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Abstract. A quasi-one-dimensional steady-state Poisson-Nernst-Planck model
with Bikerman’s local hard-sphere potential for ionic flows of two oppositely

charged ion species through a membrane channel is analyzed. Of particular

interest is the qualitative properties of ionic flows in terms of individual fluxes
without the assumption of electroneutrality conditions, which is more realistic

to study ionic flow properties of interest. This is the novelty of this work. Our

result shows that i) boundary concentrations and relative size of ion species play
critical roles in characterizing ion size effects on individual fluxes; ii) the first or-

der approximation Jk1 = DkJk1 in ion volume of individual fluxes Jk = DkJk
is linear in boundary potential, furthermore, the signs of ∂V Jk1 and ∂2

V λJk1,
which play key roles in characterizing ion size effects on ionic flows can be both
negative depending further on boundary concentrations while they are always

positive and independent of boundary concentrations under electroneutrality
conditions (see Corollaries 3.2-3.3, Theorems 3.4-3.5 and Proposition 3.7). Nu-

merical simulations are performed to identify some critical potentials defined

in (2). We believe our results will provide useful insights for numerical and
even experimental studies of ionic flows through membrane channels.

1. Introduction. One of the fundamental concerns of physiology is the function
of ion channels. Ion channels are approximately cylindrical, hollow proteins with a
hole down their middle that provides a controllable path for electro-diffusion of ions
(mainly Na+, K+, Ca++ and Cl−) through biological membranes, establishing com-
munications among cells and the external environment. In this way, ion channels
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control a wide range of biological functions. Ionic flows are governed by fundamen-
tal physical laws of electrodiffusion which relate rates of quantities of interest. The
macroscopic properties of ionic flows through ion channels rely further on external
driving forces, namely, boundary potentials and concentrations of ion species in-
volved; and specific structural characteristics, more precisely, the shape of its pore
and the distribution of permanent charge along its interior wall. Two most relevant
biological properties of a channel are permeation and selectivity, both of which are
characterized by the current-voltage (I-V) relations measured experimentally under
different ionic conditions.

Taking the structural characteristics into consideration, the basic continuum
model for ionic flows is the Poisson-Nernst-Planck (PNP) system, which treats the
aqueous medium (within which ions are migrating) as a dielectric continuum (see
[3, 7, 12, 13, 15, 16, 17, 18, 19, 20, 25, 27, 28, 29, 37, 38, 42, 59], etc.). Under some
reasonable conditions, the PNP system can be derived from more fundamental mod-
els such as the Langevin-Poisson system (see, for example, [14, 38, 55, 53, 59, 65])
or the Maxwell-Boltzmann equations (see, for example, [2, 37, 38, 59]), and from
an energy variational analysis (see [34, 35, 36, 45, 67, 70]).

The simplest PNP model is the classical PNP (cPNP) system that contains only
the ideal component of electrochemical potential. The cPNP system treats ions
essentially as point-charges, and neglects ion size effects. It has been simulated
(see, e.g., [6, 12, 13, 15, 25, 33]) and analyzed (see, e.g., [1, 4, 5, 9, 21, 22, 26,
40, 46, 47, 44, 51, 58, 63, 64, 66, 69]) to a great extent. However, a major weak
point of the cPNP model is that ions are treated as point of charges, which is only
reasonable in the extremely dilute setting. To study ion size effects on ionic flows, in
particular, for ion species with the same valences but different ion sizes, for example,
Na+ (sodium) and K+ (potassium), one has to consider excess (beyond the ideal)
component in the electrochemical potential. One way is to include uncharged hard-
sphere (HS) potentials to partially account for ion size effects. Physically, this means
that each ion is approximated as a hard-sphere with its charges at the center of the
sphere. Both local and nonlocal models for hard-sphere potentials were introduced
for this purpose. Nonlocal models give the hard-sphere potentials as functionals
of ion concentrations while local models depend pointwise on ion concentrations.
An early local model for hard-sphere potentials was proposed by Bikerman ([8]),
which is simple but unfortunately not ion specific (i.e., the hard-sphere potential
is the same for different ion species). The Boubĺık-Mansoori-Carnahan-Starling-
Leland local model is ion specific and has been shown to be accurate ([61, 62],
etc.). Obviously, local models have the advantage of simplicity relative to nonlocal
ones. The PNP models with ion sizes have been investigated computationally for
ion channels and have shown great success (see [27, 28, 29, 31, 32, 34, 35, 36, 42, 54,
68, 70], etc.). Existence and uniqueness of minimizers and saddle points of the free-
energy equilibrium formulation with ionic interaction have also been mathematically
analyzed (see, for example, [23], [45]).

Recently, extending the approach in [21, 47], the authors of [41] studied a quasi-
one-dimensional version of a steady-state PNP type system which involves two
oppositely charged ions with zero permanent charge and a local model for the hard-
sphere potential to account for finite ion size effects. In particular, an approximation
of the I-V relation was derived by considering the ion sizes to be small parameters,
more precisely, the authors treat ε and ν = ν1 as small parameters and derive
approximations for the individual flux Jk and the current I expanded in ν with
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λ = ν2/ν and fixed boundary concentrations Lk and Rk as follows (will be further
discussed in Section 2):

Jk =DkJk = DkJk0(V ; ε) +DkJk1(V ;λ, ε)ν + o(ν),

I(V ; ε, d) =z1D1J1 + z2D2J2 = I0(V ; ε) + I1(V ;λ, ε)ν + o(ν).
(1)

This is crucial to further study the qualitative properties of ionic flows. It turns
out that, for k = 1, 2, both Jk1(V ;λ, ε) and I1(V ;λ, ε) are linear functions in V
(see (12) in Section 2.2). In particular, six critical potentials Vkc, V

c
k , Vc, V

c are
defined by

Jk1(Vkc;λ, 0) =0, I1(Vc;λ, 0) = 0,
d

dλ
Jk1(V ck ;λ, 0) = 0,

d

dλ
I1(V c;λ, 0) = 0.

(2)

The significance of the six critical potentials is apparent from their definitions
(See Theorems 4.8, 4.9, 4.18 and 4.19 in [41] for details), and from (1), the sign
of ∂V Jk1 (resp. ∂V λJk1, ∂V I1 and ∂V λI,) plays a key role in characterizing the
effect from ion sizes. Furthermore, the signs of those terms depend sensitively on
multiple physical parameters, such as the boundary potentials and concentrations,
ion valences, diffusion coefficients and ion sizes. The characterization of the distinct
effects of the nonlinear interplay between these physical parameters will provide
detailed information for one to better understand the flow property of interest.

