr, pererrX, mean err, MSE, RSME] = ...

determineError(measured, estimated);
207

208 measured = trackY{j};
209 estimated = struct(j).xt;
210 [abs dy, relerr, pererrY, mean err, MSE, RSME] = ...

determineError(measured, estimated);
211

212 measured = trackZ{j};
213 estimated = struct(j).zt;
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214 [abs dy, relerr, pererrZ, mean err, MSE, RSME] = ...
determineError(measured, estimated);

215

216 figure,
217 plot(t(2:end),abs dy)
218 xlabel('time step')
219 ylabel('Absolute Error [m]')
220 title('Absolute Error v. time step')
221

222 figure,
223 plot(t(2:end),relerr)
224 xlabel('time step')
225 ylabel('Relative Error')
226 title('Relative Error v. time step')
227

228 figure,
229 plot(t(2:end),pererrX)
230 xlabel('time step')
231 ylabel('Percent Error')
232 title('Percent Error v. time step')
233

234 x = struct(j).xt;
235 y = struct(j).yt;
236 z = struct(j).zt;
237

238 if pererrX < struct(j).Px(end)
239 dx = (struct(j).Px(end)/100) * x;
240 else
241 dx = (pererrX) * x;
242 end
243

244 if pererrY < struct(j).Py(end)
245

246 dy = (struct(j).Py(end)/100) * y;
247 else
248 dy = max(pererrY) * y;
249 end
250 if pererrZ < struct(j).Pz(end)
251 dz = (struct(j).Pz(end)/100) * z;
252 else
253

254 dz = max(pererrZ) * z;
255 end
256 dx = (struct(j).Px(end)/100) * x;
257 dy = (struct(j).Py(end)/100) * y;
258 dz = (struct(j).Pz(end)/100) * z;
259

260

261 dt = 5e−9; % jitter time of SILUX laser
262 t = 1/50000; % duration of one frame in sec
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263

264 vx = struct(j).xt;
265 vy = struct(j).yt;
266 vz = struct(j).zt;
267

268 for n = 1:length(measured)
269 frac uncert vx(n) = uncert vcomp(x(n),dx(n),t,dt);
270 frac uncert vy(n) = uncert vcomp(y(n),dy(n),t,dt);
271 frac uncert vz(n) = uncert vcomp(z(n),dz(n),t,dt);
272 dvx(n) = frac uncert vx(n) * vx(n);
273 dvy(n) = frac uncert vy(n) * vy(n);
274 dvz(n) = frac uncert vz(n) * vz(n);
275 frac uncert v3D{j}(n) = uncert v3D(vx(n),dvx(n), vy(n), ...

dvy(n), vz(n), dvz(n));
276 end
277

278

279 % figure
280 for n = 1:length(struct(j).dxt)
281 velocity3D{j}(n) = mag3Dvel(struct(j).dxt(n), ...

struct(j).dyt(n), struct(j).dzt(n));
282 end
283 time n = 1:1:length(struct(j).dxt);
284 % plot(time n, velocity3D{j})
285

286 figure
287 uncert3D{j} = frac uncert v3D{j} .* velocity3D{j};
288 shadedErrorBar(time n, velocity3D{j}, [uncert3D{j} ...

;uncert3D{j} ], 'lineprops', '−g')
289 end
290

291 %% x and y velocities with time
292 for n = 1:length(struct(j).dxt)
293 velocity3D{j}(n) = mag3Dvel(struct(j).dxt(n), ...

struct(j).dyt(n), struct(j).dzt(n));
294 end
295 time n = 1:1:length(struct(j).dxt);
296 % plot(time n, velocity3D{j})
297 for kk = 1:length(velocity3D)
298 final vel(kk) = velocity3D{kk}(end);
299 end
300

301

302 %% x and y velocities uncertainties with time
303 for j = fragtrack: fragtrack %startTrack:endTrack %fragtrack: ...

fragtrack % startTrack %
304 Nframes = length(trackX{j});
305 t = 0:dt:((Nframes−1)*dt);
306 for k = 1:length(struct(j).Px)
307 dx(k) = (struct(j).Px(k)/100) * x(k);
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308 dy(k) = (struct(j).Py(k)/100) * y(k);
309 dz(k) = (struct(j).Pz(k)/100) * z(k);
310 vx(k) = struct(j).xt(k);
311 vy(k) = struct(j).yt(k);
312 vz(k) = struct(j).zt(k);
313 end
314

315 dt = 5e−9; % jitter time of SILUX laser
316 t = 1/50000; % duration of one frame in sec
317

