
This thesis is dedicated to the memory of my parents and sister, Bob, Chris and
Iva. This is for them.

My grandparents have been my best friends, my counselors, and everything
good in my life, and I wouldn’t have been able to do this without their love and
support. Rick and Jeannie have been my helpers in anything and everything I

needed in life, and Bill has been the best uncle any nephew could ask for. I could
never have hoped to have a more loving, supporting, and happy family.

Fritz H. Hieb
New Mexico Institute of Mining and Technology

May, 2017

DEVELOPMENT OF A DIGITAL IMAGE CORRELATION
AND PARTICLE IMAGE VELOCIMETRY SOFTWARE

PACKAGE DESIGNED FOR UNIVERSITY MECHANICAL
ENGINEERING APPLICATIONS

by

Fritz H. Hieb

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in Mechanical Engineering

New Mexico Institute of Mining and Technology
Socorro, New Mexico

May, 2017

ABSTRACT

Digital image correlation (DIC) and particle image velocimetry (PIV) are non-
destructive digital measurement techniques. High-speed, high definition cam-
eras capture detailed images of particle movement in a target area. The images
are subsequently fed into software to analyze the particle movements via corre-
lation algorithms, then output the motion characteristics of the particles in the
overall target region. DIC is geared primarily toward solid material mechan-
ics, analyzing and describing deformation and strain characteristics in a range of
applications, from small-scale material samples to large scale structures such as
bridge and building supports. PIV deals in the realm of fluid mechanics, charac-
terizing the flow patterns and turbulence components of gas and liquid systems.

The correlation software component is a limiting factor due to the cost and
availability of viable free programs. Currently, many options for DIC and PIV
professional software exist on the market that perform high-quality, high-definition,
reliable analysis. Yet these industry-scale programs are very expensive, and out
of reach to a typical university engineering student, as well as many departmen-
tal budgets. Currently, free options in existence are limited, requiring access to
third-party software or the knowledge of code compilation, and rarely do they
exhibit cross-platform portability.

The goal of this project is to develop a software suite for engineering stu-
dents and instructors that combines both PIV and DIC into a single user-friendly,
graphical interface-based software package that serves basic engineering needs,
and has a low barrier of entry. The user of this program will be provided with
the tools needed to perform a moderately simplified, speedy correlation analysis.
The raw data output of the analysis will then be available for outside study that
serves to increase the learning component of the project, providing instructors
latitude on which components of the process they are interested in teaching.

This developed program uses subset-based, zero-mean direct cross-correlation
for DIC. The algorithm applies an integer-based search scheme developed here to
find the nearest correlating coordinates, then offers the option to apply a subpixel
interpolation scheme that resolves the particle movement accuracy to subpixel
dimensions. The user interface displays the results of the search in the form of a
contour interval heat-map, and offers the data for export. For particle image ve-
locimetry, Fourier transform phase correlation is used as the primary correlation
mechanism. Subpixel components are available using the direct cross-correlation
mechanism. Visual feedback is provided in the form of on-screen, adjustable ve-
locity vectors, with raw data output available.

Material-deformation and particle-movement experiments performed for this

project provided raw input images to test the software. Results from three pro-
fessional and well-cited programs provided baseline data to compare and verify
the results of this program. The developed DIC algorithm performed quickly
and accurately compared to the baseline, up to the point of significant sample
deformation. At this point, the algorithm had difficulty locating tolerable cor-
relation matches only in the areas of high deformation, resulting in a moderate
break-down in the accuracy of the results in the significantly strained regions of
the sample. In the PIV data comparison, there was variability between the results
from the two baseline programs and this one. Each program produced slightly
different results, though the overall trend of the data was the same. In particle
motion applications, it is apparent that the differences in proprietary algorithms,
as well as the general volatility of fluid particle movement, causes higher vari-
ability in the results than in DIC.

Keywords: Digital image correlation, particle image velocimetry, cross-correlation,
PIV, DIC, phase transform

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Michael Hargather for accepting me as his
student, and for taking on this project. I enjoyed his advisement and instruction
throughout this process immensely.

Dr. Jamie Kimberly brought extensive knowledge to the endeavor, and I appreci-
ate all of his time and efforts to make the project successful.

Dr. Kent Dybvig provided excellent and thoughtful feedback in the final stages of
the project, and also brought a deep family connection and a personal component
that I truly valued, and I thank him for that.

Additionally, I received help from several faculty members, namely Dr. David
Grow and Dr. Curtis O’Malley, they were a tremendous help in several major
components of this project.

Lastly, none of this would be possible if my good friend Jason Lee had not con-
vinced me to apply to the mechanical engineering graduate program at New
Mexico Tech. I didn’t think I had what it took, but he convinced me otherwise.

Thank you again to everybody.

ii

CONTENTS

LIST OF FIGURES 6

LIST OF TABLES 11

1. INTRODUCTION 1
1.1 Motivation . 1
1.2 Project goals . 3
1.3 Choice of programming language . 4
1.4 Fundamentals of PIV and DIC . 4

1.4.1 Principles of DIC . 5
1.4.2 DIC experiment requirements 6
1.4.3 Principles of PIV . 8
1.4.4 PIV experiment requirements 8

2. SEARCH ALGORITHMS 10
2.1 Integer-pixel search routine for DIC 10

2.1.1 Alternative approaches . 11
2.1.2 Adaptive search scheme development for DIC 12
2.1.3 Algorithm processes . 21

2.2 Integer-pixel search routine for PIV 25
2.2.1 Phase correlation . 25

2.3 Multi-threading of the search process 28
2.4 Sub-pixel search routines . 29

2.4.1 Correlation coefficient curve-fitting methods 29
2.4.2 Gradient-based methods . 35

3. PROGRAM OPERATION, OUTPUT AND APPLICATION 38
3.1 Digital Image Correlation . 38

3.1.1 Low-carbon steel dogbone test 38
3.1.2 Aluminum sample mobile phone test 41

3.2 Particle Image Velocimetry (PIV) . 45

iii

4. VERIFICATION AND VALIDATION 50
4.1 Digital image correlation verification 50
4.2 Particle image velocimetry verification 51
4.3 Subpixel registration verification . 52
4.4 Digital image correlation validation 54

4.4.1 Contour plots . 54
4.4.2 Data comparison . 58

4.5 Particle Image Velocimetry validation 66
4.5.1 Comparison of software programs 66
4.5.2 Velocity vector fields . 67
4.5.3 Vertical data comparison . 72
4.5.4 Horizontal plume profile . 75

5. CONCLUSIONS AND FUTURE WORK 79
5.1 Future work . 79

REFERENCES 81

A. PROGRAM FEATURES AND FUNCTIONS 83
A.1 Program overview . 83
A.2 Program entry and still frame extraction 84
A.3 Main program functions . 86

A.3.1 Main interface . 86
A.3.2 Guidance viewport . 86
A.3.3 Preconfigure options . 87
A.3.4 Run-time controls . 88
A.3.5 Region of interest button bar 90
A.3.6 Menu bar . 91
A.3.7 Advanced setup . 92

B. SINGLE IMAGE PAIR PIV ANALYSIS 96
B.1 Vector field comparison . 96
B.2 Cross-sectional comparison . 96

C. ADDITIONAL PIV IMAGE MOTION COMPARISONS 111
C.1 Rankine vortex pattern . 111
C.2 Karman vortex sheet . 111

iv

LIST OF FIGURES

1.1 Principle of subset-based digital image correlation where the sub-
set is tracked to its corresponding location in the deformed image,
resulting in a deformation vector. 6

2.1 A section of image correlation coefficient values using a 21× 21
pixel subset. Coefficients increase with proximity to the maximum
correlated value. 13

2.2 In this example of coefficient-guided correlation, coefficients are
pre-calculated. The series of moves depicted is the path taken for
the search scheme ((a) beginning, (f) ending) to locate the highest
coefficient coordinate. The shaded area indicates the highest cor-
relation found under the 4-connected mask, and dots indicate the
path taken. 15

2.3 Map of coordinates showing explicit calculations (“o”) and im-
plicit calculations (“x”). (a): points showing 8-connected implicit
checking; (b): full quadrant search map. 17

2.4 Arbitrary displacement vector showing pixel displacement slope
and location among the four standard quadrants. 18

2.5 (a) Search quadrants centering on the primary axes (90◦), including
null (all quadrants); (b) Search quadrants centering on secondary
axes (45◦). 19

2.6 Decorrelation effect showing speckle pattern deformation; (a) is
reference image, and (b) is deformed image. The correlation may
fail to produce viable correlation values when the pattern deforms. 21

2.7 Flowchart of broad-scheme correlation search process. 24
2.8 Flowchart of exhaustive search scheme correlation process. 26
2.9 Four-connected placement of correlation points for Gaussian and

parabolic surface fitting. The subpixel displacements in x,y are in-
dependently calculated along each dimension. 31

2.10 Index map of correlation points for the bi-quadratic Langrange for-
mulation. 32

v

3.1 Experimental setup for digital image correlation analysis. The dog-
bone sample is anchored from the bottom and top in the materials
tester, with stress applied to the bottom as the anchor is pulled
downward . 39

3.2 Fracture and separation sequence of test sample; time proceeds
from image (a) - (d). (a) is the last image used in the experimental
set. 40

3.3 Region of interest selected for experimental analysis of mild-steel
sample. The ROI is selected to include the parts of the sample
not pulled out of frame by the stress test, as well as exclude back-
ground pixels. 40

3.4 Contour plot of (a) vertical displacement in the y-axis, (b) hori-
zontal displacement in the x-axis. The steepening of the gradient
around the cutout indicates higher strain rate. Missing pixels in (b)
represent the artifacts from incremental reference image updates. . 42

3.5 Contour maps of x-axis displacement for (a) analysis with incre-
mental base image update, and (b) analysis without incremental
update. The region in (a) showing zero displacement is an artifact
of implementation. 43

3.6 Experimental setup for iPhone test, using an aluminum speckle
patterned sample. the multi-camera setup results in the iPhone set
slightly off center-axis. 44

3.7 Aluminum digital image correlation test using an iPhone 6; (a)
contour map of displacement in the x-axis, and (b) displacement
in the y-axis. Compared to steel, the aluminum shows much less
displacement before fracture. 46

3.8 Region of interest selected for particle image velocimetry analysis. 47
3.9 Program output for sample PIV analysis, with the last image in the

input sequence as background. Highest velocities are seen at the
source, with some outlying noise in the background regions. 48

3.10 Adjustment of vector lengths using the provided user interface
tool. Images (a) - (f) show an increasing progression of velocity
vector lengths on the same data set to improve the visualization. . . 49

4.1 a) Base speckle image used for DIC algorithm verification with ROI
for calculations shown. b) Example result after translating (a) 50
pixels in the x-axis, and 50 pixels in the y-axis. 51

4.2 Results of PIV algorithm verification. The results are displayed as
average velocity vectors for each subset over all image pairs. Im-
age tracking results in a 100% correlation rate for purely transla-
tional velocities. 53

4.3 Non-increment y-axis deformation for (a) this program, and (b)
VIC-2D. 56

vi

4.4 Non-increment x-axis deformation for (a) this program, and (b)
VIC-2D. 57

4.5 Incremental reference update, y-axis deformation. The contour
lines are much smoother using this technique, providing a cleaner
contour map. 58

4.6 Incremental reference update, x-axis deformation for (a) this pro-
gram, and (b) VIC-2D. The contours are much smoother, with some
missing pixels in the top-right of this program, due to the integer
referencing scheme. 59

4.7 Locations for DIC results comparison. Segments in (a) are used for
vertical displacement comparison, and (b) for horizontal. 61

4.8 Y-axis displacement comparison. The plots comparing this pro-
gram to VIC-2D are virtually identical, with a very slight deviation
at the end of section B. 62

4.9 X-axis displacement comparison. Plots are very similar until around
image # 165, which is the point that high speckle pattern deforma-
tion on the pattern occurs. 63

4.10 Displacement in u using incremental reference image update. The
plots deviate considerably due to the integer-update scheme used
by this program. 64

4.11 Displacement contour for section F from Fig. 4.7 (b), with displace-
ment in the horizontal direction. The segment is treated as a 10-
pixel wide mask, using the displacement values at image # 155.
Contours follow closely, with slight deviations occurring. 65

4.12 Velocity vector field from this program’s output. Data points are
filtered to two standard deviations from the mean. 69

4.13 Velocity vector field from PIV Lab. Data points are filtered to two
standard deviations from the mean. 70

4.14 Velocity vector field from Insight 4G. Data points are filtered to two
standard deviations from the mean. 71

4.15 Segment locations used to compare horizontal averages across the
flow between each program. Outlying background pixels are ex-
cluded from the analysis to eliminate noise from the data as much
as possible. 74

4.16 Velocity in the y-axis at segment locations. The velocity profiles
are similar however the magnitudes differ. The magnitude of this
program closely matches Insight 4G, however the profile does not
match as well as PIVLab. 75

4.17 Velocity in the x-axis at segment locations. The velocities follow a
similar profile, yet like y-axis velocity, are different in magnitude. . 76

vii

4.18 Cross-sectional flow profile at segment # 5 from Fig. 4.15. The
plot trends are similar, with differing magnitudes. This program
agrees in velocity magnitude with Insight 4G, however the trend
of PIVLab is closer. 78

A.1 Program entry point interface. The user selects between DIC or
PIV, indicates the image format and path, and also can enter the
video fram extraction tool. 84

A.2 The image extraction utility provides a method to extract still frames
from a video, with the option to label as PIV image pairs. 85

A.3 Main screen contains all features and interactions needed to run
the program, as shown upon first entry. 87

A.4 The guidance viewport helps the user move through the proper
steps in configuring the program. (a) shows the pre-run viewport
configuration, and (b) shows post-run output. 88

A.5 The preconfigure controls provide the user with tools to set up the
analysis. 89

A.6 Runtime controls provide the user with options for starting, stop-
ping and resetting the analysis, as well as viewing the quick anal-
ysis results when a run has finished. 89

A.7 Quick results provides the user with an instant view of the success
parameters of the correlation analysis. 90

A.8 The preconfigure interface provides interaction with the correla-
tion algorithm input variables. 93

A.9 The resolution tab provides options for sub-pixel resolution scan-
ning of the image. Subpixel may be turned off completely, or tog-
gled between options. 94

A.10 The Optimize tab allows the user to select the number of cores
(threads) among which to split the image analysis. 95

B.1 Vertical flow analysis for this program, image pair # 1/200. 97
B.2 Vertical flow analysis for Insight 4G, image pair # 1/200. 98
B.3 Vertical flow analysis for PIVLab, image pair # 1/200. 99
B.4 Vertical flow analysis for this program, image pair # 51/200. 100
B.5 Vertical flow analysis for Insight 4G, image pair # 51/200. 101
B.6 Vertical flow analysis for PIVLab, image pair # 51/200. 102
B.7 Vertical flow analysis for this program, image pair # 101/200. . . . 103
B.8 Vertical flow analysis for Insight 4G, image pair # 101/200. 104
B.9 Vertical flow analysis for PIVLab, image pair # 101/200. 105
B.10 Vertical flow analysis for this program, image pair # 151/200. . . . 106

viii

B.11 Vertical flow analysis for Insight 4G, image pair # 151/200. 107
B.12 Vertical flow analysis for PIVLab, image pair # 151/200. 108
B.13 Instantaneous cross-sectional flow at y = 1200, for (a) image pair #

1, and (b) image pair # 51. 109
B.14 Instantaneous cross-sectional flow at y = 1200, for (a) image pair #

101, and (b) image pair # 151. 110

C.1 Comparison analysis using PIVLab (a) and this program (b) using
a digitally induced swirl pattern. 112

C.2 Comparison analysis using PIVLab (a) and this program (b) on a
Karman vortex sheet (first image pair). 113

C.3 Comparison analysis using PIVLab (a) and this program (b) on a
Karman vortex sheet (second image pair). 114

ix

LIST OF TABLES

2.1 The program makes significant speed improvements by multi-threading
the correlation process. 28

4.1 Results from DIC algorithm after translating Fig. 4.1 (a) by 10 pix-
els for 10 steps, resulting in 0% error for every calculation (all units
in pixels). Results are averaged across every pixel in the image. . . 52

4.2 Percent error of the three subpixel registration methods, calculated
via digital translation of Fig. 4.1 (a). 54

4.3 Standard deviation of velocities in segment regions. In areas of
low velocity (lower numbered segments), deviations are low for
all methods. Insight 4G shows a large increase in deviation in the
high velocity region (high numbered segments), whereas the other
two methods do not. 73

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Engineering students are increasingly counted on to be familiar upon gradua-
tion with the most technologically advanced concepts and methods of analysis.
Visual image correlation (VIC) is one such concept, and can be aptly described
as a method of recording the translation and deformation of particle groupings
throughout a sequence of images, or visuals. There are two nominal subsystems
in VIC: digital image correlation (DIC), and particle image velocimetry (PIV).
Both are computerized particle tracking systems; however the terminology that
has developed separates solid material mechanics (DIC) from fluid particle track-
ing (PIV). PIV stricly targets the velocities of particle motion, with the goal being
to develop a map of vectors that show the flow and movement of fluid in an
area of interest. As an example, the air flowing over a wing can be analyzed
in a wind tunnel by “seeding” the airflow with smoke and using differential il-
lumination to develop a model of the wing aerodynamics [Arnott et al., 2003].
DIC is concerned with the general deformation of a solid sample through time,
which grants information on material properties and structural responses. An
important real-world direction DIC is taking is in application to structural health
monitoring, in the form of bridge health and safety. In a simple application, a
camera can be focused on a bridge support to ascertain its structural integrity
[Yoneyama et al., 2006]. DIC is increasingly being looked at as a cost-effective,
thorough, and non-destructive method of tracking the structural health of bridge
supports and roadways.