With the assumption of electroneutrality conditions z1L1 = −z2L2 = L and
z1R1 = −z2R2 = R, and L 6= R, the authors in [41] established that

∂V I1(V ;λ, 0) > 0 and ∂2V λI1(V ;λ, 0) > 0.

Furthermore, the authors in [41] also provided a very special case showing that, for
z1 = −z2 = 1 and fixed L2 > 0, ∂V I1(V ;λ, 0) < 0 if either R2 ≥ R1 ≥ L1 > 0 and√
L1L2 >

√
R1R2, or R1 ≥ L1, R2 < R1 and

√
L1L2 > µ∗

√
R1R2, where µ∗ > 1 is

a constant.
Two interesting questions arising immediately are i) in general, when ∂V I1(V ;λ,

0) and ∂V λI1(V ;λ, 0) are negative? ii) Can the total flux be studied in terms of the
individual fluxes Jk = DkJk?

To answer these questions, in this work, we study a quasi-one-dimensional PNP
model with the same setting as that in [41] except for the assumption of electroneu-
trality conditions. Of particular interest is the sign study of ∂V J11(V ;λ, 0) and
∂V λJ11(V ;λ, 0) in terms of the individual flux. We take particular advantage of
the work in [41] to provide a detailed explanation of how these physical parame-
ters interact to produce a wide spectrum of behaviors for ionic flows. Our rigorous
analysis (see Theorems 3.2-3.3, Corollaries 3.4-3.5 and Proposition 3.7) shows that

(i) boundary concentrations and relative size of ion species play critical roles in
characterizing ion size effects on individual fluxes;

(ii) the first order approximation Jk1 = DkJk1 in ion volume of individual fluxes
Jk = DkJk is linear in boundary potential, furthermore, the signs of ∂V Jk1
and ∂2V λJk1 which play key roles in characterizing ion size effects on ionic
flows can be both negative depending further on boundary concentrations
while they are always positive and independent of boundary concentrations
under electroneutrality conditions.

This is our main contribution in this work. To the best of the authors’ knowledge,
this work is the first analysis on roles that ion size plays in individual fluxes without
electroneutrality conditions.
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We emphasize that our results, for the relatively simple setting and assumptions
of our model, are rigorous. We believe these results will provide useful insights for
numerical and even experimental studies of ionic flows through membrane channels.
It should be pointed out that the quasi-one-dimensional PNP model and the local
hard-sphere model (see (7) below) adopted in [41] and in this paper are rather
simple. Aside the trivial fact that they will miss the three-dimensional features of
the problem, a major weakness is the missing of the excess electrostatic component
in the excess potentials. Important phenomena such as charge inversion and layering
may not be detected by this simple model.

The rest of the paper is organized as follows. In Section 2, we describe the
quasi-one-dimensional PNP model of ion flows, a local model for hard-sphere (HS)
potentials, the formulation of the boundary value problem of the singularly per-
turbed PNP-HS system, and the basic assumptions. Some results from [48] are
recalled, and these will be the starting point of our study. In Section 3, without
the assumption of electroneutrality conditions, we study the sign of ∂V Jk1 (resp.
∂V λJk1, ∂V I1 and ∂V λI), which plays a key role in characterizing the effect from
ion sizes. It also turns out that the signs of those terms depend sensitively on
multiple physical parameters such as boundary concentrations, ion valence and ion
sizes. Partial orders of critical potentials identified in (2) are provided. Numerical
simulations are performed to system (9)-(10) to identify some critical potentials
defined in (2). The paper ends with a concluding remark provided in Section 4.

2. Models and some previous results. In this section, we briefly recall the
model of Poisson-Nernst-Planck (PNP) systems, and some main results obtained in
[41] related to ion size effects on ionic flows.

2.1. A quasi-one-dimensional PNP system. We assume the channel is narrow
so that it can be effectively viewed as a one-dimensional channel that connects the
interior and the exterior of the channel. A quasi-one-dimensional steady-state PNP
model for ion flows of n ion species though a single channel is (see [50, 52])

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e

( n∑
j=1

zjCj(X) +Q(X)

)
,

dJi
dX

= 0, −Ji =
1

kBT
Di(X)A(X)Ci(X)

dµi
dX

, i = 1, 2, · · · , n,

(3)

where X ∈ [0, l], e is the elementary charge, kB is the Boltzmann constant, T is the
absolute temperature; Φ is the electric potential, Q(X) is the permanent charge of
the channel, εr(X) is the relative dielectric coefficient, ε0 is the vacuum permittivity;
A(X) is the area of the cross-section of the channel over the point X ∈ [0, l]; for the
ith ion species, Ci is the concentration (number of ith ions per volume), zi is the
valence (number of charges per particle) that is positive for cations and negative
for anions, µi is the electrochemical potential, Ji is the flux density, and Di(X) is
the diffusion coefficient.

For system (3), we impose the following boundary conditions (see, [21] for justi-
fication), for k = 1, 2, · · · , n,

Φ(0) = V̄ , Ci(0) = Li > 0; Φ(l) = 0, Ci(l) = Ri > 0. (4)

For ion channels, an important characteristic is the so-called I-V relations (current-
voltage relations). For a solution of the steady-state boundary value problem (3)-(4),
the rate of flow of charge through a cross-section or current I is
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I =

n∑
j=1

zjeJj . (5)

For fixed boundary concentrations Li’s andRi’s, Jj ’s depend on V̄ only and formula
(5) provides a relation of the current I on the voltage V̄ . This relation is the I-V
relation.

2.1.1. Excess potential and a local hard sphere model. The electrochemical potential
µi(X) for the ith ion species consists of the ideal component µidi (X) and the excess
component µexi (X):

µi(X) = µidi (X) + µexi (X)

where

µidi (X) = zieΦ(X) + kBT ln
Ci(X)

C0
(6)

with some characteristic number density C0. The classical PNP system takes into
consideration of the ideal component µidi (X) only. This component reflects the
collision between ion particles and the water molecules. It has been accepted that
the classical PNP system is a reasonable model in, for example, the dilute case
under which the ion particles can be treated as point particles and the ion-to-ion
interaction can be more or less ignored. The excess chemical potential µexi (X)
accounts for the finite size effect of charges (see, e.g., [60, 61]).