318 for n = 1:length(measured)
319 frac uncert vx(n) = uncert vcomp(x(n),dx(n),t,dt);
320 frac uncert vy(n) = uncert vcomp(y(n),dy(n),t,dt);
321 frac uncert vz(n) = uncert vcomp(z(n),dz(n),t,dt);
322 dvx(n) = frac uncert vx(n) * vx(n);
323 dvy(n) = frac uncert vy(n) * vy(n);
324 dvz(n) = frac uncert vz(n) * vz(n);
325 frac uncert v3D{j}(n) = uncert v3D(vx(n),dvx(n), vy(n), ...

dvy(n), vz(n), dvz(n));
326 end
327

328 for n = 1:length(struct(j).dxt)
329 velocity3D{j}(n) = mag3Dvel(struct(j).dxt(n), ...

struct(j).dyt(n), struct(j).dzt(n));
330 end
331 time n = 1:1:length(struct(j).dxt);
332

333 figure
334 percent3D{j} = frac uncert v3D{j} * 100;
335 uncert3D{j} = frac uncert v3D{j} .* (velocity3D{j});
336 shadedErrorBar(time n, velocity3D{j}, [uncert3D{j} ...

;uncert3D{j} ], 'lineprops', '−g')
337 end
338

339 %% Plot of each estimated coordinate and measured coordinate
340 xzypath = 'V:\IndianHeadMarch2022\Test 11\xyz';
341 figure
342 for j = fragtrack:fragtrack
343 for n = 1:length(trackX{j}) − 1
344 subplot(1,3,1)
345 % compare x estimates and measurements
346 line([n,n+1],[struct(j).xt(n),struct(j).xt(n+1)],'Color', ...

'b')
347 line([n,n+1], [trackX{j}(n) trackX{j}(n+1)],'Color', 'g')
348 xlabel('time')
349 ylabel('X [m]')
350 title('X position')
351 hold on
352 drawnow
353
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354 subplot(1,3,2)
355 % compare y estimates and measurements
356 line([n,n+1],[struct(j).yt(n),struct(j).yt(n+1)],'Color', ...

'b')
357 line([n,n+1], [trackY{j}(n) trackY{j}(n+1)],'Color', 'g')
358 xlabel('time')
359 ylabel('Y [m]')
360 title('Y position')
361 hold on
362

363 drawnow
364 subplot(1,3,3)
365 % compare z estimates and measurements
366 line([n,n+1],[struct(j).zt(n),struct(j).zt(n+1)],'Color', ...

'b')
367 line([n,n+1], [trackZ{j}(n) trackZ{j}(n+1)],'Color', 'g')
368 xlabel('time')
369 ylabel('Z [m]')
370 title('Z position')
371 hold on
372 drawnow
373 end
374 end
375

376

377

378 %% functions
379 function [RGB] = returnColorMap(vel3D, minValue, maxValue)
380 a = minValue:((maxValue − minValue)/255):maxValue;
381 % a px = minVel:((maxVel − minVel)/255):maxVel;
382

383 c = parula;
384 colormap(c);
385 A = colormap(c);
386 % generate colors for tracks
387 RGB = [];
388 for trail = 1:length(vel3D)
389 for j = 1:length(a)
390 absolute(j,trail) = abs(a(j) − abs(vel3D(trail)));
391 end
392 [val, idx] = min(absolute(:, trail));
393

394 if idx > 256
395 idx = 256;
396 end
397 RGB(trail, :, :, :) = A(idx, :);
398 end
399 end
400

401 function [trackX, trackY, trackZ] = desiredValues(X1, Y1, Z1)
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402 x1 first = find(¬isnan(X1), 1, 'first');
403 x1 last = find(¬isnan(X1), 1, 'last');
404 dif = x1 last − x1 first;
405 for n = 1:dif
406 trackX{1}(n) = X1(x1 first + n − 1);
407 trackY{1}(n) = Y1(x1 first + n − 1);
408 trackZ{1}(n) = Z1(x1 first + n − 1);
409 end
410 end
411

412

413 function [frac uncert v3D, uncert3D, vel3D, time n] = ...
displayErrorVel(measured x, measured y, measured z, x,y,z, ...
vx, vy, vz)

414

415 [abs dx, relerr, pererr, mean err, MSE, RSME] = ...
determineError(measured x, x);

416 [abs dy, relerr, pererr, mean err, MSE, RSME] = ...
determineError(measured y, y);

417 [abs dz, relerr, pererr, mean err, MSE, RSME] = ...
determineError(measured z, z);

418

419

420 dx = (abs dx) .* x(2:end);
421 dy = (abs dy) .* y(2:end);
422 dz = (abs dz) .* z(2:end);
423 dt = 5e−9; % jitter time of SILUX laser
424 t = 1/50000; % duration of one frame in sec
425

426

427 for n = 1:length(measured x)−1
428 frac uncert vx(n) = uncert vcomp(x(n),dx(n),t,dt);
429 frac uncert vy(n) = uncert vcomp(y(n),dy(n),t,dt);
430 frac uncert vz(n) = uncert vcomp(z(n),dz(n),t,dt);
431 dvx(n) = frac uncert vx(n) * vx(n);
432 dvy(n) = frac uncert vy(n) * vy(n);
433 dvz(n) = frac uncert vz(n) * vz(n);
434 frac uncert v3D(n) = uncert v3D(vx(n),dvx(n), vy(n), ...