To utilize either PIV or DIC in an experiment or application, there are only
three basic requirements:

• Image or video capture device

• Computer (laptop or workstation)

• DIC/PIV analysis software

The economics of the first two of these requirements have become increasingly
attractive over the years. Digital camera technology and computing power has
arrived at the point where the devices are cheap enough, and small enough, to

1

be obtainable for previously cost-prohibitive application concepts. Depending
on the goals of the project, a simple setup of a high-resolution mobile phone and
laptop computer may be sufficient.

However, a major obstacle exists to the third requirement: there is a limited
availability of inexpensive (or free) useable analysis software that enjoys a shal-
low learning curve and does not require the use of third-party monetized soft-
ware. A typical DIC or PIV program operates under a simple precept: analyze a
set of user-inputted images to obtain the particle motion in the images through a
progression of time. However, the implementation of this relatively simple con-
cept can be expensive to develop, due to the complexity of the many different
shapes and forms the subtleties of particle motion exhibit. There are many dif-
ferent mathematical treatments of particle motion, and developing them into a
meaningful program can be a costly endeavor.

Accordingly, the professional software that exists is very expensive and out
of reach for students and some university engineering departmental budgets. A
paid license for an industry-level PIV or DIC software suite reaches reliably into
the tens of thousands of dollars.

There are, however, several free or open source programs that are available
for both PIV and DIC. For PIV, the most well-documented options are Open-
PIV [Openpiv, 2017], MatPIV [Oslo, 2017], and PIVlab [Thielicke and Stamhuis,
2014a]. MatPIV and PIVlab are both well-cited programs that have been used suc-
cessfully in outside applications and research projects. However, each is a Matlab
application, which means that the user most own a copy of the Matlab software
package, including the Image Processing Toolbox add-on, in order to use [Math-
works]. While Matlab is available at reduced cost to students and academia in
general, the restriction to this operating environment is not ideal. OpenCV is an
open-source program that is moderately updated and maintained. However, it is
only available as a Matlab app, or as Python or C++ code that must be compiled
or scripted within suitable environments. These options are not favorable to a
novice user or for quick classroom demonstration. In the DIC realm, not many
free applications exist. Ncorr, developed as part of a Master’s thesis, is a Matlab
application that provides basic DIC functionality.

The lack of options for students to acquire cheap, easy access to DIC and
PIV software is the motivation behind this thesis. This project aims to provide
a basic software application that provides both DIC and PIV functionality. At
this juncture, we are unsure if it can be provided and maintained as a free or
open-source application, or if there will be a small cost associated with the use or
licensing of this product.

1.2 Project goals

There are two fundamental objectives of this project: provide the user with the
tools to understand how the process works via program feedback, and provide
the user with accurate raw data to analyze in an extracurricular activity.

2

Program feedback The user of DIC and PIV software necessarily learns quite
a bit about the intricacies of each of the techniques, because in order to obtain
good results from any of these, a working knowledge of the process must either
be had beforehand or obtained during operation. In order to learn during oper-
ation, feedback must be available to the user in the form of data and/or visuals.
In DIC, colored contours on the images are necessary to inform the user of the
success of various necessary input parameters. In PIV, velocity vectors are pro-
vided. Additionally, the success rate of various aspects of the program must be
made available. DIC and PIV are influenced greatly by a number of factors in the
analysis process, and that influence should be indicated succinctly and accurately
in real-time output.

Raw data While there is some information that can be gained directly from the
user interface, much more data and detailed analysis can be had by an outside
evaluation of the raw data. Many PIV and DIC software packages provide these
analysis tools; however, this program is not meant to be a one-stop shop. The raw
data is provided in a comma-separated value format (CSV), with attached read-
me files. Data are often difficult to work with outside of the source program, due
to indecipherable headers or just a general lack of information on the formatting.
For this program, are provided clear and detailed instructions are provided that
do not suffer for lack of clarity.
The program is developed in a manner such that (for the end user) it does not :

1. Require prior knowledge of computer programming

2. Require any third-party paid software (such as Matlab)

3. Use command-line or scripting environments

The program also:

1. Provides step-by-step instructions to the user on-screen

2. Provides easy access to help files

3. Has only the most necessary options available (for simplicity)

4. Is user error-resistant

5. Runs cross-platform (Windows, Mac, Linux)

3

1.3 Choice of programming language

The reason why Matlab has been used almost exclusively to create the available
free PIV and DIC applications is because the programming knowledge required is
limited; many engineering students have at very least a basic knowledge and ex-
perience with the Matlab language and environment. Another important reason
is that Matlab provides all of the required user interface creation, image process-
ing, and image displaying tools that take many programmer hours to develop.
And thirdly, no matter what operating system the app is run on, since it runs
in the Matlab scripting environment, the user would see no difference and the
developer would spend no extra time developing cross-platform ports.

These features of Matlab were all taken into consideration when choosing the
programming language, because the more pre-written routines and libraries that
could be used, the better the program would turn out within the limited time
frame of development. In the end, the Java programming language was chosen
in which to develop the software. For an algorithm-heavy program, an object-
oriented language such as Java is frequently not the optimal solution. However,
due to Java being a “write once, run anywhere” language, the requirement of true
cross-platform portability is met without adding extra development hours. Java
requires the Java Runtime Environment (JRE), however on many machines this
software is already installed and running and if not, is a simple update.

Java also provides the graphical user interface (GUI) features required to make
a user-friendly program. Creating a GUI in Java is a simple, painless and high-
level process, freeing up more time for behind-the-scenes algorithm and func-
tional development. Additionally, open-source libraries are available for render-
ing different image formats, and extracting still frames from video.

1.4 Fundamentals of PIV and DIC

In a broad sense, the two methods are similar, as they are both particle tracking
concepts. However, due to the very different nature of solids and fluids, the
approaches to search and tracking use different mathematical concepts.

1.4.1 Principles of DIC

The essence of subset-based DIC lies in the tracking of a particle (or group of par-
ticles) within a region of interest (ROI) from one location to another, throughout
a succession of images. The ROI is divided into sections based on the density of
point data desired, resulting in a virtual interrogation grid. At each grid intersec-
tion, the center of a square virtual subset, also known as the kernel, is placed in
the reference image (P(x0, y0)), shown in Fig. 1.1. The subset, of size (2M - 1) x
(2M - 1), where M is the subset width, is shifted around the deformed image in

4

an effort to acquire the centroid of the location of a similar grouping of particles
(P′(x′0, y′0) as in the original location by centering the subset on neighboring pix-
els and applying a correlation function. The search results in a field of correlation
values, ranging from -1 (perfectly negative correlation) to 1 (perfect correlation),
where the peak magnitude of the field is the pixel location of the maximum cor-
relation. The matching mechanism relies on a set of similarity correlation crite-
rion applied to the grayscale values that fall within the subset boundaries, using
the following definition for zero-normalized sum of square differences (ZNSSD)
from Zhou et al. [2012] and Pan and Li [2011]:

CZNSSD(p) =
∑M

x=−M ∑M
y=−M[f (x, y)− fm][g(x′, y′)− gm]√

∑M
x=−M ∑M

y=−M[f (x, y)− fm]2
√

∑M
x=−M ∑M

y=−M[g(x′, y′)− gm]2

(1.1)
where: f (x, y) is the grayscale intensity at coordinates x, y in the reference (un-
deformed) subset, and g(x′, y′) is the grayscale intensity at coordinates x′, y′ in
the deformed subset. The mean intensity value for the reference subset is defined
as: fm = 1/(2M + 1)2 ∑M

x=−M ∑M
y=−M[f (x, y)], and the deformed subset mean

intensity is: gm = 1/(2M + 1)2 ∑M
x=−M ∑M

y=−M[g(x′, y′)]. P is the deformation
vector.

Cznssd from Eq. 1.1 is computationally intensive, compared to other cross-
correlation formulations, however offers the advantage of being independent to
shifts and offsets in light intensity and contrast between the reference and de-
formed image subsets [Athreyas et al., 2014]. The summations in the denomina-
tor are the variances of the reference and deformed subsets, making the coeffi-
cient independent of grayscale intensity shifts.

With enough successful kernel correlations, a full-field map of displacements
in the interrogated area can be obtained, which may then be post-processed into
a full-field strain map. To gain desired spatial resolution, the size of the grid step
(width of the virtual grid cells) is set at a value much smaller than the kernel
width. A common value in DIC processing is a 75% overlap of the kernel.

Tracking the subset in a sample undergoing deformation can be problematic.
As the sample deforms, the subset deforms as well, which leads to a drop in the
confidence of the calculated correlation value. This loss in confidence is referred
to as decorrelation effect, as the surface pattern becomes mathematically unrec-
ognizable from the original. To deal with this, some DIC algorithms deform the
grayscale values in the reference subset virtually using interpolation and affine
transformation mechanisms, in an effort to more closely match the subset in the
deformed image. This process can prolong the time until failure of the correla-
tion algorithm, and also provides additional deformation details such as rotation,
shear and skew. Due to the limited scope of this project, the DIC algorithm cre-
ated here tracks only the square kernel in the deformed image without using
virtual deformation matching means.

5

Figure 1.1: Principle of subset-based digital image correlation where the subset
is tracked to its corresponding location in the deformed image, resulting in a
deformation vector.

1.4.2 DIC experiment requirements

There are two elements of a successful DIC experiment and analysis:

• Equipment

• Sample preparation

Equipment The range of equipment is diverse; depending on the material be-
ing analyzed and the scope of the desired results, the equipment can range from
a simple web-cam directed at a structural support, all the way to a highly in-
tricate multi-camera (high definition) setup using a hydraulic materials testing
machine. There is no “correct” way to perform DIC; the accuracy and precision
of the equipment is driven by the accuracy and precision desired in the results.

Sample preparation In DIC, the preparation and production of the sample sur-
face can be a rather intricate and finicky process, while being decidedly low-tech.
The surface pattern should be high-contrast, non-repetitive, isotropic, and coarse.
A repetitive and anisotropic field may give false correlation matches where the
pattern is repeated in multiple locations. If the contrast is too low, not enough in-
formation is provided to develop a correlation peak that is sufficiently outstand-
ing from the surrounding area; there could be multiple peaks of similar heights,

6

resulting in error. And lastly, the scale of the pattern should be coarse, yet not
too coarse. In the case of large-diameter (too-coarse) speckles, the subset kernel
size must necessarily be of equal or larger dimension of the largest “average”
speckle size. Otherwise, the kernel will have areas of extremely low contrast
where it is completely encapsulated by the speckle. This results in a loss of spa-
tial resolution, where small deformations will either not be accurately tracked,
or unobserved completely. If the speckle pattern is too fine, then camera resolu-
tion becomes an issue. Aliasing in DIC occurs when the resolution of the camera
is not high enough to accurately capture the pattern, negatively influencing the
analysis accuracy. In general, the smallest mean speckle diameter that may be
accurately recorded and analyzed is three (3) pixels [lecompte et al., 2005]. How-
ever, when such a small mean speckle size is present, the kernel size should be
smaller as well (to capture smaller movements). This causes the subsets to suffer
from a lack of uniqueness, which causes problems during correlation. A mean
speckle size in the range of 5 - 10 pixels has been found to produce good results
[Lecompte et al., 2007].

To produce an effective speckle pattern, the most common technique involves
applying flat black paint to a flat white background using a sputter spray tech-
nique. White paint may be applied to black, however white paint is less opaque
so the underlying black components may show through, negatively affecting the
pattern. Flat paints are superior for DIC due to the lower intensity of light reflec-
tion. A lower albedo reduces the variation in perceived intensity by the camera
as the sample deforms.

1.4.3 Principles of PIV

In a PIV experiment, images are taken as back-to-back pairs, typically labeled
A-B fashion. However unlike DIC, instead of comparing an entire image set of
deformed images against the first (reference) image, only B is compared to A for
each pair of images. The motion for each desired point index is recorded, and the
data at each point in each image pair are typically averaged together at the end
to create a velocity vector grid. Other methods, such as using a median velocity,
may be used.
In particle image velocimetry, a grouping of fluid particles can be thought of in
much the same manner as a grouping of speckle patterns painted on the surface
of a specimen for DIC analysis. However, fluid particle flows introduce factors
that limit the effectiveness of direct subset cross-correlation, and especially limit
its speed. Fluids exhibit much more random movement than a solid undergoing
deformation, as the particles in many cases do not adhere to one other. Addition-
ally, potential out-of-plane motion of the particles causes the intensity of the light
falling on the particles to transition between images. Due to these factors, sub-
set correlation fails often fails. When correlation fails, the search algorithm must
make a choice: either continue the search, or give up and move to the next grid
location. The problem arises that for a particular subset location, the correlation

7

may never find another good enough match in the deformed image. A continued
search makes the program highly inefficient and slow, yet if the algorithm gives
up too quickly, potential information may be lost.

To combat this, a different type of correlation is used that analyzes the images in
the frequency domain. As in DIC, a window (analogous to subset) size and grid
step are chosen. For PIV, the grid step is typically in the range of half the value of
the window size, and the window size should be large enough to encapsulate any
particle movements in the ROI. However instead of shifting the window around
the image looking for a peak correlation values, a single operation, called phase
correlation, is performed on the two virtual windows, which are both centered
on the grid indexes in the A and B images. From this operation, the location of
the most matching pixel in image B is detected. While seemingly simpler, the
computational cost of performing a phase correlation is magnitudes higher than
a simple direct cross-correlation, so isn’t used in DIC.

1.4.4 PIV experiment requirements

Particle image velocimetry experiments are more open-ended than digital image
correlation. The fluid may be a gas, or liquid anywhere on the viscosity scale.
The only requirement is that the fluid be seeded with a particle that diffuses and
proliferates throughout the region of interest.

The camera requirements are mandated by the speed of movement of the
fluid. In a highly viscous flow, the image pairs do not necessarily have to be
taken within an instant of each other. However, when capturing a fast-moving
gas or liquid, the motion of the particles relative to each other is high, so a faster
camera shutter must be used. These are all subjective qualities of each individual
experiment, where judgments must be made by the experimenter.