In this paper, we will take Bikerman’s local hard-sphere model for µexi (X)

µBiki (X) = −kBT ln

(
1−

n∑
j=1

νjCj(X)

)
, (7)

where νj is the volume of a single jth ion species. We would like to point out that
since Cj is the number density of ith ion species, it follows that

∑n
j=1 νjCj < 1. In

this sense, Bikerman’s LHS takes into consideration of nonzero ion sizes, however,
it is not ion specific, more precisely, one has µBik1 (X) = µBik2 (X) = · · · = µBikn (X)
in our PNP model.

2.1.2. The steady-state boundary value problem and assumptions. The main goal of
this paper is to examine the qualitative properties of the ion size effect on ionic flows
via the steady-state PNP system (3)-(4). For definiteness, we will take essentially
the same setting as that in [39], that is,

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.
(A2). We assume the permanent charge Q(X) to be zero.
(A3). For the electrochemical potential µi, in addition to the ideal component

µidi (X) defined in (6), we also include a local hard-sphere potential (7) to
approximate the excess component µexi (X).

(A4). The relative dielectric coefficient and the diffusion coefficient are constants,
that is, εr(X) = εr and Di(X) = Di.

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling
following ([26]). Set C0 = max{Li,Ri : i = 1, 2} and let

ε2 =
εrε0kBT

e2l2C0
, x =

X

l
, h(x) =

A(X)

l2
, Di = lC0Di;

φ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji
Di

;

(8)
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V =
kBT

e
V̄ , Li =

Li
C0

; Ri =
Ri
C0
.

Using expressions (6) for the ideal component µidi (X) and (7) for the excess
chemical potential µexi (X), the boundary value problem (3)-(4) becomes

ε2
d2

dx2
φ = −(z1c1 + z2c2),

dJi
dx

= 0,

dc1
dx

= −(z1 − z1ν1c1 − z2ν2c2)c1
dφ

dx
−
(
J1 − (ν1J1 + ν2J2)c1

)
,

dc2
dx

= −(z2 − z1ν1c1 − z2ν2c2)c2
dφ

dx
−
(
J2 − (ν1J1 + ν2J2)c2

)
,

(9)

with boundary conditions, for i = 1, 2,

φ(0) = V, ci(0) = Li; φ(1) = 0, ci(1) = Ri. (10)

To end this section, we would like to point out that

(i) for typical ion channel problems, physical range for the parameter ε is 10−2−
10−6, which is smaller for crowded ionic mixtures (large C0) and larger for
less crowded ionic mixtures. It is further assumed that the dimensionless
parameters νi’s are small; typical physical range for νi = viC0 is 10−2 − 10−4

with 10−2 corresponding to crowded ionic mixtures, say, C0 ∼ 10 M (molar)
and with 10−4 to less crowded ionic mixtures, say, C0 ∼ 100 mM..

(ii) we take h(x) = 1 over the whole interval [0, 1] in our analysis. This is because
for ion channels with zero permanent charge, it turns out that the variable
h(x) contributes through an average, explicitly through the factor 1∫ 1

0
h−1(x)dx

(for example, the individual flux will be DkJk∫ 1
0
h−1(x)dx

, see [48]), which does not

affect our analysis of the qualitative properties of the ionic flows.

2.2. Some previous results. We now recall some results obtained in [41], which
are crucial for our study and which will be frequently used. In [41], the authors
treat ε and ν = ν1 as small parameters and derive approximations for the current
I and the individual flux Jk expanded in ν with λ = ν2/ν for k = 1, 2,

I(V ; ε, ν) =z1J1 + z2J2 = I0(V ; ε) + I1(V ;λ, ε)ν + o(ν),

Jk(V ; ε, ν) =DkJk0(V ; ε) +DkJk1(V ;λ, ε)ν + o(ν),
(11)

where Jk = DkJk, Jk0 is the zeroth order expansion in ν, Jk1 is the first order
expansion in ν, and

J10(V ; 0) =cL10 − cR10 +
z1(cL10 − cR10)(ln(L1R2)− ln(L2R1))

(z1 − z2)(ln cL10 − ln cR10)

+
z1(cL10 − cR10)

(ln cL10 − ln cR10)

e

kBT
V,

J20(V ; 0) =− z1(cL10 − cR10)

z2
− z1(cL10 − cR10)(ln(L1R2)− ln(L2R1))

(z1 − z2)(ln cL10 − ln cR10)

− z1(cL10 − cR10)

(ln cL10 − ln cR10)

e

kBT
V,
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J11(V ;λ, 0) =α10(L1, L2, R1, R2, λ) + α11(L1, L2, R1, R2, λ)
e

kBT
V,

J21(V ;λ, 0) =β10(L1, L2, R1, R2, λ) + β11(L1, L2, R1, R2, λ)
e

kBT
V.

(12)

In particular,

I1(V ;λ, 0) =z1D1α10 + z2D2β10 + (z1D1α11 + z2D2β11)
e

kBT
V. (13)

Here,

α10 =
ln L1R2

L2R1
+ (z1 − z2)(ln cL10 − ln cR10)

(z1 − z2)(ln cL10 − ln cR10)

[
(z1λ− z2)

(
(cL10)2 − (cR10)2

)
2z2

+ cL10(L1 + λL2)− cR10(R1 + λR2)

]
+
z1(cL10 − cR10)(R1 − L1 + λ(R2 − L2)) ln L1R2

L2R1

(z1 − z2)
(
ln cL10 − ln cR10

)2 ,

α11 =
z1c

L
10(L1 + λL2)− z1cR10(R1 + λR2)

ln cL10 − ln cR10
+
z1(z1λ− z2)

(
(cL10)2 − (cR10)2

)
2z2
(
ln cL10 − ln cR10

)
+
z1(cL10 − cR10)(R1 − L1 + λ(R2 − L2))(

ln cL10 − ln cR10
)2 ,

β10 =−
z2 ln L1R2

L2R1
+ z1(z1 − z2)(ln cL10 − ln cR10)

z2(z1 − z2)(ln cL10 − ln cR10)

[
(z1λ− z2)

(
(cL10)2 − (cR10)2

)
2z2

+ cL10(L1 + λL2)− cR10(R1 + λR2)

]
−
z1(cL10 − cR10)(R1 − L1 + λ(R2 − L2)) ln L1R2

L2R1

(z1 − z2)
(
ln cL10 − ln cR10

)2 ,

β11 =− α11,

(14)

where cL10 and cL20 are landing points given by

z1c
L
10 =− z2cL20 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

z1c
R
10 =− z2cR20 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 .