dvy(n), vz(n), dvz(n));
435 end
436

437

438 figure
439 for n = 1:length(vx)−1
440 vel3D(n) = mag3Dvel(vx(n),vy(n), vz(n));
441 end
442 time n = 1:1:length(x)−1;
443 disp(size(frac uncert v3D))
444 disp(size(vel3D))
445 plot(time n, vel3D)
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446

447 figure
448 uncert3D = frac uncert v3D .* vel3D;
449 shadedErrorBar(time n, vel3D, [uncert3D ;uncert3D ], ...

'lineprops', '−g')
450 end
451

452 %%
453 function [abs dy, relerr, pererr, mean err, MSE, RMSE] = ...

determineError(measured, estimated)
454 for n = 1:length(measured) − 1
455 y0 = measured(n); % original value
456 y1 = estimated(n); % obtained value
457 dy = y0−y1 ; % error
458 abs dy(n) = abs(y0−y1) ; % absolute error
459 relerr(n) = abs(y0−y1)./y0 ; % relative error
460 pererr(n) = abs(y0−y1)./y0*100 ; % percentage error
461 mean err(n) = mean(abs(y0−y1)) ; % mean absolute error
462 MSE(n) = mean((y0−y1).ˆ2) ; % Mean square error
463 RMSE(n) = sqrt(mean((y0−y1).ˆ2)) ; % Root mean square error
464 end
465 end
466

467

468 %%
469 function [vel3D] = mag3Dvel(velx, vely, velz)
470 vel3D = sqrt((velx ˆ 2) + (vely ˆ 2) + (velz ˆ 2));
471 end
472 function [pos1] = trimTracks1D(pos1)
473 % for x and y positions, for each fragment, remove empty ...

cells (1 Camera)
474 for n = 1:length(pos1)
475 empties = cellfun('isempty',pos1{n});
476 pos1{n}(empties) = {NaN};
477 end
478 end
479

480 % indices extraction
481 function [IndicesLastA, IndicesFirstA] = indicesExtraction(pos1, ...

filenames1)
482 % obtain start and stop indices for each fragment
483 trails = length(filenames1);
484 for trail = 1:trails
485 savedTracks = pos1{trail};
486 savedTracks = cell2mat(savedTracks);
487 B = ¬isnan(savedTracks);
488 IndicesLastA{trail} = find(B, 1, 'last');
489 IndicesFirstA{trail} = find(B, 1, 'first');
490 end
491 end
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492

493 function [first, last] = matchFrames(fragA, fragB, ...
IndicesLastA, IndicesFirstA, IndicesLastB, IndicesFirstB)

494 FirstA = IndicesFirstA{fragA};
495 FirstB = IndicesFirstB{fragB};
496 LastA = IndicesLastA{fragA};
497 LastB = IndicesLastB{fragB};
498

499 % valid points to assign values
500 if FirstA < FirstB
501 first = FirstB;
502 else
503 first = FirstA;
504 end
505

506 if LastA < LastB
507 last = LastA;
508 else
509 last = LastB;
510 end
511 end
512

513 % triangulation sensitivity
514 function [Xdist, Ydist1, Zdist, max norm dist, min norm dist] = ...

sensitivity2(p1, p2, stereoParams, dif)
515

516 size(p1)
517 % add pixel differences to determine error/sensitivity of ...

triangulation
518 p1 xplus = p1 + [dif 0];
519 p1 xminus = p1 + [−dif 0];
520 p1 yplus = p1 + [0 dif];
521 p1 yminus = p1 + [0 −dif];
522

523 p2 xplus = p2 + [dif 0];
524 p2 xminus = p2 + [−dif 0];
525 p2 yplus = p2 + [0 dif];
526 p2 yminus = p2 + [0 −dif];
527

528 % triangulation of original point
529 p3D = triangulate(p1, p2, stereoParams)/1000;
530 % triangulation of original point with pixel differenecs in ...

each view
531 p3D 1 = triangulate(p1 xplus, p2, stereoParams)/1000;
532 p3D 2 = triangulate(p1 xminus, p2, stereoParams)/1000;
533 p3D 3 = triangulate(p1 yplus, p2, stereoParams)/1000;
534 p3D 4 = triangulate(p1 yminus, p2, stereoParams)/1000;
535

536 p3D 1b = triangulate(p1, p2 xplus, stereoParams)/1000;
537 p3D 2b = triangulate(p1, p2 xminus, stereoParams)/1000;
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538 p3D 3b = triangulate(p1, p2 yplus, stereoParams)/1000;
539 p3D 4b = triangulate(p1, p2 yminus, stereoParams)/1000;
540

541 % scatter3(p3D(1), p3D(2), p3D(3), 10, 'MarkerFaceColor', 'b')
542 % hold on
543

544 % Y distance
545 X = [p3D 3(1) p3D 4(1)];
546 Y = [p3D 3(2) p3D 4(2)];
547 Z = [p3D 3(3) p3D 4(3)];
548 Ydist1 = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
549 % plot3(X,Y,Z, 'Color', 'r', 'LineStyle', '−', ...