8

CHAPTER 2

SEARCH ALGORITHMS

This chapter details the search algorithms used in the program:

1. Integer-pixel search algorithm developed here for digital image correlation
(DIC).

2. Integer-pixel phase correlation for particle image velocimetry (PIV).

3. Implementations of sub-pixel accuracy.

4. Multi-threading of the search process

DIC and PIV have been found to require fundamentally opposite approaches,
even though both methods are generally, particle tracking implementations. When
tracking a speckle image as it deforms on a material, the observer can count on
a general orderliness of particle movement, due to the principles of continuous
strain. Because the material is of a solid nature, it can be entirely expected and
even predicted that the tracking pattern will not undertake many, if any, random
or disorganized movements. Therefore a search scheme can look to anticipate
future particle movement to inform the algorithm of the possible next move it
should make, and therefore substantially increase the search efficiency.

In PIV however, the images are expected to exhibit no predictive movement, as
fluids move in a less orderly and more random fashion. Therefore the correlation
algorithm can not predict general pattern movement, resulting in longer search
intervals to acquire cross-correlation. An algorithm that excels at DIC cannot be
said to do the same for PIV; however, as implemented here, the differences be-
tween the two can be negotiated to form one algorithmic backbone that combines
some of the shared general principles, applied in different manners.

2.1 Integer-pixel search routine for DIC

The first step in a digital image correlation procedure is to identify the highest
correlated pixel location. There are several published approaches to this, yet most

9

work focuses on sub-pixel search techniques. The effectiveness of the integer-
pixel search process is of fundamental importance, because any sub-pixel mea-
surements made thereafter are duly affected by its accuracy.

The elementary complication of a pixel-search routine is due to the sheer
amount of pixels that must be assessed in a high-resolution image. For example,
using an image of resolution 1024× 640 pixels, there are then 655, 360 eligible
locations that the highest-correlated pixel could have relocated to. In a brute-
force search scheme, every subset is searched at each pixel coordinate, for a total
of 4.29 × 1011 calculations, which would take many hours for a single image.
Obviously, a useable system cannot be developed with this method.

2.1.1 Alternative approaches

Several solutions to this problem have been developed; Zhang et al. [2006] de-
veloped an approach using an affine transform parameter calculated through the
identification of several points in the undeformed and deformed images. Once
the affine function is calculated, this parameter is then used as an initial guess
for the points around it, in a seeding fashion. The drawback to this method is
that each point must be manually located, because the points must be of dis-
tinct grayscale differentiation from the surrounding pixels in order to calculate
an accurate affine transform. In this application however, user abstraction (less
parameter input) is of fundamental importance, so this approach was not consid-
ered further.

Another popular approach is to use a quad-tree splitting process [Sousa et al.,
2011]. This technique recursively splits the image into four (4) sub-images, split-
ting each sub-image over and over again until one of the following conditions is
met:

1. Displacement calculated from one level to another does not follow smooth
behavior.

2. Displacement calculated from one level to another is the same.

3. Maximum number of splitting levels is reached.

The benefits of this approach are that a bare minimum of coarse-search correla-
tion calculations are performed, making the routine efficient. However it was
unclear how the algorithm performs in regions of interest in a non-uniform ge-
ometry, which are are more common than not in a real-world DIC application, so
was not considered further for implementation.

While most search routines establish a coarse displacement map before pur-
suing sub-pixel search, Pan [2009] developed a “reliability-guided” process that
calculates the sub-pixel location without need for an integer-pixel guess. The
process is as follows:

10

1. Manually locate a seed point in an area of low deformation.

2. Calculate the correlation coefficient for four (4) neighboring points.

3. Insert the points into an ascending correlation coefficient and coordinates
queue.

4. Take the point from the top of queue, then calculate four (4) neighboring
points.

5. Repeat steps 2-4 until all pixels are processed.

In the end this approach was not used for various implementation reasons, how-
ever credit is due to the authors for providing a cornerstone to the coefficient-
guided search algorithm developed for this application.

2.1.2 Adaptive search scheme development for DIC

As stated previously, the two keys to a practical, effective coarse-pixel correlation
search are speed and accuracy. For this application, speed is prized above ac-
curacy because an in-classroom system is the ultimate objective, where the need
the maximum possible accuracy is of less importance. However, speed is a tricky
thing to accomplish effectively in DIC due to constant changes in sample geom-
etry from testing deformation. The scheme must also not completely sacrifice
accuracy for the sake of speed, so the balance between the two is always in fluc-
tuation as the system develops. The following is an accounting of some of the
problems that arise, and must be solved, when developing a search scheme for
this application:

• There should require no input from the user on the magnitude of deforma-
tion. The algorithm therefore will have no information on the maximum
distance to search from the current reference subset.

• The direction of force applied or general particle motion shall not be a re-
quired input, so the algorithm cannot “cheat” and check only in a known
direction, which leaves every image pixel as a possibility.

• The speed of deformation will be unknown. Therefore between each image
the reference subset may have jumped from zero pixels to n pixels, with no
constant between images.

• The user may input any images from the set, so without careful selection
there may result a large discontinuity in any deformation patterns devel-
oped during DIC testing.

To solve the above complications (and more not listed), the following will
develop a search scheme that is both fast, reliable, and adaptable. The overarch-
ing purpose of each concept can trace back to a single fundamental ambition: to
decrease the number of pixel subsets to which the correlation equation is applied.

11

Figure 2.1: A section of image correlation coefficient values using a 21× 21 pixel
subset. Coefficients increase with proximity to the maximum correlated value.

Coefficient-guided pattern A useful feature of correlation coefficients is that
the closer a subset is to the highest correlated value, the neighboring pixels also
exhibit relatively high correlation coefficients, shown in Fig. 2.1. This trait can
be taken advantage of to efficiently “guide” the search process in the direction
of highest correlation, which reduces the number of required correlation calcula-
tions.

In image processing, pixels are always aligned in a grid, so there are nominally
two patterns to apply interpolations, searches, etc. An 8-connected pattern ac-
counts for all eight pixels surrounding the target pixel, and a 4-connected pattern
uses the four pixels to the north, south, east and west directions. The 4-connected
region, henceforth called the mask, is used in the following proceedings.

The mask is applied to each 4-connected pixel, until a minimum search cor-
relation value (CV) is found in any of the five (5) underlying subset centroids,
greater than or equal to cvsearch. Once located, the mask does not to continue to
move in a “random” pattern, because the cvsearch value indicates that the path
of highest correlation may have been found. The next subset center is set as the
pixel of highest correlation value, found in one of the four branches of the mask.
This procedure is visualized in Fig. 2.2, and results in the search pursuing a non-
straight path of ever-increasing correlation. After cvsearch has been reached, it is
no longer considered the threshold of competency, and the next correlation val-
ues found are then compared to the previous CV, cvlast. The process terminates
when the path no longer produces any correlations greater than cvlast.

12

(a) (b)

(c) (d)

(e) (f)

Figure 2.2: In this example of coefficient-guided correlation, coefficients are pre-
calculated. The series of moves depicted is the path taken for the search scheme
((a) beginning, (f) ending) to locate the highest coefficient coordinate. The shaded
area indicates the highest correlation found under the 4-connected mask, and
dots indicate the path taken.

13

It is apparent that this process is susceptible to false matches. As seen in the
top right quadrant of Fig. 2.1, there exist other areas in the image that resemble
the pattern, and therefore contain enough comparable grayscale data to produce
a coefficient that tricks the process into terminating at a false value. This issue is
resolved by comparing the terminal coefficient to a super coefficient, cvmin, and
only allowing the process to terminate if this threshold is reached.

This design of max-coefficient walking allows the algorithm to be judicious
in the calculations it makes. Instead of checking point-by-point in a generalized
region, the search is self-guided while also requiring no intervention from the
user.

Minimizing computations by implicit coefficient calculations As stated, the
driving factor in processor time is the calculation of Czncc. Any mechanism that
minimizes this computation will have a positive effect on efficiency. This can
be neatly achieved by using the supposition stated in the previous section, that
correlation increases towards the local maximum.

Regard 2.3 (a). Assuming that a high correlation will be adjacent to another
high correlation, it is apparent that one needs to check only one out of every
nine (1/9) pixels. Each coordinate surrounding the explicitly calculated pixel is
implicitly checked due to the fact that if the calculated Czncc is low, the surround-
ing pixels are presumed to exhibit low correlations as well, and therefore do not
need to be calculated at all. This results in the algorithm being justified in step-
ping three (3) pixels at a time in each direction instead of one (1). The full search
field for a 13× 13 window is shown in Fig. 2.3, where only every third coordinate
is calculated (the first point is shifted a step from the initial checked mask). The
necessary calculations therefore undergo a sizeable reduction from 13 · 13 = 169,
to 25.

Through gathered data, this approach produces good results, shown in Chap-
ter 4. However, there can arise circumstances where the sample may have under-
gone deformation of large magnitude, and therefore the correlation coefficients
will all be accordingly lowered. Even though the principle of increasing correla-
tion still holds in these situations, the coefficients may be low enough that they
do not meet certain correlation thresholds, and therefore do not do a good job
of implicitly checking their neighbors. Provisions are made in the algorithm for
this, outlined in upcoming sections.

Adaptation using directional recursion The last major feature of the search al-
gorithm uses an adaptive scheme to narrow the geometric search window. The
idea of “cheating” the deformation and knowing in which direction to check for
the highest correlation can have significant increases on efficiency; however, as
minimum user input is desired, there is no directional information ahead of time.

14

(a)

(b)

Figure 2.3: Map of coordinates showing explicit calculations (“o”) and implicit
calculations (“x”). (a): points showing 8-connected implicit checking; (b): full
quadrant search map.

15

The algorithm uses a recursive scheme to check preceding displacement data
to predict in what distance and direction the next maximum correlated pixel will
be located, achieved in three steps:

1. Obtain the preceding reference subset coordinate displacements in the (x, y)
directions from the prior image data set.

2. Calculate the value of the slope of the displacements.

3. Input the previous (x, y) data and slope into a function to determine which
quadrant to use.

In step three, the quadrant check regions are seen in Fig. 2.5. The entire map can
be split into nine quadrants that extensively cover any direction displacement
may take. The justification for splitting the quadrants in such a fashion can be
observed in Fig. 2.4. As often happens in lab tensile tests, displacement vectors
often fall close to the major axes. If the algorithm were to have only four quad-
rants to choose from, it is apparent that fluctuations in the deformation direction
would cause the search to miss the correlation completely. The displacement vec-
tor will then always fall into two of the regions, and the algorithm chooses the
region that contains the greatest equal distribution of points on either side of the
vector. When there is no previous displacement data, either in the first image in
the set or when zero or low deformation has taken place, the ninth region null
is used. This region contains every point in the image, so by definition is non-
directional.

Secondary efficiency and accuracy mechanisms The preceding three sections
describe the major underpinnings of the search algorithm and account for most
of its success. There are several other ways that efficiency and accuracy are in-
creased, resulting in minor yet important contributions:

1. Adjust maximum search distance The maximum search distance is set with
a default value, as well as user-adjustable. The value can be varied up to
25% of the maximum image dimension. In the case that the algorithm fails
to correlate a subset, it will increase the search distance in 2 increments:
distance · 2 and distance · 4, resulting in step increases of 50% and 100%,
respectively. If one of these increases succeeds in finding a correlation, it is
assumed the deformation is speeding up and that this will hold true for the
proceeding images, so the search distance is held at this value for the rest of
the analysis. Otherwise, it is reversed to the original value. This adaptive
adjustment makes sure that the search is covering relatively as little ground
as possible, increasing overall speed.

16

Figure 2.4: Arbitrary displacement vector showing pixel displacement slope and
location among the four standard quadrants.

2. Decrease step size The step size of three (3) using implicit calculations is
effective in a vast majority of cases. However, as mentioned previously,
there may be times when the deformation characteristics result in an overall
low pattern of Czncc maximums, so this step size may not be adequate. If
failure to locate a coefficient above the threshold occurs, the search restarts
with a reduction of step size by one (1), so that accuracy is made sure not to
suffer at the expense of efficiency gains.

3. Predict future location The prediction of future location gives very modest
gains in efficiency, and is not something that is heavily relied on. Yet in cases
of large discontinuities in subset displacement between images, predicting
the displacement magnitude can reduce the search time considerably, so
is employed as a first measure. To do this, the algorithm peeks back at
previous displacements for that index, and begins building the search list
by placing those values first in the queue. Therefore, a somewhat inaccurate
prediction is made that has the possibility of helping efficiency, yet does not
negatively affect accuracy in any manner. The reason this cannot be relied
on further is because it is up to the discretion of the user which images to
submit for analysis, so a large displacement may be followed by small, with
no way of knowing this has occurred.

Incremental reference image update Measuring large deformation can be dif-
ficult using correlation functions, due to something called decorrelation effect.

17

(a)

(b)

Figure 2.5: (a) Search quadrants centering on the primary axes (90◦), including
null (all quadrants); (b) Search quadrants centering on secondary axes (45◦).

18

during deformation, the specimen not only translates the speckle pattern, but
deforms it as well, as seen clearly in Figs. 2.6 (a) and (b). The speckle pattern,
notably on the right side next to the circular cutout, has undergone considerable
transformation. This is what is known as decorrelation effect.

To combat this, the reference image can be moved to a new location closer
in the image sequence to the highly deformed image. After this is done, instead
of correlating to the original image (which the deformed image may no longer
resemble), the new reference target is an image which more closely represents
the new geometry. This is a simple process, only involving keeping a record of
the image number that the reference was updated to. Post-processing then takes
care of backing out the total magnitude of the displacement for images analyzed
after the update. This can be done any number of times, providing an effective
way to manage decorrelation effect, and still successfully analyze images that
have undergone serious transformations.

However, there is warrant to perform reference image updating as few times
as possible due to error propagation. In post-processing, the displacement mag-
nitudes are calculated by adding the distance the subset traveled, which without
updating would be the original location. However, if updating has occurred, any
error in displacement calculation seen up to and including the previous image is
added to the next image. With repeated updates, propagation of error results.

Therefore, this algorithm strives to take every measure possible and exhausts
all other methods before recording a bad correlation incidence. Defaulted into
the application, the minimum number of bad correlations allowed to transpire is
0.15% of total pixels in the index before updating. This can also be modified by
the user to allow more or less updating, depending on the needs. Ideally, this
number should suffice when all other methods of search are utilized.

2.1.3 Algorithm processes

This section will elucidate the major steps taken and processes used in the corre-
lation algorithm. There are two major processes that form the foundation of the
algorithm:

1. Regular search

2. Exhaustive search

Each of these is comprised of a number of minor processes, with the main struc-
ture of the algorithm as follows:

1. Bring in a new image.

2. Obtain subset to analyze from index.

19

(a) (b)

Figure 2.6: Decorrelation effect showing speckle pattern deformation; (a) is ref-
erence image, and (b) is deformed image. The correlation may fail to produce
viable correlation values when the pattern deforms.

20

3. Begin regular search.

4. If regular search is successful, loop back to step two; else, enter exhaustive
search.

5. Re-enter regular search with either failure or success messages.

6. Continue in regular search according to message content.

7. Loop back to step two.

8. All coordinates are analyzed, restart process anew at step one with a new
image.

Regular search process Regular search uses an identical method on two dif-
ferent circumstances. The first is that the subset centroid is a new value from
the reference list, and the second being that regular search has been re-entered
from exhaustive search, and has a new subset centroid to analyze. Either way,
the techniques of coefficient-guided search explained previously are used, and
the process visualized in the flowchart in Fig. 2.7. The steps are summarized as
follows:

1. Input previous centroid coordinates where the maximum correlation oc-
curred, as well as the data for the subset in the reference image.

2. Build the regular search list, comprised of the four (4) subset centroids un-
derlying the arms of the 4-connected mask.

3. Calculate each Czncc and test against a) CVsearch and b) the previously calcu-
lated maximum, if it exists.

4. If the new value is higher than the old value, relocate the mask to center on
the new value, and loop back to step two.