Under our setups, the critical potentials Vkc, V
c
k , Vc, and V c identified in (2) are

given explicitly by

V1c =− kBT

e

α10

α11
, V c1 = −kBT

e

α10,λ

α11,λ
, V2c =

kBT

e

β10
α11

, V c2 =
kBT

e

β10,λ
α11,λ

,

Vc =− kBT

e

z1D1α10 + z2D2β10
z1D1α11 + z2D2β11

, V c = −kBT
e

z1D1α10,λ + z2D2β10,λ
z1D1α11,λ + z2D2β11,λ

.

(15)

From (14) and (15), we observed that

Lemma 2.1. Viewing Vkc, V
c
k , Vc and V c as functions of L1, R1 with −z2L2 =

σ(z1L1) and −z2R2 = σ(z1R1) for k = 1, 2, one has Vkc, V
c
k , Vc and V c are

homogeneous of degree zero in (L1, R1), that is, for any s > 0,

Vkc(sL1, sR1) = Vkc(L1, R1), V ck (sL1, sR1) = V ck (L1, R1),
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Vc(sL1, sR1) = Vc(L1, R1), and V c(sL1, sR1) = V c(L1, R1).

Note that, from (13) and (14), one has

∂V I1(V ;λ, 0) =
e

kBT
(z1D1 − z2D2)∂V J11(V ;λ, 0)

=
e

kBT
(z1D1 − z2D2)α11(V ;λ, 0),

∂2V λI1(V ;λ, 0) =
e

kBT
(z1D1 − z2D2)∂2V λJ11(V ;λ, 0)

=
e

kBT
(z1D1 − z2D2)

∂α11

∂λ
(V ;λ, 0).

(16)

To better answer the question imposed in the introduction, the first step is to
study the the signs of ∂V J11(V ;λ, 0) = e

kBT
α11(V ;λ, 0) and ∂2V λJ11(V ;λ, 0) =

e
kBT

∂α11

∂λ (V ;λ, 0) in terms of the individual flux without assuming the electroneu-
trality conditions.

3. Qualitative properties of ionic flows without electroneutrality condi-
tions. In this section, we would like to study the ion size effects on ionic flows
without electroneutrality conditions. More precisely, we would like to study the
sign of ∂V Jk1 (resp. ∂2V λJk1, ∂V I1 and ∂V λI1), which plays a key role in character-
izing the effects on ionic flows from ion sizes.

Due to the difficulty in analysis, we will consider a relatively simple but more
general (compared to the study in [41]) case with

−z2L2 = σ(z1L1) and − z2R2 = σ(z1R1) (17)

for some positive constants σ, which is not equal to 1 (σ = 1 implies electroneutrality
conditions on boundary concentrations). Under this assumption, one has cL10 =

σ
z1

z1−z2 L1 and cR10 = σ
z1

z1−z2R1. It follows form (12) and (14) that

∂V J11(V ;σ;λ, 0) =
e

kBT
α11 =

e

kBT

z1σ
z1

z1−z2 (L2
1 −R2

1)

lnL1 − lnR1
f(σ),

∂V λJ11(V ;σ;λ, 0) =
e

kBT
α11,λ = − e

kBT

z21
z2

σ
2z1

z1−z2 (L2
1 −R2

1)

lnL1 − lnR1
f̃(σ),

(18)

where

f(σ) =λ
z1
−z2

(1−m)σ +
z1λ− z2

2z2
σ

z1
z1−z2 + 1−m,

f̃(σ) =(1−m)σ
−z2

z1−z2 − 1

2
,

(19)

where

m =
1

L1 +R1

L1 −R1

lnL1 − lnR1
(20)

To get started, we establish the following result, which will be used frequently in
our analysis.

Lemma 3.1. For L1 6= R1, one has m = 1
L1+R1

L1−R1

lnL1−lnR1
∈ (0, 12 ). As L1 → R1,

m→ 1
2 .
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Proof. For convenience, for L1 6= R1, we define m = m(L1, R1) = 1
L1+R1

L1−R1

lnL1−lnR1

Let x = L1

R1
, we have m(x) = x−1

(x+1) ln x , x > 0. Direct calculations give

m′(x) =
n(x)

[(x+ 1) lnx]2
, where n(x) = 2 lnx− x+

1

x
.

For n(x), one has n′(x) = − (x−1)2
x2 ≤ 0; and n′′(x) = 2(1−x)

x3 . It follows that

n′(1) = 0, n′′(1) = 0, n′′(x) > 0⇐⇒ 0 < x < 1; and n′′(x) < 0⇐⇒ x > 1.

Hence, m′(x) > 0 if 0 < x < 1; and m′(x) < 0 if x > 1. Note that m(x) → 0 as
x→ 0; and m(x)→ 0 as x→∞. Therefore, m(x) has its global maximum at x = 1
(that is, as L1 → R1), which is 1

2 . This completes the proof.

3.1. Signs of ∂V Jk1 and ∂2V λJk1. It is clear from (12) that the sign of ∂V Jk1 (resp.
∂2V λJk1, k = 1, 2 plays an important role in characterizing the size effects on ionic
flows. It is worth analyzing it in details. Note that, from (12) and (14), one has

∂V J11 = −∂V J21 and ∂2V λJ11 = −∂2V λJ21.

Therefore, we will mainly focus on the study of the individual flux J11. We first
consider the sign of ∂V J11.

Corollary 3.2. Assume L1 6= R1. Then, there exist λ∗1 and λ∗2, two distinct real

roots of h(λ) = z1
z2

lnλ+
(

1− z1
z2

)
ln(z1λ− z2)−

(
1− z1

z2

)
ln 2(z1− z2) with λ∗1 < λ∗2

such that

(I) for either 0 < λ < λ∗1 or λ > λ∗2, there exist two distinct real roots of f(σ) = 0,
denoted by σ1∗ and σ2∗ with σ1∗ < σc < σ2∗ such that ∂V J11(V ;σ;λ, 0) > 0
if either 0 < σ < σ1∗ or σ > σ2∗; and ∂V J11(V ;σ;λ, 0) < 0 if σ1∗ < σ < σ2∗,

where σc =
(

2(z1−z2)λ(1−m)
z1λ−z2

) z1−z2
z2

is the unique critical point of f(σ).