'DisplayName','T0');
550

551 % Z distance
552 X = [p3D 1b(1) p3D 2b(1)];
553 Y = [p3D 1b(2) p3D 2b(2)];
554 Z = [p3D 1b(3) p3D 2b(3)];
555 Zdist = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
556 % plot3(X,Y,Z, 'Color', 'g', 'LineStyle', '−', ...

'DisplayName','T1');
557

558 % Y distance
559 X = [p3D 3b(1) p3D 4b(1)];
560 Y = [p3D 3b(2) p3D 4b(2)];
561 Z = [p3D 3b(3) p3D 4b(3)];
562 Ydist2 = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
563 % plot3(X,Y,Z, 'Color', 'b', 'LineStyle', '−', ...

'DisplayName','T2');
564 if Ydist2 > Ydist1
565 Ydist1 = Ydist2;
566 end
567

568 % X distance
569 X = [p3D 1(1) p3D 2(1)];
570 Y = [p3D 1(2) p3D 2(2)];
571 Z = [(p3D 1(3)+ p3D 2(3))/2 (p3D 1(3) + p3D 2(3))/2];
572 Xdist = dist(X(1),Y(1),Z(1),X(2),Y(2),Z(2));
573 % plot3(X,Y,Z, 'Color', 'k', 'LineStyle', '−', ...

'DisplayName','T3');
574 % hold on
575 % title('Stereo Calibration')
576 % xlabel('x (m)')
577 % ylabel('y (m)')
578 % zlabel('z (m)')
579 %
580 % legend(h,'T0','T1','T2','T3');
581 norm dist(1) = norm(p3D 1); % m
582 norm dist(2) = norm(p3D 2); % m
583 norm dist(3) = norm(p3D 3); % m
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584 norm dist(4) = norm(p3D 4); % m
585 norm dist(5) = norm(p3D 1b); % m
586 norm dist(6) = norm(p3D 2b); % m
587 norm dist(7) = norm(p3D 3b); % m
588 norm dist(8) = norm(p3D 4b); % m
589 max norm dist = max( norm dist);
590 min norm dist = min( norm dist);
591

592 end
593

594 % distance 3D
595 function dist3d = dist(x1,y1,z1,x2,y2,z2)
596 term1 = x1 − x2;
597 term2 = y1 − y2;
598 term3 = z1 − z2;
599 dist3d = sqrt(term1ˆ2 + term2ˆ2 + term3ˆ2);
600 end
601

602

603 function frac uncert vcomp = uncert vcomp(x,dx,t,dt)
604 frac uncert vcomp = sqrt((dx/x)ˆ2 + (dt/t)ˆ2);
605 end
606

607 function frac uncert v3D = uncert v3D(vx,vdx, vy, dvy, vz, dvz)
608 frac uncert v3D = sqrt((vdx/ vx)ˆ2 + (dvy/vy)ˆ2 + (dvz/vz)ˆ2);
609 end

A.7 Dynamic Image Analysis

1 %% Sean Palmer, New Mexico Tech, SGDL 2022
2 % DynamicImageAnalysis.m
3 % A code for performing dynamic image analysis by extracting and
4 % observing the size of fragments as they are tracked with time.
5 %% clear everything
6 clc
7 close all
8 clear all
9

10

11 %% user input
12 pathname1 = 'V:\IndianHeadMarch2022\Test 10\test 10 25736\actual';
13 pathname2 = 'V:\IndianHeadMarch2022\Test 10\saveTracksBreduced';
14 cd(pathname1);
15 Cam1 = dir('*tiff'); % list of all tif images
16

17 startFrame = 13;
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18 endFrame = 20;
19 minimumSize = 1;
20 maximumSize = 2000;
21

22 getSample = 9; % Y = 1, N = 2
23 desiredFrame = 196;
24 %% run through desired mat files
25 fragNumber = 70;
26 %%
27 for kk = fragNumber:fragNumber%numel(filenames)
28 cd(pathname2);
29 filenames = dir('*mat');
30 S = load(filenames(kk).name); % Best to load into an output ...

variable.
31 startFrame = S.startFrame;
32 endFrame = length(S.x centroid);
33 for i = startFrame:endFrame
34 % show image
35 cd(pathname1);
36 Cam1 = dir('*tiff'); % list of all tif images
37