5. If the correlation has not increased, or else has increased yet does not exceed
CVmin, exit regular search into exhaustive search.

6. Read message from exhaustive search, which has two outcomes:

(a) The exhaustive search scheme has located a value exceeding CVcon f irm,
therefore loop back to step two using this new subset centroid.

(b) No suitable correlation has been found; increment the bad correlation
counter.

7. Exit to main function.

21

The main function performs the task of tracking the bad correlation count and
identifying whether it is time to update the reference image. It should be noted
that regular search only allows exhaustive search to be entered a single time.
Otherwise, a perpetual loop would form if no good correlation was found. In
general, regular search does the job without needing to enter exhaustive search if
the deformation is somewhere in the neighborhood of 0-4 pixels between images,
meaning that decorrelation effect is not pronounced and the algorithm can self-
guide to the absolute peak.

Exhaustive search process Once the exhaustive search routine is entered, it
stays there until one of two following things happens: either CVcon f irm is ex-
ceeded, or the search list is exhausted without success. CVcon f irm is a value higher
than CVsearch and lower than CVmin, and serves to guard against false positives
from local correlation peaks. Visualized in Fig. 2.8, the procedure is as follows:

1. Input to exhaustive search is the same as input to regular search: centroid
coordinates of the maximum correlation of the corresponding subset in the
last image. Search direction is also calculated here, as explained in previous
sections.

2. The search list is then built using directional, distance, and step size in-
puts, and is comprised of the (x, y) coordinates of each subset centroid that
should be correlated. These points are variable and depend on how many
iterations the routine has gone through (how many failures for that subset
have occurred).

3. The first point in the search list is correlated singularly (instead of as a
4-connected mask), and removed from the queue. If the point is above
CVsearch, the 4-connected mask is then applied (similarly to the regular pro-
cess) in an effort to reach CVcon f irm. If this threshold is reached, the process
immediately exits to the regular routine, using this subset coordinate as the
new input.

4. If the indicated threshold is not reached, this means a false positive has
been successfully overcome, and all the previous calculations and move-
ments are ignored. The algorithm then moves to the next point in the list by
returning to step three.

5. If this point has been reached, then one of three things will happen before
re-entering step two, depending on the iteration, and whether a search dis-
tance increase is available:

(a) Step size is decreased
(b) Maximum search distance is increased
(c) Search direction is set to null

22

Figure 2.7: Flowchart of broad-scheme correlation search process.

23

6. At this point, the routine has failed to find a subset coordinate with CV >
CVcon f irm. Exhaustive search is exited to regular search with failure mes-
sage.

With these processes, an integer-pixel location showing good correlation has been
reached, and the next step, if desired, is to estimate the pixel location more pre-
cisely to sub-pixel coordinates.

2.2 Integer-pixel search routine for PIV

The PIV program uses a purely mathematical, frequency-domain-based approach
for image registration, due to the random and out-of-plane motion of fluid parti-
cles which causes subset-based search routines to be inefficient.

2.2.1 Phase correlation

Phase correlation is a method of obtaining the relative translation between images
by using the discrete Fourier transform (DFT) to represent grayscale image pixel
information in the frequency-domain. Relating this to image correlation for PIV
analysis, the images are segmented into a grid of virtual Fourier windows, which
are their own discrete images. Phase correlation is performed on each window to
determine its displacement between images. After performing the correlation on
all grid indexes, a velocity field in pixels/image pair results.

Mathematical basis The fast Fourier transform (FFT) is used in phase correla-
tion due to its increased computational efficiency over the standard DFT. Phase
correlation is perfomed by the following steps, from Druckmullerova [2011]:

1. Calculate the FFT for the reference and deformed window.

2. Calculate the cross-power spectral density by multiplying the complex con-
jugate of the deformed FFT by the reference window FFT (element-wise).

3. Normalize the result element-wise.

4. Apply the inverse FFT (iFFT) to the normalized product.

5. Determine the location of the peak value in the iFFT grid using the real part
of the results.

24

Figure 2.8: Flowchart of exhaustive search scheme correlation process.

25

The location of the peak in the iFFT is the relative motion of the deformed win-
dow to the reference window. The complete phase correlation calculation:

G0 = F (g0) , G1 = F (g1) (2.1)

p(x, y) = F−1 G0 ⊗ G ∗1
|G0 ⊗ G ∗1 |

(2.2)

where G0 and G1 are the FFTs of the reference window and deformed window, re-
spectively, G ∗1 is the complex conjugate of the deformed window FFT, and p(x, y)
are the pixel coordinates of the point in the deformed image showing peak corre-
lation.

The process of phase correlation is simple, negating the need for a subset-based
search algorithm. However, the computational cost of a single FFT calculation is
significantly higher than a zero-mean cross-correlation calculation. The processor
time to run a phase correlation for a single window is about triple the time it takes
to calculate a cross-correlation. Therefore, since the motion of particles in DIC is
relatively consistent and predictable, it is much less efficient and time-consuming
to use the phase correlation approach. In PIV, the opposite is true and speed gains
using the frequency-domain approach are substantial.

To verify the phase correlation result for each Fourier window location, a single
cross-correlation calculation is performed to establish a confidence coefficient. If
the coefficient is too low (user-adjustable minimum coefficient), no translation is
recorded for that window index. In PIV analysis, the incidence of poorly corre-
lated points is high, especially in the background regions.

2.3 Multi-threading of the search process

The operation of both phase correlation and subset-based correlation starts with
an indexing of all available points within the region of interest. The result is
a multi-row index of the row/ column image coordinates of every subset cen-
troid in which all pixels in the subset fall completely within the ROI. Each entry
in the index is independent of all other entries, meaning that the program may
commence search operations on neighboring entries in the index without inter-
ference.

To operate a simultaneous search, the index is split into a number of sections,
which are entered into their own computational threads in the program. Each
deformed image is entered simultaneously, where the index-splitting operation
is performed. The threads work independently to correlate all the points in each
assigned section of index, then wait for the other threads to complete before ex-
iting and reporting the results to the main thread. The number of sections into
which the index is split depends on the number of cores available in the proces-
sor; the maximum number of threads is equal to the number of available cores,

26

Threads % Faster
1 —
2 56.3
3 91.1
4 100.36

Table 2.1: The program makes significant speed improvements by multi-
threading the correlation process.

and the user also has the option to reduce the amount cores used. Table 2.3 shows
a series of digital image correlation runs quantifying the speed increase gained by
multi-threading the application. The number of runs for each thread combination
is 10, with the results averaged together and proportionally compared against the
baseline of a single thread. Doubling the number of threads (from one) increases
the speed by approximately 1.5, and by using four (4) threads, the speed of the
correlation is doubled.

2.4 Sub-pixel search routines

Integer-pixel search methods are the first step in visual image correlation. In a
quick visual analysis, integer-pixel resolution may be a sufficient outcome. How-
ever, in teaching or research environments, sub-pixel accuracy may be a require-
ment for functions such as validating finite-element strain analysis or mapping
the stress-strain curve in a sub-region of a sample. Integer resolution may not
provide enough data to achieve a significant result, especially when stress is pro-
vided on a single axis and the sample is of uniform dimensions. The analysis
may indicate zero secondary axial deformation, when in fact the deformation
could have been anywhere on the order of zero to one pixel.

Therefore, the need arises to identify the location of the “true” movement
of the subset, mapped to a location between pixels. In visual image correlation,
typically two orders of deformation are examined: the first is zero-order move-
ment, which is purely translational. Affine warp is not taken into consideration,
as all higher order data is removed from consideration. The subset centroid,
(2M + 1, 2M + 1), is considered to translate from (x0, y0) to (x′, y′) by

x′ = x0 + u + ∆u (2.3)

y′ = y0 + v + ∆v (2.4)

where u, v are the integer-pixel translational components, and ∆x, ∆y are the sub-
pixel movement components. First-order deformation takes into consideration
the displacement gradients,

27

x′ = x + u + ∆u + ux∆x + uy∆y (2.5)

y′ = y + v + ∆v + vx∆x + vy∆y (2.6)

where ux, uy, vx, and vy are the first-order displacement gradients of the subset.
A more complicated second-order shape function can also be derived to further
quantify the displacement [Lu and Cary, 2000], however that is not discussed
here as it has no relevant purpose to this application.

2.4.1 Correlation coefficient curve-fitting methods

The first subpixel techniques discussed are curve-fitting routines. The goal of a
curve-fitting function is to find the point at which a continuous function is created
that optimally fits correlation coefficient data. Using the points surrounding the
best-correlated integer point and mathematically describing a surface containing
these points, the best matching peak may be obtained by maximizing the function
in the area corresponding to the real location. In essence, the goal is to shift the
coordinates of the peak correlation to somewhere in between the centroids of the
pixels, i.e. subpixel accuracy.

No single function can perfectly describe such a surface, so a number of differ-
ent techniques and approximations can be used based on the application’s speed
and accuracy requirements. In parabolic and Gaussian fitting, the shape is as-
sumed to fit two orthogonal curves that often approach a bell shape, so are de-
fined using parabolic and Gaussian surfaces using information from four imme-
diate surrounding points (four-connected approach). Bi-quadratic Laplace uses
an iterative process to fit the surface to an eight-connected pattern of correlation
data.

Each process comes with deficiencies as well as benefits for this application.
In previous work it has been shown that the parabolic and Gaussian fitting meth-
ods may result in a high error if high shear strain is applied to the specimen
[Debella-Gilo and Kaab, 2011, Nobach and Honkanen, 2005]. However, since
each curve requires only the help of two neighboring correlation values (5 total
correlation calculations), the methods are computationally efficient and therefore
speedy. The Lagrange formulation requires more inputs and internal calculations
so is slower, however the error bars are diminished.

Parabolic fitting In parabolic surface fitting, the ∆x and ∆y components are de-
termined independently, using the assumption that the real correlation peak in
each direction lies on a curve containing 3 points. The curve is defined using
a one-dimensional quadratic function, with the peak located somewhere along

28

Figure 2.9: Four-connected placement of correlation points for Gaussian and
parabolic surface fitting. The subpixel displacements in x,y are independently
calculated along each dimension.

that curve. Using the 4-connected scheme depicted in Fig. 2.9, the two correla-
tion coefficients of the neighbors in the x and y directions are computed, then fit
independently with curves.

The center, best-matching pixel has two neighbors in either the x or y direction,
|x0− 1| and |x0 + 1|, or |y0− 1| and |y0 + 1|. To find the sub-pixel distance ∆x, ∆y
in each direction, a parabolic curve is defined using the three points in the spec-
ified dimension that intersect them, and then computed to attain the maximum
[Debella-Gilo and Kaab, 2011]:

∆X =
ρ(X0 − 1, Y0)− ρ(X0 + 1, Y0)

2ρ(X0 − 1, Y0)− 4ρ(X0, Y0) + 2ρ(X0 + 1, Y0)
(2.7)

∆Y =
ρ(X0, Y0 − 1)− ρ(X0, Y0 + 1)

2ρ(X0, Y0 − 1)− 4ρ(X0, Y0) + 2ρ(X0, Y0 + 1)
(2.8)

where ρ is the correlation coefficient at that index. The results are therefore sepa-
rable, and are added to the integer (X0, Y0) coordinates to obtain the true location
of the best correlated point.

Gaussian fitting The Gaussian surface is computed much like parabolic, except
the surface is assumed to follow that of a 2D Gaussian function. The maximum
location is found by fitting a second-order polynomial to the maximum sample

29

Figure 2.10: Index map of correlation points for the bi-quadratic Langrange for-
mulation.

logarithm. The formulation uses a four-connected index, and each dimension is
again orthogonal and separable [Debella-Gilo and Kaab, 2011]:

∆X =
ln(ρ(X0 − 1, Y0))− ln(ρ(X0 + 1, Y0))

2 ln(ρ(X0 − 1, Y0))− 4 ln(ρ(X0, Y0)) + 2 ln(ρ(X0 + 1, Y0))
(2.9)

∆Y =
ln(ρ(X0, Y0 − 1))− ln(ρ(X0, Y0 + 1))

2 ln(ρ(X0, Y0 − 1))− 4 ln(ρ(X0, Y0)) + 2 ln(ρ(X0, Y0 + 1))
(2.10)

Bi-quadratic Lagrange fitting The bi-quadratic Lagrange method fits an opti-
mal surface to the best integer matching point and the eight surrounding points
using their correlation values, shown in Fig. 2.10. Indexing is done according
to the center pixel, so distances always fall in the range of [-1, 1]. An iterative
process is used to approximate the point of maximum correlation at a subpixel
location [Pan et al., 2012].
The Lagrange surface in bi-quadratic form is as follows:

Ĉ = a1x2y2 + a2x2y + a3x2 + a4xy2 + a5xy + a6x + a7y2 + a8y + a9 (2.11)

where x, y are the indexes of each correlated point. From this it is apparent that
the system is of nine unknown coefficients that correspond to the surface function
that passes through each discrete point. The nine linear equations can efficiently
be evaluated in matrix form by the following procedure:

30

L~a =~s (2.12)

where

L =

1 −1 1 −1 1 −1 1 −1 1
0 0 1 0 0 −1 0 0 1
1 1 1 −1 −1 −1 1 1 1
0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1
1 −1 1 1 −1 1 1 −1 1
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1

~s =

s1
s2
s3
s4
s5
s6
s7
s8
s9

=

C(−1,−1)
C(−1, 0)
C(−1, 1)
C(0, −1)
C(0, 0)
C(0, 1)
C(1, −1)
C(1, 0)
C(1, 1)

, and~a =

a1
a2
a3
a4
a5
a6
a7
a8
a9

To solve (2.12) and isolate the~a vector using these identities,~s must be multiplied
with the inverse of L, as so:

~a = L−1~s (2.13)

Since L is always a 9× 9 matrix using an 8-connected point pattern, it is square
(full rank) , never singular, and therefore fully invertible. The inverse of L can be
pre-assembled in code to save processing time, since the distances involved will
always be integer pixel values in the region [−1, 1]:

L−1 =

0.25 −0.5 0.25 −0.5 1 −0.5 0.25 −0.5 0.25
−0.25 0 0.25 0.5 0 −0.5 −0.25 0 0.25

0 0.5 0 0 −1 0 0 0.5 0
−0.25 0.5 −0.25 0 0 0 0.25 −0.5 0.25

0.25 0 −0.25 0 0 0 −0.25 0 0.25
0 −0.5 0 0 0 0 0 0.5 0
0 0 0 0.5 −1 0.5 0 0 0
0 0 0 −0.5 0 0.5 0 0 0
0 0 0 0 1 0 0 0 0

(2.14)

31

And multiplying the~s vector by this inverse,~a vector coefficients are now avail-
able:

~a =

0.25s1 − 0.5s2 + 0.25s3 − 0.5s4 + s5 − 0.5s6 + 0.25s7 − 0.5s8 + 0.25s9
−0.25s1 + 0.25s3 + 0.5s4 − 0.5s6 − 0.25s7 + 0.25s9

0.5s2 − s5 + 0.5s8
−0.25s1 + 0.5s2 − 0.25s3 + 0.25s7 − 0.5s8 + 0.25s9

0.25s1 − 0.25s3 − 0.25s7 + 0.25s9
0.5s2 + 0.5s8

0.5s4 − s5 + 0.5s6
−0.5s4 + 0.5s6

s5

(2.15)

recalling that sn are correlation coefficients. To find the peak of the correlation
surface, (x, y), for these 8-connected points, a zero-slope solution is sought where
the surface has a zero (or close enough to it) derivative with respect to x and y. For
this, a Newton iterative scheme (also known as the Newton-Rhapson method)
is used to successively hone in on a sufficiently close approximation (within a
specified tolerance) of the solution, as follows from Bruck et al. [1989]:

~p n+1 = ~p n − J−1(~p n)F(~p n) (2.16)

where

~p n = [xn yn]T (2.17)

are the x and y values of the guess at iteration n, and ~p n+1 is the solution for that
iteration. The solution is considered converged when

|xn+1 − x| ≤ δ and |yn+1 − yn| ≤ δ, (2.18)

where in this work the tolerance, δ = 0.05, and note that ~p 0 = [0 0]T, implying
the center pixel is the optimal starting solution. From (2.16), F(~p) is the “residual”
function from Newton’s scheme, the partial derivative with respect to x and y of
(2.12):

F(~p) =

 ∂Ĉ(x,y)
∂x

∂Ĉ(x,y)
∂y

 =

[
2a1xy2 + 2a2xy + 2a3y2 + a4y2 + a5y + a6

2a1x2y + a2x2 + 2a4xy + a5x + 2a7y + a8

]
(2.19)

32

Also from (2.16), J is the Jacobian matrix:

J(~p) =

 ∂2Ĉ(x,y)
∂2x

∂2Ĉ(x,y)
∂x∂y

∂2Ĉ(x,y)
∂y∂x

∂2Ĉ(x,y)
∂2y

 (2.20)

=

[
2a1y2 + 2a2y + 2a3 4a1xy + 2a2x + 2a4y + a5

4a1xy + 2a2x + 2a4y + a5 2a1x2 + 2a4x + 2a7

]
(2.21)

for the sake of simplicity, let the elements of the Jacobian be:

J(~p) =
[

J1 J2
J3 J4

]
, (2.22)

then

J−1(~p) =

[J4
J1 J4−J2 J3

−J2
J1 J4−J2 J3

−J3
J1 J4−J2 J3

J1
J1 J4−J2 J3

]
(2.23)

Implementation of the bi-quadratic Lagrange formulation is computationally
straightforward when using the preceding matrix identities; first the surround-
ing eight points are given correlation values, the coefficients of (2.11) are found
using (2.15), then (2.16) is iterated until the solution is sufficiently approximated.
The costly part of the process is calculating the eight surrounding coefficients,
whereas plugging those values into the pre-formed matrices takes little time. The
solution usually converges in 1-2 iterations.