(II) for λ∗1 < λ < λ∗2, there exists m∗ ∈ (0, 12 ) such that
(II-1) with 0 < m < m∗, ∂V J11(V ;σ;λ, 0) > 0 for σ > 0;
(II-2) with m∗ < m < 1

2 , ∂V J11(V ;σ;λ, 0) > 0 if either 0 < σ < σ∗1 or
σ > σ∗2 and ∂V J11(V ;σ;λ, 0) < 0 if σ∗1 < σ < σ∗2 , where σ∗1 and σ∗2 are
two distinct real roots of f(σ) = 0.

Proof. Note that the sign of ∂V J11(V ;σ;λ, 0) is determined by the sign of f(σ)
since

e

kBT
> 0 and σ

z1
z1−z2

L2
1 −R2

1

lnL1 − lnR1
> 0 for σ > 0 and L1 6= R1 (even as L1 → R1).

From equation (19), direct calculations give

f ′(σ) =
z1λ

−z2
(1− z1m) +

z21λ

2z2(z1 − z2)
σ

z2
z1−z2 and f ′′(σ) =

z1(z1λ− z2)

2(z1 − z2)2
σ

2z2−z1
z1−z2 .

It is easy to see that f ′′(σ) > 0 for σ > 0, which implies that f(σ) is concave up for
σ > 0. It follows that f(σ) has a global minimum at some point σc, which is the

unique solution of f ′(σ) = 0. It is given by σc =
(

2(z1−z2)λ(1−z1m)
z1λ−z2

) z1−z2
z2

.
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Note that f(0+) = 1−m > 0 since from Lemma 3.1, 0 < m < 1
2 for L1 6= R1. It

is clear that f(σ) obtains its global minimum at σ = σc, which is given by

f(σc) =− z1λ− z2
2(z1 − z2)

(
2(z1 − z2)λ(1−m)

z1λ− z2

) z1
z2

+ 1−m.

We now consider the sign of f(σc). For convenience, we redefine the quantity f(σc)
as a function of m, denoted by g(m). Note that z1 ≥ 1 and z2 ≤ −1. Careful
calculations give

g′(m) = −1 +
z1
z2

(
z1λ− z2

2(z1 − z2)

)1− z1
z2

λ
z1
z2 (1−m)

z1
z2
−1 < 0, 0 < m <

1

2
.

Note also that

g(0+) = 1−
(
z1λ− z2

2(z1 − z2)

)1− z1
z2

λ
z1
z2 . (21)

One can easily check that g(0+) > 0 if λ∗1 < λ < λ∗2, and g(0+) < 0 if either
0 < λ < λ∗1 or λ > λ∗2 where λ∗1 and λ∗2 are two distinct real roots of

h(λ) =
z1
z2

lnλ+

(
1− z1

z2

)
ln(z1λ− z2)−

(
1− z1

z2

)
ln 2(z1 − z2). (22)

We next study the sign of g(m) for two cases.

Case I. g(0+) < 0. It is easy to check that g(m) < 0 for 0 < m < 1
2 since g(m)

is decreasing for 0 < m < 1
2 . This implies f(σc) < 0. Therefore, there exist two

distinct real roots of f(σ) = 0, denoted by σ1∗ and σ2∗ with σ1∗ < σ2∗ such that
f(σ) > 0 if 0 < σ < σ1∗ or σ > σ2∗, and f(σ) < 0 if σ1∗ < σ < σ2∗. It follows that,
with 0 < λ < λ∗, ∂V J11(V ;σ;λ, 0) < 0 for σ1∗ < σ < σ2∗, and ∂V J11(V ;σ;λ, 0) > 0
for 0 < σ < σ1∗ or σ > σ2∗.

Case II. g(0+) > 0. Note that

g(
1

2
−) =

1

2

(
1−

(
z1λ− z2
z1 − z2

)1− z1
z2

λ
z1
z2

)
.

One has g( 1
2−) < 0 if and only if k(λ) > 0, where

k(λ) =
z1
z2

lnλ+

(
1− z1

z2

)
ln(z1λ− z2)−

(
1− z1

z2

)
ln(z1 − z2).

Direct calculations give

k′(λ) =
z1(λ− 1)

λ(z1λ− z2)
, for λ > 0.

Hence, k′(λ) > 0 if λ > 1, k′(λ) < 0 if 0 < λ < 1. Furthermore, λ = 1 is the unique
critical point of k(λ), where k(λ) has its global minimum. It is given by k(1) = 0.
This implies k(λ) ≥ 0 for λ > 0. It follows that g( 1

2−) < 0. Therefore, we have

g(0+) > 0 and g( 1
2−) < 0 for λ∗1 < λ < λ∗2, and there exists m∗ ∈ (0, 12 ) such that

g(m) > 0 if 0 < m < m∗, and g(m) < 0 if m∗ < m < 1
2 . That is,

f(σc) > 0 if 0 < m < m∗, and f(σc) < 0 if m∗ < m <
1

2
.
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Hence, f(σ) > 0 if 0 < m < m∗ for σ > 0; and if m∗ < m < 1
2 , there exist

two distinct real roots of f(σ) = 0 denoted by σ∗1 and σ∗2 with σ∗1 < σ∗2 such that
f(σ) < 0 if σ∗1 < σ < σ∗2 , and f(σ) > 0 if 0 < σ < σ∗1 or σ > σ∗2 . Therefore,

(i) ∂V J11(V ;σ;λ, 0) > 0 either for σ > 0 with 0 < m < m∗, or for 0 < σ < σ∗1 or
σ > σ∗2 with m∗ < m < 1

2 ;

(ii) ∂V J11(V ;σ;λ, 0) < 0 for σ∗1 < σ < σ∗2 with m∗ < m < 1
2 . This completes the

proof.

A similar argument leads to the result related to the sign of ∂V λJ11.

Corollary 3.3. Assume L1 6= R1. Then, ∂2V λJ11(V ;λ, 0) > 0, if σ > σ̄, and

∂2V λJ11(V ;λ, 0) < 0, if 0 < σ < σ̄, where σ̄ =
(
2(1 −m)

) z1−z2
−z2 is the unique real

root of f̃(σ) = 0.