38 mainImage = imread(Cam1(i).name);
39 [rows,cols,dims] = size(mainImage);
40 if dims == 3
41 I = rgb2gray(mainImage);
42 else
43 I = mainImage;
44 end
45 level = graythresh(I);
46 BW = ¬imbinarize(I, level);
47 [BW,maskedImage] = segmentImage2(I);
48

49 % figure, imshow(BW);
50 % hold on
51 movegui('north');
52 [L, num Obj] = bwlabel(BW, 8);
53 %% load and plot centroid
54 cd(pathname2);
55 filenames = dir('*mat');
56 S = load(filenames(kk).name); % Best to load into an ...

output variable.
57 trail pos x = S.x centroid{i};
58 trail pos y = S.y centroid{i};
59 % plot(trail pos x, ...

trail pos y,'−','color',RGB(trail,:,:,:),'linewidth',1) ...
%show estimated path

60 % plot(trail pos x, trail pos y,'r+') %show estimated path
61 xCenter = round(trail pos x);
62 yCenter = round(trail pos y);
63
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64 labelNumber = L(yCenter, xCenter);
65 extractedObject = ismember(L, labelNumber);
66 testObject = ismember(L, labelNumber);
67

68 % figure, imshow(extractedObject, []);
69 %% determine properties
70 properties = regionprops(extractedObject, 'all');
71 fragmentAreas = [properties.Area];
72 desiredSizes = (fragmentAreas < maximumSize) & ...

(fragmentAreas > minimumSize); % desired sizes of ...
fragments

73 desired indices = find(desiredSizes);
74 if ¬isempty(desired indices)
75 desiredFragmentImage = ismember(extractedObject, ...

desired indices);
76 labeledDesiredImage = bwlabel(desiredFragmentImage); ...

% Label each blob so we can make ...
measurements of it

77 properties2 = regionprops(labeledDesiredImage, 'all');
78

79 % sort set number of particles by area, largest to ...
smallest

80 get particles = [properties2.Area];
81 centroids2 = [properties2.Centroid];
82 equivDiam2 = [properties2.EquivDiameter];
83 boundBox = [properties2.BoundingBox];
84

85 numberOfBoxes = length(equivDiam2);
86 boxes = reshape(boundBox,[],numberOfBoxes);
87 x cent = centroids2(1:2:end−1);
88 y cent = centroids2(2:2:end);
89

90 for n = 1:length(x cent)
91 xCent(n) = x cent(n);
92 yCent(n) = y cent(n);
93 end
94 %% show image boxes
95 % figure, imshow(mainImage);
96 for k = 1 : length(properties2)
97 thisBB = properties2(k).BoundingBox;
98 rectangle('Position', ...

[thisBB(1),thisBB(2),thisBB(3),thisBB(4)],...
99 'EdgeColor','g','LineWidth',1 )

100 end
101

102 cellPoint1 = {};
103 cellPoint2 = {};
104 cellDp = {};
105

106 comp = imcomplement(I);
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107 for jj = 1:length(equivDiam2)
108 temp{jj} = generateTemp(comp, ...

properties2(jj).BoundingBox);
109 % [cellPoint1{i}, cellPoint2{i}, cellDp{i}] = ...

corr(temp{i}, I1, I2);
110 end
111 %% otsu and area
112 % figure, imshow(comp, [])
113 % figure, imshow(temp{1}, [])
114 level = graythresh(temp{1});
115 bin temp = imbinarize(temp{1}, level);
116 % figure, imshow(temp{1})
117

118 [threshold, maxval, idx, area] = otsu return(temp{1});
119 [save black, lowerArea, upperArea] = ...

area grad(temp{1}, idx);
120

121 if getSample == 1 && i == desiredFrame
122 % [dummy1, dummy2, dummy3, dummy4, dummy5] = ...

area grad display(temp{1}, idx);
123 % otsu full(temp{1})
124 save temp = temp{1};
125 end
126 frame(i) = i;
127 save area(i) = area;
128 save upper(i) = upperArea;
129 save lower(i) = lowerArea;
130 end
131 end
132 end
133 %% display area with time
134 x = frame(startFrame:end);
135 y = save area(startFrame:end);
136 errA = abs(y − save upper(startFrame:end));
137 errB = abs(y − save lower(startFrame:end));
138

139 figure,
140 h(1) = plot(x, y, 'r')
141 hold on
142 shadedErrorBar(x, y, [errA;errB], 'lineprops', '−r')
143 xlabel('frame number')
144 ylabel('pixel area')
145

146 title('Pixel area vs frame number')
147 mean y = mean(y) * ones(size(y));
148

149 hold on
150 h(2) = plot(x,mean y, 'b')
151 lgd = legend(h, 'Pixel Area', 'Mean Pixel Area');
152 lgd.Location = 'northwest';
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153 cd('V:\IndianHeadMarch2022\Test 10\saved sizes')
154 s1 = 'DIA test10 Bfrag00';
155 s2 = num2str(fragNumber);
156 s3 = '.mat';
157 dir save = strcat(s1,s2,s3)
158 save(dir save, 'x', 'y', 'errA', 'errB', 'startFrame', ...