2.4.2 Gradient-based methods

Non-iterative spatial gradient method This model makes two assumptions about
the specimen and environment. The first is that the subset is undergoing solely
rigid body translation, i.e. exhibits zero-order deformation characteristics, the
same assumptions that hold for the surface fitting methods. The second is that
the gray-level intensity for each pixel is constant, therefore the only thing that
changes between the deformed and reference subset is the location of each pixel.
For this method,

f (xi, yi) = g(x′i, y′i) (2.24)

where
x′ = x + u + ∆x, y′ = y + v + ∆y (2.25)

33

states that the subset in the original location, f , undergoes a rigid-body transla-
tion to g. x and y are the original starting locations of the subset centroid, u and
v are the integer-pixel displacement components in the x and y directions respec-
tively (found from a previous coarse search), and ∆x and ∆y are the sub-pixel
displacement components in question [Pan et al., 2012].
Neglecting the higher-order terms of (2.24), a Taylor expansion yields

g(x′i, y′i) = g(x + u + ∆x, y + v + ∆y) (2.26)

= g(x + u, y + v) + ∆x · gx(x + u, y + v) + ∆y · gy(x + u, y + v) (2.27)

where gx and gy are the intensity gradients in the x and y directions. Gradients
can be found a number of ways, primarily in image correlation by using a convo-
lution operator. [Pan et al., 2012] suggest using a mask of

[1/12,−8/12, 0, 8/12,−1/12]

applied in the x and y directions, as it shortens the truncation error to o(h4),
smaller than standard gradient operators such as the Sobel or Prewitt (note that
the processing time however for decimal values is slightly higher than that for
integer or shorts, and requires more memory).

In this method, solving for dx and dy requires that the sum of squared differ-
ences (SSD) correlation measure be maximized;

CSSD =
M

∑
i=−M

M

∑
j=−M

= (f (xi, yi)− g(x′i, y′i))
2 (2.28)

that is,

∂CSSD

∂(∆u)
= 0, and

∂CSSD

∂(∆v)
= 0

The boundaries, M, imply that the summations are taken over the entire subset.
Inserting (2.27) into (2.28), the sub-pixel displacements are found by solving the
system [

∆x
∆y

]
=

M
∑

x=−M

M
∑

y=−M
(gx · gy)

M
∑

x=−M

M
∑

y=−M
(gy)2

M
∑

x=−M

M
∑

y=−M
(gx)2

M
∑

x=−M

M
∑

y=−M
(gx · gy)

×

M
∑

x=−M

M
∑

y=−M
[(f − g) · gx]

M
∑

x=−M

M
∑

y=−M
[(f − g) · gy]

(2.29)

34

Rearranging and distributing these terms in a more code-friendly manner (each
summation taken over the entire subset as before):

∆x =
(ΣΣ(gy)2) · (ΣΣgx(f − g))− (ΣΣgxgy) · (ΣΣgy(f − g))

(ΣΣ(gx)2) · (ΣΣ(gy)2)− (ΣΣgxgy)2 (2.30)

∆y =
(ΣΣ(gx)2) · (ΣΣgy(f − g))− (ΣΣgxgy) · (ΣΣgx(f − g))

(ΣΣ(gx)2) · (ΣΣ(gy)2)− (ΣΣgxgy)2 (2.31)

35

CHAPTER 3

PROGRAM OPERATION, OUTPUT AND APPLICATION

Several experiments were performed to present sample output from the program
for both digital image correlation and particle image velocimetry. The images
and data from the following experiments are also used to provide verification
and validation of the program and algorithms in the following chapter.

3.1 Digital Image Correlation

Several experiments for digital image correlation validation were performed at
New Mexico Tech using a materials testing machine provided by the Mechanical
Engineering department. The test samples were machined in the department
machine shop, and the following two experiments were chosen (arbitrarily) to
present:

1. Low-carbon steel “dogbone” sample recorded with high-speed camera.

2. Aluminum “dogbone” sample recorded with an iPhone 6 camera

Each sample was prepared for imaging with a flat white background, followed
by speckling with flat black spray paint, as described in Chapter 1.

3.1.1 Low-carbon steel dogbone test

Experimental setup For the following analysis, a dogbone sample appoximately
75mm x 25mm was machined from low-carbon steel, with 5 mm diameter necks
and a 5 mm diameter center cutout. A Photron Fastcam Mini UX100 high-resolution,
high-speed camera, coupled with a Nikon AF Micro Nikkor 60 f/2.8D lens were
used to record images during the test. The sample was placed in an MTS Land-
mark servohydraulic materials tester (experimental setup seen in Fig. 3.1), and
pulled from the anchor point at the bottom until separation occurred at a test
rate of four (4) kiloNewtons per second (kN/sec), as seen in Fig. 3.2. 175 frames
were selected from the image set up to the point where fracturing or separation
appeared in the sample.

36

Figure 3.1: Experimental setup for digital image correlation analysis. The dog-
bone sample is anchored from the bottom and top in the materials tester, with
stress applied to the bottom as the anchor is pulled downward

(a) (b) (c) (d)

Figure 3.2: Fracture and separation sequence of test sample; time proceeds from
image (a) - (d). (a) is the last image used in the experimental set.

37

Figure 3.3: Region of interest selected for experimental analysis of mild-steel sam-
ple. The ROI is selected to include the parts of the sample not pulled out of frame
by the stress test, as well as exclude background pixels.

Region of Interest In Fig. 3.3, the pixel mask (ROI) selected for this analysis
is shown. The rectangular drawing tool provided by the program obtained the
mask, with the center cutout clipped from the ROI using the free-form polygon
selection tool. The lower coordinates of the selection are placed some distance
from the bottom of the sample, as this type of sample-stretching event tends to
drag the lower pixels out of frame.

Input parameters The kernel size chosen for this setup is 21, chosen after zoom-
ing on the sample in the image and selecting a representative speckle pattern.
The step size is accordingly set at five (5), which gives a roughly 75% overlap of
the kernel. The minimum correlation threshold was is the default value of 0.8,
and image incrementing is selected with a bad correlation minimum count (the
amount of correlation values below the correlation threshold) of 100. Parabolic
subpixel resolution is also applied.

38

Output The images in Fig. 3.4 show the vertical and horizontal displacement
of every fifth (equaling the step size) pixel in the selected ROI. Since a smooth
image is desired to better view the deformation, a rectangle equal to the step size
is filled with the desired color from the legend. From Fig. 3.4 (a), the deformation
is greatest at the bottom of the ROI, and minimal at the top. This results from
the MTS machine pulling vertically downwards from the bottom as the sample
is held statically at the top. In the middle of the sample around the cutout, the
deformation gradient is seen to steepen, as the stress on this area of the sample
increases significantly as the steel is stretched apart.

In Fig. 3.4 (b), the upper-right quadrant of the output appears to be zero dis-
placement. This is not strictly true if looking at subpixel detail, and is an artifact
of the implementation of the legend in code, as well as a function of the choice to
use incremental base image update in this analysis instance. The legend displays
integer-level displacement values, and the result is that if the actual displacement
is somewhere between 0 - 0.5 pixels, the legend will indicate zero displacement.
For programming simplicity, the same integer contour map implementation is
used when a subpixel analysis is performed.

The choice of incremental base image update also contributes to the appear-
ance of zero deformation in the x-axis in this particular sample. Fig. 3.5 shows
a side-by-side of the same sample analyzed with all input parameters held con-
stant except for incremental update. Fig. 3.5 (a), upper-right quadrant, shows
no pixel displacement, however Fig. 3.5 (b) indicates that at least one (1) unit of
displacement has occurred for the same region. The “true” value is somewhere
between 0.5 - 1 pixel for that region (from subpixel analysis, which is available in
the exported data). The reason for the discrepancy between the outputs is thus:
since the region in question is of such low deformation, the amount of displace-
ment from image to image is extremely low, somewhere less than 0.05 pixels in
this sample. Therefore when an incremental base image update occurs, if the dis-
placement at any pixel location between the last update and the current is less
than 0.5, the reference location for that subset index is set back to zero.

3.1.2 Aluminum sample mobile phone test

Experimental setup From 3mm thick aluminum, a dogbone sample was ma-
chined at 95mm x 25mm, with 5mm necks and a 5mm center cutout. The MTS
Landmark tensile testing machine was used again with a test rate of three (3)
kN/Sec. An iPhone 6 recording in slow-motion video mode at 120 FPS was held
in a custom rig, and a similar Fastcam Mini setup as used in the previous ex-
periment was used for backup purposes, as seen in Fig. 3.6. The video frames
were extracted using the tool included with this program, cut from the 0:14 - 0:17
second segment of the iPhone video. A total of 340 images were used for the anal-
ysis (three seconds at 120 FPS), selected for a segment of test before separation or
visible fracturing of the sample occurred.

39

(a)

(b)

Figure 3.4: Contour plot of (a) vertical displacement in the y-axis, (b) horizon-
tal displacement in the x-axis. The steepening of the gradient around the cutout
indicates higher strain rate. Missing pixels in (b) represent the artifacts from in-
cremental reference image updates.

40

(a) (b)

Figure 3.5: Contour maps of x-axis displacement for (a) analysis with incremental
base image update, and (b) analysis without incremental update. The region in
(a) showing zero displacement is an artifact of implementation.

Input parameters The cross-correlation kernel size chosen for this setup is 11,
obtained using the zoom feature. Step size is set at two (2), giving a roughly 80%
overlap. The minimum correlation threshold is set at the default value of 0.8, and
image incrementing selected with a bad correlation minimum count of 100.

Output The output of the analysis is seen in Fig. 3.7, where both the horizontal
and vertical displacement are shown. Since an iPhone is not able to zoom in with
the same accuracy as a high-definition camera without sacrificing image quality,
the view is wider than that of the Fastcam Mini. The tradeoff is a loss of definition,
as the ROI for the iPhone video is 110 x 544 pixels, whereas the Fastcam records
a frame where an ROI of similar placement has dimensions of 340 x 1720 pixels.
The iPhone has a much lower barrier of entry and ease of use, however the loss of
information resolution is significant. In this experiment, the iPhone was mounted
off-axis, to make room for the larger Photron camera.

Results In Fig. 3.7 (b), v deformation shows that the maximum displacement
before separation occurs is around 15 pixels, or approximately a third that of the
low carbon steel sample. The stress risers in the middle can also be seen to show
not nearly as steep a gradient. From Fig. 3.7 (a), there is almost no deformation in
the x-axis before separation occurs. These characteristics are in line with expected
results, as the Young’s modulus of elasticity for aluminum is roughly a third that
of carbon steel. Meaning, aluminum will exhibit much less strain than carbon
steel before fracturing.

41

Figure 3.6: Experimental setup for iPhone test, using an aluminum speckle pat-
terned sample. the multi-camera setup results in the iPhone set slightly off center-
axis.

42

(a)

(b)

Figure 3.7: Aluminum digital image correlation test using an iPhone 6; (a) con-
tour map of displacement in the x-axis, and (b) displacement in the y-axis. Com-
pared to steel, the aluminum shows much less displacement before fracture.43

Figure 3.8: Region of interest selected for particle image velocimetry analysis.

3.2 Particle Image Velocimetry (PIV)

Experimental setup A cool-mist vaporizor is used as the test source. The vapor-
izer, placed in front of a laser light source and a TSI MP4 PIV camera, is situated
such that the plane of the laser lay perpendicular to the camera lens. The result-
ing light “sheet” illuminated the water molecules emanating from the vaporizer
in a single plane, enabling the irradiated molecules to be captured at a high rate
of speed for acquiring PIV image pairs. 200 of the image pairs are selected for
this analysis.

Region-of-Interest In Fig. 3.8, the region of interest selected is shown, using
the first image in the image pair set as a backdrop. The ROI is 1150 x 1211 pixels
tall, selected to capture distinguishing features of the fluid flow. After some ex-
perimentation with the images, the ROI was scaled back from the top so that the
output would not contain vectors whose length resulted in the terminus outside
the image boundaries (this choice was made for demonstration purposes, this has
no effect on the output data or program).

Input parameters The analysis parameters for the PIV test:

• cross-correlation kernel size of 51

44

• Fourier window size of 82

• grid step of 30

• integer-level resolution

The analysis parameters were arrived at by a trial and error approach (common
in PIV correlation analysis). With a smaller size Fourier window, the algorithm
produces considerable noise, especially in the background regions. Images with
fine-grained particles such as these also require a larger cross-correlation kernel
when compared to a typical DIC sample with a coarse speckle patterning. A typ-
ical approach to PIV image analysis is to take a few runs to adjust input parame-
ters to see how the data processing is affected, with the final choice of processing
parameters identified that maximize resolution and accurate correlations.

Output Fig. 3.9 presents output of the program using the specified inputs, using
the last image in the sequence as the background. During the progression of the
program, the first image in each pair is shown with the corresponding vectors
overlaid as each pair is analyzed (in this example, the user will see 200 images
with overlying instantaneous velocity vectors, in pixels/image pair). For the last
image upon program completion, the velocity for every interrogated subset index
is averaged and plotted as the final “presentation” vector.

As is typical in velocimetry, the image shows many outlying data points that
are not representative of the fluid flow, as edge zone, background regions, and
especially turbulent areas can cause vectors that are obviously not in line with
the rest of the results. Manual or statistical rejection of vectors may be used to
suppress outliers. This program does not provide tools for manual vector sup-
pression, and statistical rejection is left up to the user as a learning tool. However,
for viewing purposes, the program applies a quick standard deviation analysis to
reject any vectors over three deviations away from the mean, which does not ef-
fect the data available for export. This feature serves to dampen the most outlying
noise in the data, so that the user can make adjustments to the input parameters
needed after each run. If the user chooses to export the dataset for manipulation,
confidence values that may help in statistically rejecting vectors is included.