Together with (2), the following results can be established.

Theorem 3.4. Assume L1 6= R1. For small ε > 0 and ν > 0, one has

(i) for either 0 < λ < λ∗1 or λ > λ∗2,
(i-1) for either 0 < σ < σ1∗ or σ > σ2∗, J11(V ;σ;λ, ν) > J11(V ;σ;λ, 0) (resp.

J11(V ;σ;λ, ν) < J11(V ;σ;λ, 0)) if V > V1c (resp. V < V1c), that is, the
ion size enhances (resp. reduces) the individual flux;

(i-2) for σ1∗ < σ < σ2∗, J11(V ;σ;λ, ν) > J11(V ;σ;λ, 0) (resp. J11(V ;σ;λ, ν)
< J11(V ;σ;λ, 0)) if V < V1c (resp. V > V1c), that is, the ion size
enhances (resp. reduces) the individual flux.

(ii) for λ∗1 < λ < λ∗2,
(ii-1) with 0 < m < m∗, for σ > 0, J11(V ;σ;λ, ν) > J11(V ;σ;λ, 0) (J11(V ;σ;

λ, ν) < J11(V ;σ;λ, 0)), that is, the ion size enhances (resp. reduces) the
individual flux, if V > V1c (resp. V < V1c);

(ii-2) with m∗ < m < 1
2 ,

(ii-2-a) for either 0 < σ < σ∗1 or σ > σ∗2 , J11(V ;σ;λ, ν) > J11(V ;σ;λ, 0)
(resp. J11(V ;σ;λ, ν) < J11(V ;σ;λ, 0)), that is, the ion size enhances
(resp. reduces) the individual flux if V > V1c (resp. V < V1c);

(ii-2-b) for σ∗1 < σ < σ∗2 , J11(V ;σ;λ, ν) > J11(V ;σ;λ, 0) (resp. J11(V ;σ;
λ, ν) < J11(V ;σ;λ, 0)), that is, the ion size enhances (resp. reduces)
the individual flux if V < V1c (resp. V > V1c).

Theorem 3.5. Assume L1 6= R1. For small ε > 0 and ν > 0, one has

(i) for σ > σ̄, J11(V ;σ;λ, ν) is increasing (resp. decreasing) in λ if V > V c1
(resp. V < V c1 ) ;

(ii) for 0 < σ < σ̄, J11(V ;σ;λ, ν) is increasing (resp. decreasing) in λ if V < V c1
(resp. V > V c1 ).

In particular,

Proposition 3.6. As L1 → R1, one has

(i) For λ 6= 1, there exist two distinct real roots of f(σ) = 0, denoted by σ(1) and
σ(2) with σ(1) < σ(2) such that ∂V J11(V ;σ;λ, 0) > 0 if either 0 < σ < σ(1)

or σ > σ(2); and ∂V J11(V ;σ;λ, 0) < 0 if σ(1) < σ < σ(2). Furthermore, for
λ = 1, ∂V J11(V ;σ;λ, 0) ≥ 0 for all σ > 0.

(ii) ∂2V λJ11(V ;λ, 0) > 0, if σ > 1, and ∂2V λJ11(V ;λ, 0) < 0, if 0 < σ < 1.
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To show the existence of those particular values of σ, λ and m in Theorem 3.2,
we provide the following example. Example. We take z1 = −z2 = 1. Numerically,

we obtain Figures 1, 2 and 3, respectively.

λ

0 5 10 15 20

h(
λ

)

-1.5

-1

-0.5

0

0.5

1
z

1
=1, z

2
=-1

λ

0 0.5 1

h(
λ

)

-2

-1

0

1

2

3

4

λ
1
*  = 0.072

λ

13 13.5 14 14.5 15

h(
λ

)

-0.1

-0.05

0

0.05

0.1

λ
2
*  = 13.93

m
0 0.1 0.2 0.3 0.4 0.5

g(
m

)

-0.2

0

0.2

0.4

0.6

0.8
z

1
=1, z

2
=-1, λ=1.382

m
0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5

g(
m

)
-0.02

0

0.02

0.04

0.06

m* = 0.4934 

Figure 1. Numerical detection of critical values for λ (left graph) and
m (right one) in Theorem 3.2.
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Figure 2. Numerical detection of critical values for σ, which cor-
responds to statement (I) in Theorem 3.2. The left graph is for
λ < λ∗

1 = 0.072, and the right one is for λ > λ∗
2 = 13.93.

We next would like to point out that

Proposition 3.7. Under electroneutrality conditions z1L1 + z2L2 = 0 and z1R1 +
z2R2 = 0, for L1 6= R1, one has ∂V J11(V ;λ, 0) > 0 and ∂2V λJ11(V ;λ, 0) > 0.

Proof. Upon introducing z1L1 = −z2L2 = L and z1R1 = −z2R2 = R, one has

cL10 = L1 =
1

z1
L, cL20 = L2 =

1

−z2
L, cR10 = R1 =

1

z1
R and cR20 = R2 =

1

−z2
R.

By careful calculations, we obtain



ION SIZE EFFECTS ON INDIVIDUAL FLUXES VIA PNP SYSTEMS 13
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Figure 3. Numerical detection of critical values σ corresponding to
statement (II) in Theorem 3.2 with λ∗

1 < λ < λ∗
2. The left graph is for

0 < m < m∗ = 0.4934, and the right one is for m∗ < m < 1
2
.

∂V J11(V ;λ, 0) =
e

kBT

(λz1 − z2)(L+R)

z1z2

L−R
lnL− lnR

(
m− 1

2

)
,

∂2V λJ11(V ;λ, 0) =
e

kBT

L+R

z2

L−R
lnL− lnR

(
m− 1

2

)
.

Notice that e
kBT

> 0, z2 < 0 and L−R
lnL−lnR > 0. Together with m < 1

2 from

Lemma 3.1, one has ∂V J11(V ;λ, 0) > 0 and ∂2V λJ11(V ;λ, 0) > 0. This completes
the proof.

Remark 3.8. Proposition 3.7 is a special case of Theorems 3.2-3.3 with σ = 1.