'save area', 'save upper', 'save lower', 'frame')
159 %% Get Sample Otsu/Area/Area Gradient Images
160 lvl = graythresh(save temp);
161 bwtemp = imbinarize(save temp, lvl);
162 figure, imshow(save temp, [])
163 figure, imshow(bwtemp)
164

165 %% display area, area gradient, threshold range, etc.
166 otsu full(save temp)
167 [threshold, maxval, idx, area] = otsu return(temp{1});
168 [dummy1, dummy2, dummy3, dummy4, dummy5] = ...

area grad display(temp{1}, idx);
169 [dummyA, dummyB, dummyC] = area grad(temp{1}, idx);
170

171 %% show saved bounding box of desired fragment
172 figure, imshow(save temp, []);
173 figure, imhist(im2uint8(save temp));
174

175 %% functions
176 function dist3d = dist(x1,y1,z1,x2,y2,z2)
177 term1 = x1 − x2;
178 term2 = y1 − y2;
179 term3 = z1 − z2;
180 dist3d = sqrt(term1ˆ2 + term2ˆ2 + term3ˆ2);
181 end
182

183 function temp = generateTemp(image, boundingBox)
184 coord = boundingBox;
185 temp = imcrop(image, [coord(1) coord(2) coord(3) coord(4)]);
186 end
187

188 % save area for single region
189 function [save black,less, more] = area grad(region, index)
190 [rowTemp, colTemp] = size(region);
191 for thr = 1:255
192 thr2 = 256 − thr;
193 Binar = (imbinarize(region,thr2/255));
194 label = bwlabel(Binar,8);
195 tempRegion = regionprops(label, 'all');
196 tempArea = [tempRegion.Area];
197 % save thr(thr) = thr;
198 nBlack = sum(Binar(:));
199 nWhite = numel(Binar ) − nBlack;
200 save black(thr) = nBlack;
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201 save white(thr) = nWhite;
202 save thr2(thr) = thr2;
203 end
204 if length(index) > 1
205

206 less = save black(save thr2(index(1)));
207 more = save black(save thr2(index(2)));
208 else
209 asdf1 = index − 1;
210 asdf2 = index + 1;
211

212 less = save black(save thr2(asdf1)); % save thr(idx)
213 more = save black(save thr2(asdf2));
214 end
215 end
216

217

218 function [less, more, save black, save white, save thr2] = ...
area grad display(region, index)

219 [rowTemp, colTemp] = size(region);
220 for thr = 1:256
221 thr2 = 256 − thr;
222 Binar = (imbinarize(region,thr2/256));
223 label = bwlabel(Binar,8);
224 tempRegion = regionprops(label, 'all');
225 tempArea = [tempRegion.Area];
226 % save thr(thr) = thr;
227 nBlack = sum(Binar(:));
228 nWhite = numel(Binar ) − nBlack;
229 save black(thr) = nBlack;
230 save white(thr) = nWhite;
231 save thr2(thr) = thr2;
232 end
233 figure,
234 h(1) = plot(save thr2,save black)
235 yyaxis left
236 areaGradient = gradient(save black);
237 hold on
238 yyaxis right
239 ylim([0 max(areaGradient)]);
240 h(2) = plot(save thr2, areaGradient)
241 yyaxis left
242

243 % title('Plots with Different y−Scales')
244 xlabel('threshold')
245 ylabel('Area (px)')
246 legend('Area', 'Gradient of Area')
247 yyaxis right
248 ylabel('Gradient of Area')
249 title('Area and Gradient of Area vs Threshold')
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250 hold on,
251 if length(index) > 1
252 h(3) = line([index(1) index(2)],[0 ...

max(save black)],'Color',[1 0 0]);
253 [fillhandle,msg]=jbfill([index(1) ...

index(2)],save black(index(1):index(2)),[0 0],'r', 'r');
254 less = save black(save thr2(index(1)));
255 more = save black(save thr2(index(2)));
256 else
257 asdf1 = index − 1;
258 asdf2 = index + 1;
259 h(3) = line([index index],[0 max(save black)],'Color',[1 ...

0 0]);
260 hold on,
261 h(4) = line([asdf1 asdf1],[0 max(save black)],'Color',[1 ...

0 0]);
262 hold on,
263 h(5) = line([asdf2 asdf2],[0 max(save black)],'Color',[1 ...