Vector view adjustment If the length and scale of the output vectors is not con-
venient for interpretation (being either too long or short to be of visual value),
the velocity vector adjustment slider may be used. A sequence of images for this
experiment obtained using the adjustment tool is shown in Fig. 3.10. As the im-
ages progress from A-D, the vector forest grows thicker as the vectors begin to
overlap, notably in regions of higher relative velocity. The benefit of this tool is
apparent from this sequence, as it provides a “dynamic” visual perspective of
the fluid flow. Often the ideal way to visualize fluid movement is to increase the
vector scaling so that regions of higher velocity become denser, yielding greater
contrast to regions of lower velocity.

45

Figure 3.9: Program output for sample PIV analysis, with the last image in the
input sequence as background. Highest velocities are seen at the source, with
some outlying noise in the background regions.

46

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Adjustment of vector lengths using the provided user interface tool.
Images (a) - (f) show an increasing progression of velocity vector lengths on the
same data set to improve the visualization.

47

CHAPTER 4

VERIFICATION AND VALIDATION

In the following chapter, the images obtained from the previous experiments are
used to verify that the equations and algorithms used by this program are correct,
and to validate that the experimental results are in line with expected values.
For verification, sample images are treated in Matlab using image processing to
deform them by a known quantity. The deformed samples are then analyzed with
the PIV and DIC software, with the results compared to the expected values. For
validation, three established software programs are chosen to provide baseline
data for comparison with the output of this program.

4.1 Digital image correlation verification

Experimental setup To authenticate the DIC algorithm, a region of a steel dog-
bone speckle image is digitally cropped to 350 x 350 pixels and subjected to pure
translation in Matlab, seen in Fig. 4.1. The purpose of the experiment is twofold:
to prove that with integer image translations the program tracks to 100% effec-
tiveness, and to show that the algorithm can track large displacements between
images. The kernel size is set to 21 pixels, using a step size of five (5) pixels, with
a 0.8 correlation coefficient minimum (no reference image updating) for all runs.

Experimental results The image in Fig. 4.1 A was translated for 10 steps along
each axis, as well as the diagonals, by the following magnitudes per step:

• 1 pixel

• 5 pixels

• 10 pixels

• 30 pixels

48

(a) (b)

Figure 4.1: a) Base speckle image used for DIC algorithm verification with ROI
for calculations shown. b) Example result after translating (a) 50 pixels in the
x-axis, and 50 pixels in the y-axis.

Data for each subset index are averaged for all 10 images, and the percent error
from the known outcome calculated by:

%error =
#experimental − #known value

#known value
· 100 (4.1)

Results for the 10-pixel displacement are shown in Table 4.1. The error for
every result is 0%, which indicates that for every subset location (every fifth pixel
in the image), the algorithm successfully tracked to the corresponding location in
the subsequent translated images.

For the transformations of 1, 5, and 30 pixel steps in all axes, the correlation
success rate is also 100% (unshown). Therefore in strict subset translation, the
algorithm has zero error in tracking and identifying the corresponding locations
even when large displacements occur.

4.2 Particle image velocimetry verification

Experimental setup PIV algorithm integrity is verified in the following man-
ner: a sample of image 350 x 350 pixels is sampled from the base image used in
the preceding chapter, from Fig. 4.2 (a). The image is then translated 10 times
with an acceleration of one (1) pixel per translation step, with a starting velocity
of one (1) pixel/pair (after 10 translations the terminal velocity equaled 10 pix-
els/pair). Acceleration is added so that the algorithm sees movements other than
at a constant velocity. The Fourier window is set at 64, with a grid step size of 15.

49

Step
x-axis

Step
y-axis

Total
steps

Results
x-axis

Results
y-axis

% error
x-axis

% error
y-axis

10 0 10 50 0 0 0
10 -10 10 50 -50 0 0
0 -10 10 0 -50 0 0

-10 -10 10 -50 -50 0 0
-10 0 10 -50 0 0 0
-10 10 10 -50 50 0 0
0 10 10 0 50 0 0

10 10 10 50 50 0 0

Table 4.1: Results from DIC algorithm after translating Fig. 4.1 (a) by 10 pixels for
10 steps, resulting in 0% error for every calculation (all units in pixels). Results
are averaged across every pixel in the image.

Results For the results displayed in Fig. 4.2 (b) - (f), at each subset index location
all data is averaged together from each image pair, and scaled for viewing on-
screen. The algorithm recorded a perfect tracking record, with each index’s final
average velocity equaling 5.5 pixels/pair.

4.3 Subpixel registration verification

Three methods of subpixel registration are available in this program: parabolic,
Gaussian, and Lagrange. Each method is an interpolation process; parabolic and
Gaussian rely on a 4-connected neighborhood, and Lagrange is based on an 8-
connected region (detailed in Chapter 2). Using the following procedure, each
registration process is experimentally verified to have the correct implementation
in code and to quantify the error introduced by the interpolation process.

Experimental setup The base image in Fig. 4.1 (a) is digitally translated in Mat-
lab by one pixel in the x and y directions, for a total of 10 steps. At each step the
image is analyzed using all three subpixel registration methods, using a subset
size of 21 pixels and a grid step of 1 pixel.

Results 90,000 subsets per translated image were analyzed, and the movement
of each subset centroid averaged for the entire image in both the x and y dimen-
sions. By using a translation step of one pixel (no interpolation required between
translation points by the deforming method), the result for every subset can be
expected to arrive at exactly one pixel of displacement in both u,v, so therefore an
exact error calculation can be obtained. Results are shown in Table 4.2.

50

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Results of PIV algorithm verification. The results are displayed as
average velocity vectors for each subset over all image pairs. Image tracking
results in a 100% correlation rate for purely translational velocities.

51

Subpixel
method

x-axis %
error (avg)

y-axis %
error (avg)

Total %
error (avg)

Parabolic 0.0082 0.0021 0.0051
Gaussian 0.0054 0.0028 0.0041
Lagrange 0.0021 0.0033 0.0027

Table 4.2: Percent error of the three subpixel registration methods, calculated via
digital translation of Fig. 4.1 (a).

Discussion The error introduced by each registration process is small; for ref-
erence, 0.005% error is equal to a 0.00005 pixel difference between the expected
and experimental value, or roughly 0.185 micrometers (µm) in this image sample.
The image itself is approximately 13,000 x 13,000 µm (13 x 13 millimeters). The
most accurate method is Lagrange, however the computational cost is extensive;
the analysis takes an extra 10 seconds to complete (a 50% increase over Gaussian
and parabolic).

4.4 Digital image correlation validation

To validate the DIC program’s effectiveness in a real environment, image sets
from the experiment outlined in Chapter 3, using the steel sample are compared
to the output of a program called VIC-2D (Visual Image Correlation - Two Di-
mensional [Solutions, 2017]). VIC-2D is a professional software package used
widely in industry and academia, using a proprietary algorithm that is extremely
fast and resistant to complications arising from sample deformation and pattern
decorrelation. It is considered to be a baseline for this results comparison due to
its widespread use and regard.

4.4.1 Contour plots

For deformation mapping, contour plots are highly effective for visualizing the
deformation undergone by a sample during testing. Sometimes a deformation
map is the only desired outcome, especially in a teaching laboratory environ-
ment, so this program must be verified to produce an accurate and reliable con-
tour plot. To prove the contouring function, 175 images are analyzed with this
program and VIC-2D using the following input parameters:

• Kernel size of 21

• Five (5) pixel step size

The minimum correlation coefficient for this program is set at 0.8 (VIC-2D does
not require inputs other than those outlined above).

52

(a) (b)

Figure 4.3: Non-increment y-axis deformation for (a) this program, and (b) VIC-
2D.

Static reference image analysis The contour plots in Fig 4.3 show the y-axis (v)
displacement results using a non-incrementing reference image update scheme
(static reference). The VIC-2D output contour map treats the data to 18 discrete
colors. This program has a broader color palate(66), so the intervals do not match
exactly. However, it is apparent that the results are quite similar to each other
and show the same overall displacement outlines and characteristics.

The middle region of the plots around the center cutout show interesting fea-
tures, namely a high gradient of color change that indicates the highest strain
rate in the sample, as well as missing pixels (VIC-2D image) or a muddled color
scheme (this program). This is indicative of decorrelation effect, whereby the
speckle pattern gets deformed to the point where a subset cross-correlation can-
not be made with a high degree of confidence. VIC-2D chooses to show the con-
tours from the very last image data, so when a correlation is not made, no pixels
are colorized. This program contours with the last known good value, result-
ing in pixels that don’t match up with their surroundings in highly decorrelated
regions.

Fig. 4.4 illustrates the results of the previous run in the x-axis. Again, the
contour lines are of similar placement and breadth. The left side of the sample
shows higher total displacement in both images, with a much broader band of
deformation.

53

(a) (b)

Figure 4.4: Non-increment x-axis deformation for (a) this program, and (b) VIC-
2D.

54

(a) (b)

Figure 4.5: Incremental reference update, y-axis deformation. The contour lines
are much smoother using this technique, providing a cleaner contour map.

Reference image updating VIC-2D offers an option to update the reference
data after each image, so that the reference image is the one directly preceding the
current image. This program offers more flexibility, where the user can choose the
number of non-correlated subsets before a reference image update occurs. There
is also an option to update after every image, which is selected for this analysis
to match with VIC-2D.

Using identical input parameters to the preceding analysis, the image set
is evaluated in each program using the outlined incremental updating scheme,
with the results presented in Fig. 4.5 and Fig. 4.6. The results are very similar
to the non-incremented output, however the response in the decorrelated region
is much smoother and without any missing pixels for VIC-2D, or for this pro-
gram, mixed-color contour lines. Reference image updates, however, do intro-
duce noise and error into the data, but for a strictly visual interpretation, the
results are more presentable and readable.

The contour plot from this program in Fig. 4.6 A is missing pixels in the
top-right region. This indicates that there is indeed some amount of difference
between the non-increment and incremental analysis, as there were no missing
pixels in the previous contours. VIC-2D colors its subsets at non-integer levels,
so does not suffer from the same discrepancy.

55

(a) (b)

Figure 4.6: Incremental reference update, x-axis deformation for (a) this program,
and (b) VIC-2D. The contours are much smoother, with some missing pixels in the
top-right of this program, due to the integer referencing scheme.

56

4.4.2 Data comparison

Segment location The previous contour plots provide a reasonable comparison
to the overall quality of the output provided by this program. To quantify the
accuracy of the data against the VIC-2D baseline, several discrete cross-sections
of the image set, as seen in Fig. 4.7, are analyzed independently in both programs.
For the horizontal sections labeled A, B and C, the lengths are 320 pixels wide by
5 pixels tall. The vertical sections labeled E and D are 150 pixels tall by 5 pixels
wide.

As seen from the previous contour maps, the top and bottom of the sample un-
dergo fairly uniform deformation (mostly in v), whereas the middle experiences
a much wider variation in strains. Therefore, segments A & B should offer a fairly
uniform displacement curve, whereas segment B should be more challenging, es-
pecially toward the end of the image set when heavy decorrelation effects arise
in this region. Since the sample is being pulled fairly uniformly along the y-axis,
little u displacement occurs overall, as the sides are moving toward each other
and cancel out. To capture movement for comparison in the x-axis, sections D, E
& F in Fig. 4.7 (b) are placed in the most active region of the sample.

To compare the segments between the programs, each segment is treated as
a mask, with the underlying deformation point data averaged for each image.
Since more data points are desired for comparison, the step size is reduced to one
(1) so that every pixel underlying the mask is correlated. The parabolic subpixel
estimator is used for this program.

Results Fig. 4.8 shows the v deformation results from each program. Segment
A shows little displacement, as expected from the contours. Sections B & D both
show a rather large jump in the displacement around image # 100, then level out.
Of significance is the preciseness of the curve matching. The results from this
program follow the curves and topography of the VIC-2D output, only showing
a very slight separation towards the end of section B.

In Fig. 4.9, the data for u displacement from segments E & D is displayed. The
topography of the results again matches very well, the output from this program
following almost exactly the character of VIC-2D data. However, at around im-
age 165, separation starts to occur between the lines. From the non-incremented
contour plots seen in Fig. 4.4, the region in which these two segments are located
shows decorrelation at the end of the image set. The right side of the circular
cutout shows more missing data than the left side, which matches this compari-
son. Separation between the lines occurs earlier and more markedly in segment
E than D. Therefore, if VIC-2D is considered to be the baseline, the algorithm
used by this program suffers in accuracy when large deformations are present.
The probable cause of the line differentiation is that because the algorithm used
by this program loses track of more points than VIC-2D when decorrelation oc-
curs, the average along the segment is influenced more heavily by the smaller
displacement areas located at the top and bottom of the segment masks.

57

(a) (b)

Figure 4.7: Locations for DIC results comparison. Segments in (a) are used for
vertical displacement comparison, and (b) for horizontal.

58

Figure 4.8: Y-axis displacement comparison. The plots comparing this program
to VIC-2D are virtually identical, with a very slight deviation at the end of section
B.

59

Figure 4.9: X-axis displacement comparison. Plots are very similar until around
image # 165, which is the point that high speckle pattern deformation on the
pattern occurs.

60

Figure 4.10: Displacement in u using incremental reference image update. The
plots deviate considerably due to the integer-update scheme used by this pro-
gram.

The displacement profile for segment F from Fig. 4.7 (b) is shown in Fig. 4.11.
For this comparison, the data is taken from image # 155, before significant decor-
relation and data loss occur. At each y-axis pixel location, a 10-pixel wide set of
displacement calculations are averaged together from the horizontal plane cen-
tered on the segment. The results show the data from this program are consistent
with VIC-2D, especially as the sample deforms noticeably in the x-axis.

Using an incremental reference-image update scheme, the algorithm can make
up some ground on lost/decorrelated subsets. In Fig. 4.10, the results from VIC-
2D (non-incremented) are shown against results from this program using an in-
cremental scheme of 20 bad correlation points before reference image update.
Gains are made in the shape and form of the line, as there is no sharp uptick
at around image # 160, and the topography of the lines remains fairly constant.
However, when the reference updates start to occur around image # 110, the data

61

Figure 4.11: Displacement contour for section F from Fig. 4.7 (b), with displace-
ment in the horizontal direction. The segment is treated as a 10-pixel wide mask,
using the displacement values at image # 155. Contours follow closely, with slight
deviations occurring.

62

starts to separate from the baseline, again evidencing the introduction of error
using this method.

Discussion Even though the data from this program diverges from the base-
line when decorrelation occurs, until such a circumstance arises, this program
provides good results. VIC-2D, while not dropping as many data points, still
struggles when the specimen markings are deformed beyond a reasonable ex-
pectation of recovery.

4.5 Particle Image Velocimetry validation

To validate the accuracy and consistency of the PIV algorithm using Fourier
transforms, two other software programs are used to create velocity vector field
plots and to obtain and analyze the raw data for statistical comparison. The foun-
dational principle of each of these programs is the same: the Fourier transform is
applied to a subset of the image to locate the pixel coordinates of the correlation
peak.

4.5.1 Comparison of software programs

The first program, Insight 4G, is a comprehensive “Global imaging, acquisition,
analysis and display software suite” from TSI [Inc., 2017]. Insight 4G is a com-
plex, industrial-scale program available for license purchase, with a steep learn-
ing curve due to the many different input parameters available for adjustment.
The program runs extremely fast, each image pair taking roughly a third of the
time to analyze as the same pair in this program. Some of the speed advantage
is due to the base language being C, which is an inherently faster computational
language than Java. Other factors, such as a better Fourier transform library, and
probably more importantly, professional code optimization, also influence the
speed differences. However, Insight 4G is only available for use on the Microsoft
Windows platform.

The other software used for comparison is a free program available under
the BSD license called PIVlab [Initiative, 2017], created as part of a PhD program
analyzing the aerodynamics of bird flight. The program has been used in aca-
demic papers and journals, and is well-cited [Thielicke and Stamhuis, 2014a,b,
Thielicke, 2014]. PIVlab runs entirely as an application in the Matlab environ-
ment, so requires the Matlab license or use of the platform. Since Matlab uses a
combination of programming languages (Java for the interface, C and Fortran for
computation), it can reach higher speeds than a pure Java implementation. The
Fourier transform used is the non-free (non-GPL) licensed version of the FFTW
Fastest Fourier Transform in the West, [MIT, 2017, Matlab, 2017]. PIVlab also of-
fers a “multi-pass” approach, which refines the search by decreasing the size of
the Fourier window a user-defined amount in up to three passes.