To end this section, we would like to comment that since α11 = −β11 in (14),
one has ∂V J11 = −∂V J21 and ∂2V λJ11 = −∂2V λJ21. Corresponding results related to
J21 can be easily obtained, and we leave them to the readers.

3.2. Sign studies related to the total flux. Some qualitative properties of the
total flux (the total flow rate of charge) in terms of I1 = z1D1J11 + z2D2J21 have
been studied in [41]. In particular, under the assumption of electroneutrality con-
ditions, the author established that ∂V I1(V ;λ, 0) > 0 (resp. ∂2V λI1(V ;λ, 0) > 0 ),
which implies that, for small ε > 0 and

However, there are not too much discussion about the negativeness of these terms
except a very special case stated in our introduction.

From (16), the study of the signs of ∂2V λI1(V ;λ, 0) and ∂V I1(V ;λ, 0) follows
directly from our analysis of the individual fluxes (Theorem 3.8 and Theorem 3.14).
More precisely,

Proposition 3.9. Under assumption (17), one has

∂2V λI1(V ;λ, 0)∂2V λJ11(V ;λ, 0) > 0; and ∂V I1(V ;λ, 0)∂V J11(V ;λ, 0) > 0.
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3.3. Partial orders of critical potentials. Our main interest in this section is
to provide a partial order for the critical potentials identified in (2) (see [41] for
more details). We first consider the critical potentials V1c, V2c and Vc that balance
the ion size effects on both the individual flux and the total flux.

For the six critical potentials, Vkc, V
c
k related to the individual fluxes, and Vc, V

c

related to the total flux, given by (15) (see also [41]), it is expected that Vc and V̂c
depend on V1c and V2c, and V c and V̂ c depend on V c1 and V c2 . More precisely,

Corollary 3.10. We have

Vc =
z1D1V1c − z2D2V2c

z1D1 − z2D2
, V c =

z1D1V
c
1 − z2D2V

c
2

z1D1 − z2D2
.

Proof. It follows from the relation (14) and the expressions of the six critical po-
tentials in (15) directly. We omit it here.

The following result can be established.

Proposition 3.11. Assume (17) and L1 < R1. Assume further that α11 > 0. With
λ∗1 and λ∗2 as given in Theorem 3.2,

(i) for λ∗1 < λ < λ∗2, one has V2c < Vc < V1c;
(ii) for either 0 < λ < λ∗1 or λ > λ∗2, there exist two distinct real roots σ̄1 and σ̄2

with σ̄1 < σ̄2 of p(σ) = z1λ
−z2σ+ z1λ−z2

2z2
σ

z1
z2 + 1 = 0 such that V2c < Vc < V1c if

either 0 < σ < σ̄1 or σ > σ̄2; and V1c < Vc < V2c if σ̄1 < σ < σ̄2.

Proof. We only provide the proof for the case with α11 > 0. Similar argument can
be easily applied to the case with α11 < 0.

From (15) and Corollary 3.10, one has

V2c − V1c =
kBT

e

1

α11

(
1− z1

z2

)
(L2

1 −R2
1)p(σ),

where p(σ) =
z1λ

−z2
σ +

z1λ− z2
2z2

σ
z1
z2 + 1.

Direct calculations give

p′(σ) =
z1λ

−z2
+
z1(z1λ− z2)

2z2(z1 − z2)
σ

z2
z1−z2 and p′′(σ) =

z1(z1λ− z2)

2(z1 − z2)2
σ

2z2−z1
z1−z2 > 0 for σ > 0.

In particular, σ̃ =
(

2(z1−z2)λ
z1λ−z2

) z1−z2
z2

is the unique critical point of p(σ) for σ > 0.

p(σ) has its absolute minimum at σ = σ̃, which is given by

p(σ̃) = 1−
(
z1λ− z2

2(z1 − z2)

)1− z1
z2

λ
z1
z2 .

Notice that p(σ̃) = g(0+), where g(0+) is given in (21). It follows that p(σ̃) > 0 if
λ∗1 < λ < λ∗2; and p(σ̃) < 0 if either 0 < λ < λ∗1 or λ > λ∗2, where λ∗1 and λ∗2 are two
distinct real roots of (22).

Together with p(0+) = 1 > 0 , one has

(i) with λ∗1 < λ < λ∗2, V2c − V1c < 0 since p(σ) > 0 for all σ > 0.
(ii) with either 0 < λ < λ∗1 or λ > λ∗2, there exist two distinct real roots σ̄1 and

σ̄2, say σ̄1 < σ̄2, of p(σ) = 0 such that p(σ) > 0 if either 0 < σ < σ̄1 or σ > σ̄2;
and p(σ) < 0 if σ̄1 < σ < σ̄2. Thus, V2c − V1c < 0 if either 0 < σ < σ̄1 or
σ > σ̄2; and V2c − V1c > 0 if σ̄1 < σ < σ̄2.
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Note also that

Vc − V1c =
z2D2(V1c − V2c)
z1D1 − z2D2

and Vc − V2c =
z1D1(V1c − V2c)
z1D1 − z2D2

.

One has V1c < Vc < V2c if V2c − V1c > 0; and V2c < Vc < V1c if V2c − V1c < 0.
This completes the proof.

Similarly, for the critical potentials V c1 , V
c
2 and V c that separate the relative size

effects on both the individual flux and the total flux, we have

Proposition 3.12. Assume (17) and L1 < R1. Assume further that α11,λ > 0.

Then, for σ > 2
z1−z2

z2 , one has V c2 < V c < V c1 , and for σ < 2
z1−z2

z2 , one has
V c1 < V c < V c2 .

Proof. The proof is straightforward, and we omit it here.

Remark 3.13. Similar results can be obtained for the case with α11 < 0 and
α11,λ < 0, respectively. We leave it to readers.

To end this section, we perform numerical simulations to system (9)-(10) directly
to numerically identify the six critical potentials given in (15) and to further examine
our analytical result established in Theorem 3.2 and Corollary 3.4 (see Figure 4).