0 0]);
264 [fillhandle,msg]=jbfill([asdf1 index ...

asdf2],save black(asdf1:asdf2),[0 0 0],'r', 'r');
265

266 less = save black(save thr2(asdf1)); % save thr(idx)
267 more = save black(save thr2(asdf2));
268 end
269 legend(h,'area','area ...

gradient','threshold','leftBound','rightBound');
270 lgd = legend(h,'area','area gradient','threshold range');
271 lgd.Location = 'southwest'
272 end
273

274 % return otsu parameters
275 function [threshold, maxval, idx, area] = otsu return(I)
276 sig save = [];
277 BetClassvariance = [];
278

279 % I = temp{1};
280 [rows,cols,dims] = size(I);
281 mg = mean(I(:));
282

283 BetClassvariance = zeros(1,256);
284

285 n=imhist(I);
286 N=sum(n);
287 maxS=0;
288 for i=1:256
289 P(i)=n(i)/N;
290 end
291 for T=2:255
292 w0=sum(P(1:T));
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293 w1=sum(P(T+1:256));
294 u0=dot([0:T−1],P(1:T))/w0;
295 u1=dot([T:255],P(T+1:256))/w1;
296 sigma=w0*w1*((u1−u0)ˆ2);
297 sig save(T) = sigma;
298 BetClassvariance(T) = sigmaˆ2;
299 if sigma>maxS
300 maxS=sigma;
301 threshold=T−1;
302 end
303 end
304 bw = imbinarize(I,threshold/255);
305 maxval = max(BetClassvariance);
306 idx = find(BetClassvariance == maxval);
307

308 props = regionprops(bw, 'all');
309 % sort set number of particles by area, largest to smallest
310 area = max([props.Area]);
311

312 end
313

314 % show graphs of otsu parameters
315 function otsu full(I)
316

317 sig save = [];
318 BetClassvariance = [];
319

320 % I = temp{1};
321 [rows,cols,dims] = size(I);
322

323 % Plot its histogram;
324 [Frequency,bins] = imhist(I);
325 figure,stem(bins,Frequency);title('Frequency ...

Plot');xlabel('Intensities'),ylabel('Freq');
326

327 % Compute Global mean
328 mg = mean(I(:));
329 hold on, line([mg mg],[0 max(Frequency)],'Color',[1 0 0]);
330

331 % Let the threshold value varies from k = 0 to 255
332 BetClassvariance = zeros(1,256);
333 Goodness = BetClassvariance;
334 NormalizedFreq = Frequency / (rows * cols);
335 figure,stem(bins,NormalizedFreq);title('Normalized ...

Frequency');xlabel('Intensities'),ylabel('Freq');
336 hold on, line([mg mg],[0 max(NormalizedFreq)],'Color',[1 0 0]);
337 SigmaGlobal = var(double(I(:)));
338

339

340 figure(1),imshow(I);
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341 figure(2),imhist(I);
342 n=imhist(I);
343 N=sum(n);
344 maxS=0;
345 for i=1:256
346 P(i)=n(i)/N;
347 end
348 for T=2:255
349 w0=sum(P(1:T));
350 w1=sum(P(T+1:256));
351 u0=dot([0:T−1],P(1:T))/w0;
352 u1=dot([T:255],P(T+1:256))/w1;
353 sigma=w0*w1*((u1−u0)ˆ2);
354 sig save(T) = sigma;
355 BetClassvariance(T) = sigmaˆ2;
356 if sigma>maxS
357 maxS=sigma;
358 threshold=T−1;
359 end
360 end
361 bw=im2bw(I,threshold/256);
362 figure(3),imshow(bw);
363 figure,plot(BetClassvariance);
364 xlabel('Thresold Values'),ylabel('Between Class Variance');
365

366 title('BetweenClass Variance')
367 [¬,index]= max(BetClassvariance);
368 hold on, line([index index],[0 ...

max(BetClassvariance)],'Color',[1 0 0]);
369 figure(2),hold on, line([index index],[0 ...

max(Frequency)],'Color',[1 1 0]);
370

371 figure,plot(sig save);xlabel('Threshold ...
Values'),ylabel('Between Class Variance');

372

373 maxval = max(BetClassvariance);
374 idx = find(BetClassvariance == maxval);
375 end
376

377 function[fillhandle,msg]=jbfill(xpoints,upper,lower,color,edge,add,transparency)
378 %USAGE: ...

[fillhandle,msg]=jbfill(xpoints,upper,lower,color,edge,add,transparency)
379 %This function will fill a region with a color between the ...

two vectors provided
380 %using the Matlab fill command.
381 %
382 %fillhandle is the returned handle to the filled region in ...

the plot.
383 %xpoints= The horizontal data points (ie frequencies). Note ...

length(Upper)
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384 % must equal Length(lower)and must equal ...
length(xpoints)!