63

Input variables Since all three programs operate under a similar FFT approach
(all three can also operate using direct cross-correlation, which is a more time-
consuming process), the only two variables required to be held constant across
the platforms are the Fourier window size and the grid step size. After a few
trial and error passes, the optimal Fourier subset size for the image set from the
vaporizer experiment is in the neighborhood of 80 pixels, so the window size for
all three programs is set at 82 pixels square. This subset size produced roughly
the most successfully correlated points across all three programs.

Typically in a PIV analysis, the grid step size would be associated with
the Nyquist sampling rate. The Nyquist Theorem states that the sampling rate
should be twice the highest desired recorded frequency in the data, from Higgins
[1996]. Therefore in a PIV analysis utilizing the frequency domain, the smallest
object recorded in the data would be the Fourier window size, so the grid step
(sample rate) would equal half the window size. For the 82-pixel kernel used
here, the step size therefore would be 41 pixels. However, more data points are
desired for this comparison analysis so that the statistical cross-comparison has
more information to work with. Therefore the step size for the following analysis
is set at 15 pixels, which gives roughly 4,500 subset centers to analyze from the
ROI shown in Fig. 3.8.

4.5.2 Velocity vector fields

The first results comparison is a visual observation of the velocity vector fields
obtained from each programs. The results from each analysis were exported to
a data file and loaded into Matlab, which offers a function to draw vector fields
using the same scale and structure for each data set.

Vector rejection Any PIV analysis, due to randomness as well as out-of-plane
motion of the seed particles, results in a large number of outlying vectors (noise).
Regions where the Fourier window is completely encapsulated by background
pixels also produces many outliers in a Fourier analysis. Fig. 4.15, using the In-
sight 4G raw results as a background, shows this effect.

To combat this, both manual and statistical rejection of vectors can be per-
fomed. Manual rejection requires the program to allow users the option to select
any vectors that do not visually reconcile with the velocity field around them,
which can then be removed from the data. Both Insight 4G and PIVlab provide
such functionality, this program does not.

Statistical rejection relies on deviation from the mean:

σ =

√
Σ(x− x̄)2

n− 1
(4.2)

64

Where x represents each value in the set, and x̄ is the mean of the set. In a typical
case the standard deviation (σ) from the mean is calculated for the well-correlated
subset indexes. Then, vectors may be rejected by setting a threshold for the num-
ber of standard deviations from the mean each data point is allowed to surpass.
For example, if the set mean is 10 pixels and the σ is five (5), by using a threshold
of one (1) σ, any vector over the length of 15 or under the length of five (5) pixels
would be excised.

Vector rejection in a PIV velocity field is a subjective process dependent on
the user, the goals of the analysis, and other factors. For this visual comparison, a
velocity field without much noise from outlying vector lengths is desired. With a
little experimentation, the σ threshold for rejection was set at three (3), resulting
in an even vector field with few outliers. Results from each program are shown
in Figs. 4.12, 4.13 and 4.14.

Discussion Overall, each velocity field possesses equivalent flow trends and
a conical shape, with approximately equal dimensions. The general trend is up-
wards, with longer, overlapping vectors at the bottom (source) where the velocity
is highest. A slight rightward flow appears in the upper right area of the cone,
starting at around x = 850, y = 800. Both this program and PIVlab show a higher
velocity in the x = 650 plane, whereas Insight 4G shows a more evenly distributed
field throughout the conical region.

In the upper-right quadrants of both this program’s output and that of PIVlab,
there appears to be difficulty obtaining enough reliable vectors. Both fields show
square-shaped regions of vectors non-conforming with the fields around them.
Insight 4G also has trouble in the same areas, but to a lesser extent. Most likely,
there were fewer seed particles flowing through these regions from image to im-
age, so the averages from the images pairs did not have enough data to normalize
with the surrounding areas. Each algorithm had varying degrees of success han-
dling this lack of data.

4.5.3 Vertical data comparison

To quantify the similarities and differences between the program outputs across
the entire vertical plume, the region of interest is segmented into 22 sections
across the conical area showing the most consistent movement, as seen in Fig. 4.15.
The high-variance regions outside this area are excluded because they do not lend
useful data to the analysis, being composed of primarily background pixels. Each
of these line segments is 90 pixels thick, to encapsulate 5 subsets centers across
each band (observing the 15-pixel grid step size).

65

Figure 4.12: Velocity vector field from this program’s output. Data points are
filtered to two standard deviations from the mean.

66

Figure 4.13: Velocity vector field from PIV Lab. Data points are filtered to two
standard deviations from the mean.

67

Figure 4.14: Velocity vector field from Insight 4G. Data points are filtered to two
standard deviations from the mean.

68

Experimental Insight 4G PIV Lab
Segment σ u σ v σ u σ v σ u σ v

1 0.17 0.43 0.20 0.56 0.11 0.41
2 0.17 0.44 0.19 0.62 0.11 0.41
3 0.17 0.47 0.17 0.58 0.12 0.42
4 0.49 0.58 0.16 0.57 0.13 0.48
5 0.56 0.57 0.18 0.58 0.13 0.49
6 0.32 0.49 0.24 0.70 0.10 0.49
7 0.17 0.52 0.24 0.65 0.10 0.50
8 0.17 0.58 0.21 0.57 0.11 0.53
9 0.21 0.75 0.34 0.61 0.11 0.54

10 0.21 0.76 0.34 0.62 0.12 0.54
11 0.17 0.62 0.17 0.61 0.12 0.55
12 0.18 0.60 0.21 0.65 0.11 0.54
13 0.19 0.72 0.23 0.71 0.11 0.52
14 0.18 0.70 0.19 0.75 0.09 0.50
15 0.17 0.70 0.21 0.83 0.07 0.49
16 0.17 0.71 0.25 0.91 0.06 0.49
17 0.16 0.70 0.25 1.89 0.05 0.48
18 0.20 0.70 0.32 1.88 0.04 0.44
19 0.21 0.65 0.35 1.43 0.04 0.36
20 0.19 0.52 0.66 2.30 0.04 0.29
21 0.28 0.56 0.72 3.71 0.06 0.36
22 0.37 0.65 0.47 4.56 0.09 0.69

Table 4.3: Standard deviation of velocities in segment regions. In areas of low
velocity (lower numbered segments), deviations are low for all methods. Insight
4G shows a large increase in deviation in the high velocity region (high numbered
segments), whereas the other two methods do not.

69

Figure 4.15: Segment locations used to compare horizontal averages across the
flow between each program. Outlying background pixels are excluded from the
analysis to eliminate noise from the data as much as possible.

Standard deviation The standard deviation for subset data from each discrete
line segment is shown in Table 4.3. Examining the SD can help identify whether
the output of this program is consistent with itself, as well as the comparison pro-
grams. Wild swings in SD from segment to segment would mean that the algo-
rithm was not doing a dependable job of calculating subset displacements. From
the data, deviations in the v direction are all steadily within a range of [0.4-0.75]
pixels. The maximum deviation between neighboring sections is in segments 8
- 9, where the deviation jumps by 0.18 pixels. The v SD data from Insight 4G
indicates quite a few of these jumps, whereas PIVlab has a single large jump at
segment 22. In the u velocity direction, the data is not nearly as dependable for

70

either this program or Insight 4G, however PIVlab shows a very tight deviation
range.

It is interesting to note that the professional software shows a much wider
fluctuation between segments than this program’s or PIVlab. In fact, the variance
(SD2) in v from the combined segments is 1.17 pixels for Insight 4G, whereas
both PIVlab and this program display a variance of only 0.1 pixels. Up until
segment 17, the variance of all three programs is exactly 0.01 pixels, however
the measurements start to fluctuate much more in the higher velocity region in
Insight 4G.

Segment average velocities For each section in Fig. 4.15, the subset velocities
across each band are averaged for all 200 image pairs in the set. Fig. 4.16 shows
the v velocities, and Fig. 4.17 shows u.

In v, the profiles up to around segment 10 are very similar, showing a steady
rise in velocity. From this point, each program shows varying levels of slope de-
crease up until section 18, where all three velocities increase sharply. The profiles
of the data from Insight 4G and PIVlab more closely mimic one another than the
data from this program, however they differ by about 3

4 to 1 pixel in magnitude.
This program’s output follows along more closely with Insight 4G in magnitude
of v velocity, and the profiles increasingly overlap as the velocities become higher.

The velocity profiles in u from Fig. 4.17 do not show any discernible trends.
The horizontal flow for this program and PIVlab both average around zero pixels,
however Insight 4G reports that the flow in u throughout the vertical sections is
slightly rightward by about 2

3 of a pixel.

4.5.4 Horizontal plume profile

The previous data is used to show the comparability between the data across
the range of the profile from top to bottom, and does not use a typical PIV pro-
file comparison. In a standard PIV analysis, a cross-sectional profile at a certain
region will typically be used to show the flow characteristics. In Fig. 4.18, the
cross-section taken from Fig. 4.15 is shown, this time the data points are aver-
aged in the y-axis using five (5) vertical neighbors to smooth the data. The result
is a velocity profile across the band of the mist moving upward.

71

Figure 4.16: Velocity in the y-axis at segment locations. The velocity profiles are
similar however the magnitudes differ. The magnitude of this program closely
matches Insight 4G, however the profile does not match as well as PIVLab.

72

Figure 4.17: Velocity in the x-axis at segment locations. The velocities follow a
similar profile, yet like y-axis velocity, are different in magnitude.

Discussion of output Particle flows are clearly difficult to measure accurately
and consistently. The amount of data is a problem, because there are statistically
few data points available for comparison, due to the sporadic nature of corre-
lation success. Both PIVlab and the commercial Insight 4G disagree with each
other. The magnitude of velocities in both u and v differ greatly, although they
do see some similarities in profile. The data from this program falls somewhere
in the middle of the two, which is a promising outcome that shows that while the
algorithm does have deficiencies, it also has a good success rate in comparison to
established programs.

For further comparison and analysis, single image pair flow patterns from the
previous PIV analysis are captured and displayed in Appendix B. In Appendix
C, the output of this program is compared against PIVLab for two other patterns:
a digitally induced swirl pattern, and the flow extruding from a Karman vortex
sheet.

73

Figure 4.18: Cross-sectional flow profile at segment # 5 from Fig. 4.15. The plot
trends are similar, with differing magnitudes. This program agrees in velocity
magnitude with Insight 4G, however the trend of PIVLab is closer.

74

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

A software program combining digital image correlation and particle image ve-
locimetry has been developed that provides a suite of features and functionality
appropriate for an undergraduate teaching environment. The graphical user in-
terface (GUI) is developed such that an instructor or student user may use the
program without prior knowledge of its operation by providing on-screen guid-
ance and instruction. The program provides easy access to help files describing
the operation of PIV and DIC systems. The program runs quickly and efficiently,
and provides feedback to the user in the form of on-screen vector (PIV) and con-
tour (DIC) fields.

Experiments is performed at New Mexico Tech in both material deformation
and particle flow verify that the equations and algorithms used in the program
are accurate and produce reliable results. DIC results, measured against a com-
mercial program, are found to be accurate to within 1

8 of a pixel on average, up
until the point of high deformation and significant decorrelation of the speckle
pattern. PIV results, when compared against two programs, showed on average
that the velocities (excluding background regions) stayed within 1

2 a pixel of the
commercial program, and within 1 pixel of the free program. These results are
well within the range of accuracy for the target audience.

5.1 Future work

During development, compromises were made due to the programming experi-
ence of the author, as well as the extensive development inherent in developing a
sophisticated, algorithm based GUI computer program. The current state of the
program is satisfactory for the application, however as in any piece of software,
there is always room for improvement.

On-screen calibration Currently, the graphical user interface (GUI) provides
feedback on the location of the mouse pointer in the image. This gives the user a
tool for calibrating the data by hand. Ideally, there should be a tool that provides
a line-drawing function to calibrate the pixel dimensions in real-time.

75

PIV multi-pass The most accurate method of assessing particle movement via
phase transform is using a multi-pass approach. Currently, only a single pass
option is proffered.

Affine transformation of the subset The subset-based approach does not de-
form the kernel in the search, which causes lost correlation points and also does
not provide information about rotation in the sample. An interpolation-based
method should be offered on top of the existing method that provides this level
preciseness. The current method is a great way to perform a really fast examina-
tion, however it can struggle to operate efficiently in highly deformed areas.

Fourier calculation The fast Fourier transform programming library used is an
unoptimized approach. A more sophisticated Fourier library should be used to
increase the speed and effectiveness of the PIV search algorithm.

PIV algorithm improvements While the current PIV approach works sufficiently,
the baseline data comparison shows that there are still improvements to be made.
A more detailed study and implementation of published PIV algorithm research
is desired.

Improved analysis feedback The current software provides a basic feedback of
the results of each analysis. However there are many more results parameters
that could be detailed in a more effective manner, such as plots or charts.

The software developed for this project is ready to use in a classroom or lab
environment out of the box. It also has an extremely strong foundation, and is
primed for expansion and upgrade of the core components. Due to its uniqueness
in the current market, there is real opportunity for it to be used in its current form,
and upgrades to the algorithms and features can make it a tool to be used in many
more applications.

76

REFERENCES

A. Arnott, G. Schneider, K.P.Neitzke, and B. Sammler. Multi-window piv for
high-lift measurements. Instrumentation in Aerospace Simulation Facilities,
2003.

N. Athreyas, Z. Lai, J. Gupta, and D. Gupta. Analog signal processing solution
for image alignment. In Third International Conference on Advanced Information
Technologies and Applications. Newlins Inc, 2014.

H. A Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters. Digital image correla-
tion using newton-rhapson method of partial differential correction. Experi-
mental Mechanics, 29:261–267, 1989.

M. Debella-Gilo and A. Kaab. Sub-pixel precision image matching for mea-
suring surface displacements on mass movements using normalized cross-
correlation. Remote Sensing of Environment, 115:130–142, August 2011.

Hana Druckmullerova. Phase correlation: the mathematical background and appli-
cation to image registration. LAP Lambert academic publishing, 1st edition,
2011.

FFMPEG.org. FFMEG resources and download link, 2014. URL
https://ffmpeg.org/.

J.R. Higgins. Sampling Theory in Fourier and Signal Analysis. Oxford University
Press, Oxford, 1st edition, 1996.

TSI Inc. Insight 4g product website, 2017. URL http://www.tsi.com/products/.

Open Source Initiative. 2-clause bsd license, 2017. URL
https://opensource.org/licenses/bsd-license.php.

D. lecompte, A. Smits, and Sven Bossuyt. Quality assessment of speckle patterns
for digital image correlation, 2005.

D. Lecompte, S. Bossuyt, S. Cooremna, and H. Sol. Study and generation of opti-
mal speckle patterns for dic. society for experimental mechanics, 2007.

H. Lu and P.D. Cary. Deformation measurement by digital image correlation:
implementation of a second-order displacement gradient. Experimental Me-
chanics, 40:393–400, 2000.

Mathworks. Matlab home page. URL www.mathworks.com.

77

Matlab. Matlab fft implementation, 2017. URL
https://www.mathworks.com/help/matlab/ref/fft.html.

MIT. Fastest fourier transform in the west, 2017. URL http://www.fftw.org/.

H. Nobach and M. Honkanen. Two-dimensional gaussian regression for sub-
pixel displacement estimation in particle image velocimetry or particle po-
sition estimation in particle tracking velocimetry. Experiments in Fluids, 38:
511–515, 2005.

Openpiv. Open piv product information, 2017. URL http://www.openpiv.net.