In our numerical simulations, we take 14 = L1 < R1 = 20 (implying m(L1, R1) =
0.4948 > m∗ = 0.4934) and 0.072 = λ∗1 < λ = 1.38 < λ∗2 = 13.93. For small ε =
0.001, our numerical result shows that V2c < Vc < V1c, and V c2 < V c < V c1 , which
is consistent with our analytical ones stated in Proposition 3.11 and Proposition
3.12. We comment that those critical potentials split the potential region into
several subregions, and over each subregion, the ion size effects on ionic flows will be
different. This provides a possible way to control the boundary potential to produce
desired properties of ionic flows while the boundary concentration and relative ion
sizes satisfy certain conditions. Take V2c < Vc < V1c (the critical potentials that
balance ion size effects) for example, from Theorem 3.4 and Proposition 3.9, one
has, for small ε > 0 and small ν > 0,

(S1) for V < V2c, J1(V ; ν) < J1(V ; 0), J2(V ; ν) > J2(V ; 0), and I(V ; ν) <
I(V ; 0);

(S2) for V2c < V < Vc, J1(V ; ν) < J1(V ; 0), J2(V ; ν) < J2(V ; 0), and I(V ; ν) <
I(V ; 0);

(S3) for Vc < V < V1c, J1(V ; ν) < J1(V ; 0), J2(V ; ν) < J2(V ; 0), and I(V ; ν) >
I(V ; 0);

(S4) for V > V1c, J1(V ; ν) > J1(V ; 0), J2(V ; ν) < J2(V ; 0), and I(V ; ν) >
I(V ; 0).

In particular, in (S3) and (S3), the ion size reduce both the individual fluxes J1
and J2, however, the effect on the total flow rate of charge I is opposite. Recall
that I(V ; ν, λ)−I0(V ), J1(V ; ν, λ)−J10(V ) and J2(V ; ν, λ)−J20(V ) are all linear
functions in the potential V , (S1)-(S4) can be further verified by our numerical
simulations in Figure 4 (left column).

To find the critical potentials V c1 , V
c
2 and V c, our numerical approach is a nu-

merical interpretation of the following analytical result (taking the individual flux
J1 for example). For fixed (λ∗, ν∗), we define

H(V, λ) = J1(V ;λ, ν∗)− J1(V ;λ∗, ν∗).
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Figure 4. Numerical identification of six critical potentials in (15)
with z1 = −z2 = 1. In the left column, the vertical axis actually repre-
sents, from top to bottom, I(V ; ν, λ)−I0(V ), J1(V ; ν, λ)−J10(V ) and
J2(V ; ν, λ)−J20(V ), respectively. In particular, the x-axis for all figures
actually represents e

kBT
V .

Proposition 3.14. For fixed (λ, ν) = (λ∗, ν∗), V c∗1 is the value defined in (2) if
and only if the point (V c∗1 , λ∗) is a saddle point of H(V, λ) under the condition that
∂2V λH(V c∗1 , λ∗) = ∂2V λJ1(V c1 ∗, λ∗) 6= 0.

Proof. Notice that H(V, λ∗) = 0 for all V . Hence, HV (V, λ∗) = HV V (V, λ∗) = 0.
From the definition of V c∗1 , one has Hλ(V c∗1 , λ∗) = J1,λ(V c∗1 ;λ∗, ν∗) = 0, which
implies that (V c∗1 , λ∗) is a critical point of H(V, λ). Following from(

∂2H

∂V 2

∂2H

∂λ2
−
(
∂2H

∂V ∂λ

)2
)

(V c∗1 , λ∗) = −
(
∂2H

∂V ∂λ

)2

(V c∗1 , λ∗) < 0,

one concludes that (V c∗1 , λ∗) is a saddle point of H(V, λ).
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It follows that, for fixed (λ∗, ν∗), one can numerically compute J1(V ;λ, ν∗), and
hence H(V, λ) for any λ close to λ∗, then apply Proposition 3.14 to estimate V c∗1
from the saddle point of H(V, λ). In our numerical simulations, we fix λ∗ = λ/3
and plot H(V, λ) as a function of V with three different λ values (see the second
column in Figure 4 for J1, J2 and I). Our analytical results for zeroth order in ε
and first order in ν tell us that the graphs for these three different λ values should
have a common intersection point with V = V c1 .
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Figure 5. Numerical identification of critical potentials V1c and V c1 for
individual flux J1 with z1 = −z2 = 1 and nonzero permanent charge.
The x-axis for all figures actually represents e

kBT
V .

Contour map of   H(V,λ) for J
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Figure 6. Numerical approximations of critical potentials V c1 for in-
dividual flux J1 with z1 = −z2 = 1 and nonzero permanent charge as
illustrated in Proposition 3.14. The x-axis for all figures actually repre-
sents e

kBT
V .

4. Concluding Remarks. In this work, we consider the PNP model with local
excess chemical potentials to account for finite size effects on ionic flows for two
ion species, one positively charged and one negatively charged. The qualitative
properties of ionic flows, in terms of individual fluxes, are studied without the as-
sumption of electroneutrality conditions, which is more realistic, and it turns out
that these properties depend very sensitively on boundary concentrations (in terms
of m(L1, R1)) and relative ion sizes (in terms of λ) in addition to other physical pa-
rameters such as boundary potentials, ion valences and ion sizes. Our result shows
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that the first order approximation Jk1 = DkJk1 in ion volume of individual fluxes
Jk = DkJk is linear in boundary potential, and the signs of ∂V Jk1 and ∂2V λJk1
which play key roles in characterizing ion size effects on ionic flows can be both
negative depending further on boundary concentrations while they are always posi-
tive and independent of boundary concentrations under electroneutrality conditions.
This is the novelty of our work. For the relatively simple setting and assumptions
of the model studied in this paper, we are able to characterize the distinct effects
of the nonlinear interplay between these physical parameters. The dynamical be-
haviors of ionic flows studied in this work are much more rich compared to those in
[41] under electroneutrality conditions.

Finally, we comment that the model studied in this paper is oversimplified and the
specific setting (such as zero permanent charge assumption) of our problem may not
reflect precisely any realistic biological settings. However, we believe the existence
of these critical potentials are generally in valid (even for PNP model with nonzero
permanent charge, see Figures 5 and 6 for V1c and V c1 with nonzero permanent
charge Q(x) defined piecewise by Q(x) = 0 if x ∈ [0, 1/3] ∪ [2/3, 1] and Q(x) =
Q0 if x ∈ [1/3, 2/3], where Q0 = 0.5) and the awareness of the potential existence
of these critical voltage itself would be useful for further numerical studies and
stimulate further analytical studies of ionic flows through ion channels. We believe
our results will provide useful insights for numerical and even experimental studies
of ionic flows through membrane channels.
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