385 %upper = the upper curve values (data can be less than lower)
386 %lower = the lower curve values (data can be more than upper)
387 %color = the color of the filled area
388 %edge = the color around the edge of the filled area
389 %add = a flag to add to the current plot or make a new one.
390 %transparency is a value ranging from 1 for opaque to 0 for ...

invisible for
391 %the filled color only.
392 %
393 %John A. Bockstege November 2006;
394 %Example:
395 % a=rand(1,20);%Vector of random data
396 % b=a+2*rand(1,20);%2nd vector of data points;
397 % x=1:20;%horizontal vector
398 % [ph,msg]=jbfill(x,a,b,rand(1,3),rand(1,3),0,rand(1,1))
399 % grid on
400 % legend('Datr')
401 if nargin<7;transparency=.5;end %default is to have a ...

transparency of .5
402 if nargin<6;add=1;end %default is to add to current plot
403 if nargin<5;edge='k';end %dfault edge color is black
404 if nargin<4;color='b';end %default color is blue
405 if length(upper)==length(lower) && ...

length(lower)==length(xpoints)
406 msg='';
407 filled=[upper,fliplr(lower)];
408 xpoints=[xpoints,fliplr(xpoints)];
409 if add
410 hold on
411 end
412 fillhandle=fill(xpoints,filled,color);%plot the data
413 set(fillhandle,'EdgeColor',edge,'FaceAlpha',transparency,'EdgeAlpha',transparency);%set ...

edge color
414 if add
415 hold off
416 end
417 else
418 msg='Error: Must use the same number of points in each ...

vector';
419 end
420 end
421

422 function [BW,maskedImage] = segmentImage(RGB)
423 %segmentImage Segment image using auto−generated code from ...

imageSegmenter app
424 % [BW,MASKEDIMAGE] = segmentImage(RGB) segments image RGB using
425 % auto−generated code from the imageSegmenter app. The final ...

segmentation
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426 % is returned in BW, and a masked image is returned in MASKEDIMAGE.
427

428 % Auto−generated by imageSegmenter app on 17−Mar−2022
429 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
430

431

432 % Convert RGB image into L*a*b* color space.
433 X = rgb2lab(RGB);
434

435 % Create empty mask.
436 BW = false(size(X,1),size(X,2));
437

438 % Flood fill
439 row = 211;
440 column = 403;
441 tolerance = 1.500000e−01;
442 normX = sum((X − X(row,column,:)).ˆ2,3);
443 normX = mat2gray(normX);
444 addedRegion = grayconnected(normX, row, column, tolerance);
445 BW = BW | addedRegion;
446

447 % Invert mask
448 BW = imcomplement(BW);
449

450 % Create masked image.
451 maskedImage = RGB;
452 maskedImage(repmat(¬BW,[1 1 3])) = 0;
453 end
454

455

456 function [BW,maskedImage] = segmentImage2(X)
457 %segmentImage Segment image using auto−generated code from ...

imageSegmenter app
458 % [BW,MASKEDIMAGE] = segmentImage(X) segments image X using ...

auto−generated
459 % code from the imageSegmenter app. The final segmentation is ...

returned in
460 % BW, and a masked image is returned in MASKEDIMAGE.
461

462 % Auto−generated by imageSegmenter app on 26−Mar−2022
463 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
464

465

466 % Adjust data to span data range.
467 X = imadjust(X);
468

469 % Threshold image − adaptive threshold
470 BW = imbinarize(X, 'adaptive', 'Sensitivity', 1.000000, ...

'ForegroundPolarity', 'bright');
471
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472 % Invert mask
473 BW = imcomplement(BW);
474

475 % Create masked image.
476 maskedImage = X;
477 maskedImage(¬BW) = 0;
478 end
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APPENDIX B

DERIVATION OF UNCERTAINTY IN EQUIVALENT
DIAMETER

Define the equivalent diameter de in terms of pixel area Apx and the spatial
calibration scale Cs:

(B.1)

Apply the generalized uncertainty equation to the equivalent diameter de:

∂de =

√
(

∂de

∂Cs
δCs)2 + (

∂de

∂Apx
δApx)2 (B.2)

Apply partial derivatives to obtain terms fractional uncertainties:

∂de

∂Cs
δCs =

√
4Apx

π
δCs = de

δCs

Cs
(B.3)

∂de

∂Apx
δApx =

∂

∂A
(

√
4A
π

Cs)δApx =
Cs√
πApx

δApx

Simplify to obtain fractional uncertainty of Apx:

de

( Cs√
πApx

)
= 2Apx (B.4)

∂de

∂Apx
δApx =

de

2Apx
δApx =

de

2
δApx

Apx
(B.5)

Substitute terms into generalized uncertainty equation:

δde =

√
(de

δCs

Cs
)2 + (

de

2
δApx

Apx
)2 (B.6)

127



Simplify the generalized uncertainty equation to obtain the fractional uncer-
tainty of the diameter:

δde

de
=

√
(

δCs

Cs
)2 + (

δApx

2Apx
)2 (B.7)

This agrees with the general rule of uncertainty in a power described by
Taylor [40].
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