U. Oslo. Matpiv homepage, 2017. URL
https://www.mn.uio.no/math/english/people/aca/jks/matpiv/.

B. Pan. Reliability-guided digital image correlation for image deformation mea-
surement. Applied Optics, 8(48):1536, March 2009.

B. Pan and K. Li. A fast digital image correlation method for deformation mea-
surement. Optics and Lasers in Engineering, 49:841–846, February 2011.

B. Pan, H. M. Xie, B. Q. Xu, L. Xiong, and G.D Liu. Performance of iterative
gradient-based algorithms with different intensity change models in digital
image correlation. Optics and Laser Technology, 44:1060–1067, November 2012.

Correlated Solutions. VIC-2D product website, 2017. URL
http://correlatedsolutions.com/vic-2d//.

A.M.R. Sousa, J. Xavier, and M. Vaz. Cross-correlation and differential technique
combination to determine displacement fields. Strain, 201:87–98, 2011.

W. Thielicke. The flapping flight of birds - analysis and application. PhD thesis, 2014.
URL http://irs.ub.rug.nl/ppn/382783069.

W. Thielicke and E.J Stamhuis. Pivlab - towards user-friendly, affordable and
accurate digital particle image velocimetry in matlab, 2014a.

W. Thielicke and E.J Stamhuis. Pivlab - time resolved digital parti-
cle image velocimetry tool for matlab (version: 1.41), 2014b. URL
http://dx.doi.org/10.6084/m9.figshare.1092508.

S. Yoneyama, A. Kitagawa, K. Tani, and H. Kikuta. Bridge deflection measure-
ment using digital image correlation. society for experimental mechanics,
2006.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li. A novel coarse-fine
search scheme for digital image correlation method. Measurement, 39:710–
718, March 2006.

Y. Zhou, B. Pan, and Y.Q. Chen. Large deformation measurement using digital
image correlation: a fully automated approach. Applied Optics, 51:7673–7678,
2012.

78

APPENDIX A

PROGRAM FEATURES AND FUNCTIONS

The software created for this project analyzes images to track the motion of par-
ticles in either fluid flow or solid materials, in order to develop a full-field strain
or velocity profile. This chapter overviews the user input screens in the GUI, the
options available to the user to set up the program or change parameters, and the
overall flow of the program operation.

A.1 Program overview

A Java software program can come in many different installation flavors. A pro-
gram may require only a simple double-click of the executable Java file (.jar ex-
tension), which contains all data and resources needed to operate, or else a more
intensive procedure where many files and libraries are unpacked an copied to
the installation folder is required. This program uses the former, where only a
single file is needed to operate the program. A still-frame capture feature to ex-
tract frames from video is included which requires a single add-on file from an
open-source third party.

Once the program is executed, the first interface that opens lets the user select
between PIV and DIC, and provides the path to the folder containing the images.

After these selections are made, the main screen for either DIC or PIV opens.
The user then selects the appropriate input parameters and commences the run.

When the evaluation is complete, more runs using different parameters may
be commenced, or the raw data exported and the program exited.

79

Figure A.1: Program entry point interface. The user selects between DIC or PIV,
indicates the image format and path, and also can enter the video fram extraction
tool.

A.2 Program entry and still frame extraction

Upon starting the program, the user may choose between entering the main pro-
gram with either DIC or PIV functionality, seen in Fig. A.1. The following image
formats are supported:

• JPEG

• PNG

• TIFF

• GIF

Images may be in the following 8-bit representations: black/white, grayscale,
or three-plane RGB (the program will automatically convert a three-plane image
to its grayscale counterpart). Images stored in raw format must first be processed
into their 8-bit representations for the program to have success.

A feature of the entry screen is an option to use an integrated utility to extract
still frames from video files. The tool requires the use of an open-source Java
library called FFMPEG, which is both provided with this software package and
can be downloaded from the FFMPEG website [FFMPEG.org, 2014].

The extraction interface is designed to be quick and easy to use, shown in
Fig. A.2. The user only needs to provide folder paths to the input video, output

80

Figure A.2: The image extraction utility provides a method to extract still frames
from a video, with the option to label as PIV image pairs.

81

folder, and FFMPEG location. There is also an option to prefix each frame with a
unique string identifier to differentiate between different tests and videos.

The extraction options are limited to keep the process streamlined. The user
may input a starting and ending time from the video to only extract a certain
segment of stills, and how many frames to remove per second. It is recommended
that the user know the input video frame rate per second (FPS), so that extra
images aren’t extracted. If the input rate is higher than the actual video FPS, extra
images will be extracted that are duplicates of others, as there are only a limited
amount of frames available. Also provided is the option to pull out the stills as
PIV pairs, which accomplishes two things: the first is the program will take out
two successive frames at the indicated extraction interval, and the second is that
the image pairs will be labeled with “a” and “b” suffixes.

A.3 Main program functions

A.3.1 Main interface

The main interface, shown in Fig. A.3, is called when the program entry screen
exits. The program can be run entirely from this interface, with secondary screens
available to adjust algorithm search variables, data export options, and runtime
environment. The program enters with the first image in the collection in the
view screen. The subset default size is 21 x 21 pixels, initially centered in the up-
per half of the image. The user may then resize the kernel by grabbing the small
square located at the bottom right side of the subset representation, so that the
subset envelops the desired speckle pattern size. The kernel can also be moved
around the screen so that the user can find the appropriate place to make the
measurement in the image.

A.3.2 Guidance viewport

The guidance viewport, located in the upper left-hand corner of the screen shown
in Fig. A.4 (a), helps the user step through the process so that the program may
be set up with no previous experience as quickly as possible. The view provides
step-by-step instructions to set up the appropriate kernel size and select a region
of interest.

Once the program starts running, the guidance viewport switches over to an
output of the analysis, shown in Fig. A.4 (b), so the user can keep track of the
progress of the program. Also provided are progress bars for image correlation
(top) and subpixel analysis (bottom).

82

Figure A.3: Main screen contains all features and interactions needed to run the
program, as shown upon first entry.

A.3.3 Preconfigure options

The preconfigure options, shown in Fig. A.5, provide several functions:

• The kernel size may be adjusted to an exact number manually using the
spinner widget.

• Zoom feature increases the image size in a separate screen and places the
adjustable kernel box on that image so that the user can more precisely iden-
tify the appropriate subset size.

• The advanced setup button takes the user to more adjustable features used
in the analysis

A.3.4 Run-time controls

Basic start, stop and exit functions are provided in the runtime controls box seen
in Fig. A.6. The buttons are be enabled and disabled at the appropriate times,
so that the user has only the option of pressing the correct buttons at the correct

83

(a) (b)

Figure A.4: The guidance viewport helps the user move through the proper steps
in configuring the program. (a) shows the pre-run viewport configuration, and
(b) shows post-run output.

times. Otherwise, unwanted results may occur when the program’s threads are
interrupted unsafely.

The “View Quick Analysis” button is enabled after the run is complete so
that the user may see view a report on the number of correlated points, poorly
correlated points, success rate, and average displacements, shown in Fig. A.7.
The benefit of having instantaneous access to this data provides the user with
insight into the correlation process. The user may decide to readjust the setup
parameters and re-run the analysis after viewing these results.

84

Figure A.5: The preconfigure controls provide the user with tools to set up the
analysis.

Figure A.6: Runtime controls provide the user with options for starting, stopping
and resetting the analysis, as well as viewing the quick analysis results when a
run has finished.

85

Figure A.7: Quick results provides the user with an instant view of the success
parameters of the correlation analysis.

A.3.5 Region of interest button bar

Located above the image on the main screen, the region of interest buttons pro-
vide the user with easy ways to define an ROI on the image. The user has two
options to draw an ROI:

1. By-hand selection of polygon points. The user may select a complicated
region of interest by clicked any area of the image and creating an multi-
vertice polygon.

2. Preconfigured shapes in the drop-down menu are provided to provide the
user with quick, easy, and perfect shapes:

(a) Square (holds the length and width equal).
(b) Rectangle
(c) Circle
(d) Ellipse

The shapes are resizable to any dimension on the image, and the user may also
drag the shape around the screen to the appropriate location.

The “Finalize Mask” and “Clip Area” buttons are enabled in the following
sequence:

86

1. Once the user has closed the by-hand polygon, or placed a preconfigured
shape on the screen, the ”Finalize Mask” button (as well as the “Start Over”
button) becomes enabled.

2. The program inquires from the user whether they would like to clip out an
area of the ROI. This is useful when analyzing samples such as the dogbone
in the sample image where a hole has been excised. The user then selects
another ROI using the tools provided to clip from the selection. After ROI
completion, the buttons are again disabled, and the Runtime Controls be-
come enabled.

A.3.6 Menu bar

The menu bar provides the following features as separate tabs:

• File Exits the program, while saving the current ROI configuration to disk
for later use.

• Project

1. Use last mask puts onscreen the last ROI mask the user configured in
the current session

2. Use previous session mask provides the same function as with using
the last mask, however will pull the last ROI used from disk. This is
useful if the user wants to quickly call up the same mask used in a
previous session.

3. Export to CSV calls a save file interface so the user can export the anal-
ysis to disk in comma separated value (CSV) format.

• View The View sub-menus provide the following functionality:

1. Show cursor coordinates provides the user with the x-y pixel location
in the image coordinates. This is helpful if the user is trying to pick a
specific portion of the image for the ROI.

2. Contour map axis Affords the user with the option of viewing the im-
age deformation in either the vertical or horizontal axis. The contour
plot is provided by the legend, measured in pixels.

3. Contour map output Contributes the option to show incremental de-
formation in the contour map, or total distortion. Choosing incremen-
tal distortion shows the deformation between each image, wheres total
deformation shows the output from the first image.

• Advanced In the Advanced menu the user may go to the Advanced Setup
interface (the same link as on the main screen in Preconfigure Options). The
resolution may also quickly be changed here between subpixel and integer-
pixel resolution.

87

• Help Provides a link to the main help screen which illustrates in depth how
to operate the program, as well as an explanation of the variables available
for the user to change.

A.3.7 Advanced setup

The Advanced interface consists of three tabs, outlined in the following section,
in which the user may change the operational input parameters of the algorithm.
Advanced setup is either accessed from the main interface, or through the menu
bar.

Preconfigure As seen in Fig. A.8, the user may adjust the following input vari-
ables:

1. Step size is defaulted at five pixels, which means the subset box will step
five pixels after each completed correlation. The user can change this from
1 up to a maximum of 100.

2. Kernel size can also be adjusted here, as well as on the main screen.

3. Minimum correlation coefficient determines the minimum threshold that
the algorithm decides is a proper correlation match.

4. Reference image update is defaulted to “off,” however the user may change
that here. Also the number of bad correlation points before the reference
image is updated is inputted.

Resolution Offers the option to toggle sub-pixel resolution analysis on and off.
When on, there are three sub-pixel methods to choose from, as discussed in Chap-
ter 2:

• Lagrange

• Gaussian

• Parabolic

88

Figure A.8: The preconfigure interface provides interaction with the correlation
algorithm input variables.

89

Figure A.9: The resolution tab provides options for sub-pixel resolution scanning
of the image. Subpixel may be turned off completely, or toggled between options.

90

Figure A.10: The Optimize tab allows the user to select the number of cores
(threads) among which to split the image analysis.

Optimize In this interface, the number of processor cores the user would like
to utilize in the correlation analysis is indicated, seen in Fig. A.10. The default
is set to the maximum available cores, adjustable down to one core. Technically
“cores” is a misnomer, because the amount of processors in use does not change.
What this function does is tell the algorithm how many threads to split the image
analysis amongst. If there are four (4) cores present, the algorithm will take four
sections of image and work on them at once in different threads. If that number
is changed to three, the image will be analyzed in three concurrent sections, and
so on down to a single thread.

91

APPENDIX B

SINGLE IMAGE PAIR PIV ANALYSIS

The following images display the velocity vector fields for four arbitrary image
pairs captured at various intervals in the PIV validation experiment from Chap-
ter 4. Noise in the background pixel regions of the images has been reduced for
all data sets using a vector rejection filter of magnitude [-10 0] in the vertical di-
rection, as the flow is dominated by upward movement (negative y-axis in image
coordinates), with a maximum average of six pixels/image pair in the highest-
velocity region at the exit of the particle vent. Horizontal noise is reduced using
a vector rejection filter of magnitude [-5 5].

B.1 Vector field comparison

The output of this program and Insight 4G show strong resemblance, with a more
dispersed and erratic vector profile than output from PIVLab through the high-
flow velocity cone. Overall, the program outputs are similar, showing higher
velocities at the jet exit and a vortex region in the x,y ≈ (650, 1020) region of the
plume.

B.2 Cross-sectional comparison

To quantify instantaneous velocity profiles of each image pair, the velocities across
the plume at y = [1160 1200], x = [430 930] are used (smoothing the data by aver-
aging three subsets in the vertical direction for each x component). As seen from
the vector plots in Figs. B.1- B.12, there appears to be high variation in the data
in each image pair. The data in Figs. B.13 and B.14 confirms this. The moisture
particulate flow used in this experiment is highly variable, and also suffers from a
low diversity in light intensities and particle sizes. These factors cause the phase
correlation process to produce varying results when viewed instantaneously, as
the programs used here all feature unique implementations.

92

Figure B.1: Vertical flow analysis for this program, image pair # 1/200.

93

Figure B.2: Vertical flow analysis for Insight 4G, image pair # 1/200.

94

Figure B.3: Vertical flow analysis for PIVLab, image pair # 1/200.

95

Figure B.4: Vertical flow analysis for this program, image pair # 51/200.

96

Figure B.5: Vertical flow analysis for Insight 4G, image pair # 51/200.

97

Figure B.6: Vertical flow analysis for PIVLab, image pair # 51/200.

98

Figure B.7: Vertical flow analysis for this program, image pair # 101/200.

99

Figure B.8: Vertical flow analysis for Insight 4G, image pair # 101/200.

100

Figure B.9: Vertical flow analysis for PIVLab, image pair # 101/200.

101

Figure B.10: Vertical flow analysis for this program, image pair # 151/200.

102

Figure B.11: Vertical flow analysis for Insight 4G, image pair # 151/200.

103

Figure B.12: Vertical flow analysis for PIVLab, image pair # 151/200.

104

(a)

(b)

Figure B.13: Instantaneous cross-sectional flow at y = 1200, for (a) image pair # 1,
and (b) image pair # 51.

105

(a)

(b)

Figure B.14: Instantaneous cross-sectional flow at y = 1200, for (a) image pair #
101, and (b) image pair # 151.

106

APPENDIX C

ADDITIONAL PIV IMAGE MOTION COMPARISONS

To provide additional confirmation of the success of the PIV search in this pro-
gram, images from Thielicke and Stamhuis [2014b], are used as inputs.

C.1 Rankine vortex pattern

In Fig. C.1, a noisy background is digitally altered to produce a dual-foci vortex
pair using a Rankine vortex simulator [Thielicke and Stamhuis, 2014a]. For the
analysis, a phase correlation window of 64 is used, with a step size of 15. The
output of this program compares well to the output from PIVLab, with the only
notable differences around the edges, however this is only due to the graphical
rendering of the vectors. The analysis shows that in tight regions with high rota-
tional components, this program is still capable of resolving movement.

C.2 Karman vortex sheet

In Figures C.2 and C.3, two image pairs of a Karman vortex sheet are analyzed
(using this program and PIVLab), with a correlation window of 64 and a step size
of 15. The results are similar, with variations in vector rendering again the only
noticeable differences. Vectors are very small (or missing) in the area directly
behind the vortex sheet, likely due to the low-velocity flow pattern typical of this
region in a Karman vortex plane.

107

(a)

(b)

Figure C.1: Comparison analysis using PIVLab (a) and this program (b) using a
digitally induced swirl pattern.

108

(a)

(b)

Figure C.2: Comparison analysis using PIVLab (a) and this program (b) on a
Karman vortex sheet (first image pair).

109

(a)

(b)

Figure C.3: Comparison analysis using PIVLab (a) and this program (b) on a
Karman vortex sheet (second image pair).

110

